
Error: Can't find stylesheet to import.
 ╷
4 │ @import "gist";
 │ ^^^^^^
 ╵
 app/assets/stylesheets/application.pdf.scss 4:9 root stylesheet

Adafruit 1.14" 240x135 Color TFT
Breakout LCD Display
Created by Melissa LeBlanc-Williams

https://learn.adafruit.com/adafruit-1-14-240x135-color-tft-breakout
Last updated on 2024-03-31 03:30:44 PM EDT

Table of Contents

Overview

Pinouts

Arduino Wiring & Test

Basic Graphics Test Wiring
Install Arduino Libraries
Changing Pins

Adafruit GFX library

Drawing Bitmaps

CircuitPython Displayio Quickstart

Preparing the Breakout
Required CircuitPython Libraries
Code Example Additional Libraries
CircuitPython Code Example
Where to go from here

Python Wiring and Setup

Wiring
ILI9341 and HX-8357-based Displays
ST7789 and ST7735-based Displays
SSD1351-based Displays
SSD1331-based Display
Setup
Python Installation of RGB Display Library
DejaVu TTF Font
Pillow Library

Python Usage

Turning on the Backlight
Displaying an Image
Drawing Shapes and Text
Displaying System Information

Downloads

Files
Fab Print
Schematic

•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•

•
•
•

Overview

Say hello to our 1.14" 240x135 Color TFT Display w/ MicroSD Card
Breakout – we think it's T-F-Terrific! It's the size of your thumbnail, with
glorious 240x135 high res pixel color. This very very small display is only
1.14" diagonal, packed with RGB pixels, for making very small, high-density
displays.

We've been looking for a display like this for a long time - it's so small only
1.14" diagonal but has a high density 260 ppi, 240x135 pixel display with
full-angle viewing. It looks a lot like our 0.96" 160x80 display, but has 2.5x
as many pixels. We've seen displays of this caliber used in smartwatches and
small electronic devices but they've always used a MIPI interface. Finally,
we found one that is SPI, and it has a friendly display driver, so it works with
any and all microcontrollers or microcomputers!

This lovely little display breakout is the best way to add a small, colorful and
very bright display to any project. Since the display uses 4-wire SPI to
communicate, and has its own pixel-addressable frame buffer, it can be used
with every kind of microcontroller. Even a very small one with low memory
and few pins available! The 1.14" display has 240x135 16-bit full color pixels
and is an IPS display, so the color looks great up to 80 degrees off axis in
any direction. The TFT driver (ST7789) is very similar to the popular
ST7735, and our Arduino library supports it as well.

Our breakout has the TFT display soldered on (it uses a delicate flex-circuit
connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level
shifter so you can use it with 3.3V or 5V power and logic. We also had a little
space so we placed a microSD card holder so you can easily load full color
bitmaps from a FAT16/FAT32 formatted microSD card. The microSD card is
not included, but you can pick one up here (http://adafru.it/102).

http://www.adafruit.com/products/102

Of course, we wouldn't just leave you with a datasheet and a "good luck!" -
we've written a full open source graphics library that can draw pixels, lines,
rectangles, circles, text and bitmaps as well as example code and a wiring
tutorial. The code is written for Arduino IDE but can be easily ported to your
favorite microcontroller!

Pinouts

This color display uses SPI to receive image data. That means you need at
least 4 pins - clock, data in, TFT cs and d/c. If you'd like to have SD card
usage too, add another 2 pins - data out and card cs. However, there's a
couple other pins you may want to use, lets go thru them all!

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse
polarity protection but try to wire it right!
3V - this is the 3.3V output from the onboard regulator
GND - this is the power and signal ground pin
SCK - this is the SPI clock input pin. Use 3-5V logic level
MISO - this is the SPI Microcontroller In Serial Out pin, it's used for
the SD card. It isn't used for the TFT display which is write-only. It is
3.3V logic out (but can be read by 5V logic)

•

•
•
•
•

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to
send data from the microcontroller to the SD card and/or TFT. Use 3-5V
logic level
TFTCS - this is the TFT SPI chip select pin. Use 3-5V logic level
RST - this is the TFT reset pin. Connect to ground to reset the TFT! It's
best to have this pin controlled by the library so the display is reset
cleanly, but you can also connect it to the Arduino Reset pin, which
works for most cases. There is an automatic-reset chip connected so it
will reset on power-up. Use 3-5V logic level
DC - this is the TFT SPI data or command selector pin. Use 3-5V logic
level
SD Card CS / SDCS - this is the SD card chip select, used if you want
to read from the SD card. Use 3-5V logic level
LIT - this is the PWM input for the backlight control. It is by default
pulled high (backlight on) you can PWM at any frequency or pull down
to turn the backlight off. Use 3-5V logic level

•

•
•

•

•

•

Arduino Wiring & Test

Basic Graphics Test Wiring
Wiring up the display in SPI mode is pretty easy as there are not that many
pins! We'll be using hardware SPI, but you can also use software SPI (any
pins) later. Start by connecting the power pins

3-5V Vin connects to the microcontroller 5V pin
GND connects to Arduino ground
SCK connects to SPI clock. On Arduino Uno/Duemilanove/328-based,
thats Digital 13. On Mega, its Digital 52 and on other chips
its ICSP-3 (See SPI Connections for more details (https://adafru.it/d5h))
MISO is not connected

•
•
•

•

http://arduino.cc/en/Reference/SPI

MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based,
thats Digital 11. On Mega, its Digital 51 and on other chips
its ICSP-4 (See SPI Connections for more details (https://adafru.it/d5h))
TFTCS connects to our SPI Chip Select pin. We'll be using Digital
10 but you can later change this to any pin
RST connects to our Display Reset pin. We'll be using Digital 9 but you
can later change this pin too.
DC connects to our SPI data/command select pin. We'll be
using Digital 8 but you can later change this pin too.

For the level shifter, we use the CD74HC4050 (https://adafru.it/CgA) which
has a typical propagation delay of ~10ns

The following diagram uses a 0.96 160x80 display, which is the same size
breakout and has the exact same pinout as the 1.14" 240x135 display.

•

•

•

•

http://arduino.cc/en/Reference/SPI
http://www.ti.com/product/cd74hc4050?keyMatch=CD74HC4050&tisearch=Search-EN-Everything

Install Arduino Libraries
We have example code ready to go for use with these TFTs. It's written for
Arduino, which should be portable to any microcontroller by adapting the
C++ source.

Three libraries need to be installed using the Arduino Library Manager…
this is the preferred and modern way. From the Arduino “Sketch” menu,
select “Include Library” then “Manage Libraries…”

Type “gfx” in the search field to quickly find the first library
— Adafruit_GFX:

Repeat the search and install steps, looking for the Adafruit
BusIO, Adafruit Zero DMA, Adafruit ST7735 and ST7789, Adafruit
SPIFlash, and SdFat - Adafruit Fork libraries.

After restarting the Arduino software, you should see a new example folder
called Adafruit ST7735 and ST7789, and inside, an example
called graphicstest.

Since this example is written for several displays, there are two changes we
need to make in order to use it with the 1.14" display.

First, in the graphicstest source code, look for the lines as follows:

// For 1.44" and 1.8" TFT with ST7735 use:
Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// For 1.14", 1.3", 1.54", and 2.0" TFT with ST7789:
//Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST);

comment out the line starting with Adafruit_ST7735 and uncomment the
line starting with Adafruit_ST7789, so it looks like:

// For 1.44" and 1.8" TFT with ST7735 use:
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// For 1.14", 1.3", 1.54", and 2.0" TFT with ST7789:
Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST);

Second, we need to set the correct initializations sequence. In the
graphicstest source code, look for the lines as follows:

// Use this initializer if using a 1.8" TFT screen:
tft.initR(INITR_BLACKTAB); // Init ST7735S chip, black tab

// OR use this initializer (uncomment) if using a 1.44" TFT:
//tft.initR(INITR_144GREENTAB); // Init ST7735R chip, green tab

// OR use this initializer (uncomment) if using a 0.96" 160x80 TFT:
//tft.initR(INITR_MINI160x80); // Init ST7735S mini display

// OR use this initializer (uncomment) if using a 1.3" or 1.54" 240x240 TFT:
//tft.init(240, 240); // Init ST7789 240x240

// OR use this initializer (uncomment) if using a 2.0" 320x240 TFT:
//tft.init(240, 320); // Init ST7789 320x240

// OR use this initializer (uncomment) if using a 1.14" 240x135 TFT:
//tft.init(135, 240); // Init ST7789 240x135

comment out the first line starting with tft.initR and uncomment the sixth
line starting with tft.init, so it looks like:

// Use this initializer if using a 1.8" TFT screen:
 //tft.initR(INITR_BLACKTAB); // Init ST7735S chip, black tab

 // OR use this initializer (uncomment) if using a 1.44" TFT:
//tft.initR(INITR_144GREENTAB); // Init ST7735R chip, green tab

// OR use this initializer (uncomment) if using a 0.96" 160x80 TFT:
 //tft.initR(INITR_MINI160x80); // Init ST7735S mini display

 // OR use this initializer (uncomment) if using a 1.3" or 1.54" 240x240 TFT:
 //tft.init(240, 240); // Init ST7789 240x240

 // OR use this initializer (uncomment) if using a 2.0" 320x240 TFT:
//tft.init(240, 320); // Init ST7789 320x240

// OR use this initializer (uncomment) if using a 1.14" 240x135 TFT:
 tft.init(135, 240); // Init ST7789 240x135

Now upload the sketch to your Arduino. You may need to press the Reset
button to reset the Arduino and TFT. You should see a collection of graphical
tests draw out on the TFT.

Changing Pins
Now that you have it working, there's a few things you can do to change
around the pins.

If you're using Hardware SPI, the CLOCK and MOSI pins are 'fixed' and
can't be changed. But you can change to software SPI, which is a bit slower,
and that lets you pick any pins you like. Find these lines:

// OPTION 1 (recommended) is to use the HARDWARE SPI pins, which are unique
// to each board and not reassignable. For Arduino Uno: MOSI = pin 11 and
// SCLK = pin 13. This is the fastest mode of operation and is required if
// using the breakout board's microSD card.

// For 1.44" and 1.8" TFT with ST7735 use:
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// For 1.14", 1.3", 1.54", and 2.0" TFT with ST7789:
Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST);

// OPTION 2 lets you interface the display using ANY TWO or THREE PINS,
// tradeoff being that performance is not as fast as hardware SPI above.
//#define TFT_MOSI 11 // Data out
//#define TFT_SCLK 13 // Clock out

// For ST7735-based displays, we will use this call
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);

// OR for the ST7789-based displays, we will use this call
//Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK, TFT_RST);

Comment out option 1, and uncomment option 2 for the ST7789. Then you
can change the TFT_ pins to whatever pins you'd like!

The 1.14" TFT display has an auto-reset circuit on it so you probably don't
need to use the RST pin. You can change

#define TFT_RST 9

to

#define TFT_RST -1

so that pin isn't used either. Or connect it up for manual TFT resetting!

Adafruit GFX library

The Adafruit_GFX library for Arduino provides a common syntax and set of
graphics functions for all of our TFT, LCD and OLED displays. This allows
Arduino sketches to easily be adapted between display types with minimal
fuss…and any new features, performance improvements and bug fixes will
immediately apply across our complete offering of color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects,
triangles, text, etc.

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-
graphics-library (https://adafru.it/aPx) It covers the latest and greatest of the
GFX library!

Drawing Bitmaps
There is a built in microSD card slot into the breakout, and we can use that
to load bitmap images! You will need a microSD card formatted FAT16 or
FAT32 (they almost always are by default).

It's really easy to draw bitmaps! Let's start by downloading this image
of Minerva

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

Copy minerva.bmp into the base directory of a microSD card and insert it
into the microSD socket in the breakout.

Two more wires are required to interface with the onboard SD card:

You'll need to connect up the SO pin to the SPI MISO line on your
microcontroller. On Arduino Uno/Duemilanove/328-based, thats Digital
12. On Mega's, its Digital 50 and on Leonardo/Due its ICSP-1 (See
SPI Connections for more details (https://adafru.it/d5h))
Also, the CCS or CC pin to Digital 4 on your Arduino as well. You can
change this pin later, but stick with this for now.

The following diagram uses a 0.96 160x80 display, which is the same size
breakout and has the exact same pinout as the 1.14" 240x135 display.

•

•

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

You may want to try the SD library examples before continuing, especially
one that lists all the files on the SD card

Open the File→examples→Adafruit ImageReader
Library→BreakoutST7789 - 320x240 example:

You will need to change a couple of lines for this to work with the 240x135
display. First, we need to set this to the correct display size, so look for the
following code:

tft.init(240, 320); // Init ST7789 320x240

and change it to this:

tft.init(135, 240); // Init ST7789 240x135

Second, we need to change the filename that we are loading, so look for the
following lines of code.

Serial.print(F("Loading purple.bmp to screen..."));
stat = reader.drawBMP("/purple.bmp", tft, 0, 0);

and change them to this:

Serial.print(F("Loading minerva.bmp to screen..."));
stat = reader.drawBMP("/minerva.bmp", tft, 0, 0);

Now upload the example sketch to the Arduino. You should see ADABOT
appear! If you have any problems, check the serial console for any messages
such as not being able to initialize the microSD card or not finding the
image.

To make new bitmaps, make sure they are less than 240 by 135 pixels and
save them in 24-bit BMP format! They must be in 24-bit format, even if
they are not 24-bit color as that is the easiest format for the Arduino. You
can rotate images using the setRotation() procedure

You can draw as many images as you want - don't forget the names must be
less than 8 characters long. Just copy the BMP drawing routines below
loop() and call

bmpDraw(bmpfilename, x, y);

For each bitmap. They can be smaller than 240x135 and placed in any
location on the screen.

CircuitPython Displayio Quickstart
You will need a board capable of running CircuitPython such as the Metro
M0 Express or the Metro M4 Express. You can also use boards such as the
Feather M0 Express or the Feather M4 Express. We recommend either the
Metro M4 or the Feather M4 Express because it's much faster and works
better for driving a display. For this guide, we will be using a Feather M4
Express. The steps should be about the same for the Feather M0 Express or
either of the Metros. If you haven't already, be sure to check out our Feather
M4 Express (https://adafru.it/EEm) guide.

Adafruit Feather
M4 Express -
Featuring
ATSAMD51
It's what you've
been waiting for,
the Feather M4
Express featuring
ATSAMD51. This
Feather is fast like
a swift, smart like
an owl, strong like
a ox-bird (it's half
ox,...
https://
www.adafruit.com/
product/3857

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some
wires to it. Be sure to check out the Adafruit Guide To Excellent
Soldering (https://adafru.it/drI). After that the breakout should be ready to
go.

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering

Required CircuitPython Libraries

To use this display with displayio, there is only one required library.

First, make sure you are running the latest version of Adafruit
CircuitPython (https://adafru.it/Amd) for your board.

Next, you'll need to install the necessary libraries to use the hardware--
carefully follow the steps to find and install these libraries from Adafruit's
CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide
has a great page on how to install the library bundle (https://adafru.it/
ABU) for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the
necessary libraries from the bundle:

adafruit_st7789

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_st7789 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to
make use of a library so the code didn't get overly complicated. You'll also
need to copy over the following library from the bundle:

adafruit_display_text

Go ahead and install this in the same manner as the driver library by
copying the adafruit_display_text folder over to the lib folder on your
CircuitPython device.

CircuitPython Code Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text.
"""
import board
import terminalio
import displayio

Starting in CircuitPython 9.x fourwire will be a seperate internal library
rather than a component of the displayio library
try:

from fourwire import FourWire
except ImportError:

•

•

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

from displayio import FourWire
from adafruit_display_text import label
from adafruit_st7789 import ST7789

First set some parameters used for shapes and text
BORDER = 20
FONTSCALE = 2
BACKGROUND_COLOR = 0x00FF00 # Bright Green
FOREGROUND_COLOR = 0xAA0088 # Purple
TEXT_COLOR = 0xFFFF00

Release any resources currently in use for the displays
displayio.release_displays()

spi = board.SPI()
tft_cs = board.D5
tft_dc = board.D6

display_bus = FourWire(spi, command=tft_dc, chip_select=tft_cs)
display = ST7789(

display_bus, rotation=270, width=240, height=135, rowstart=40, colstart=53
)

Make the display context
splash = displayio.Group()
display.root_group = splash

color_bitmap = displayio.Bitmap(display.width, display.height, 1)
color_palette = displayio.Palette(1)
color_palette[0] = BACKGROUND_COLOR

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)
splash.append(bg_sprite)

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(

display.width - BORDER * 2, display.height - BORDER * 2, 1
)
inner_palette = displayio.Palette(1)
inner_palette[0] = FOREGROUND_COLOR
inner_sprite = displayio.TileGrid(

inner_bitmap, pixel_shader=inner_palette, x=BORDER, y=BORDER
)
splash.append(inner_sprite)

Draw a label
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=TEXT_COLOR)
text_width = text_area.bounding_box[2] * FONTSCALE
text_group = displayio.Group(

scale=FONTSCALE,
x=display.width // 2 - text_width // 2,

y=display.height // 2,
)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

while True:
pass

Let's take a look at the sections of code one by one. We start by importing
the board so that we can initialize SPI, displayio,terminalio for the font, a
label, and the adafruit_st7789 driver.

import board
import displayio
import terminalio
from adafruit_display_text import label
from adafruit_st7789 import ST7789

Next we define some parameters so that making changes to the shapes and
text are easy. BORDER will be the distance between the background and
foreground rectangles. FONTSCALE will be the multiplier for the font size.
BACKGROUND_COLOR is the color of the larger outer rectangle and is set to
0x00FF00, which is bright green by default. Colors are Hexadecimal values
in the format of RRGGBB. FOREGROUND_COLOR is the color of the smaller
inner rectangle and is set to purple by default. TEXT_COLOR is the color of
the text that appears in the label and by default is yellow.

BORDER = 20
FONTSCALE = 2
BACKGROUND_COLOR = 0x00FF00 # Bright Green
FOREGROUND_COLOR = 0xAA0088 # Purple
TEXT_COLOR = 0xFFFF00

Next we release any previously used displays. This is important because if
the Feather is reset, the display pins are not automatically released and this
makes them available for use again.

displayio.release_displays()

Next, we set the SPI object to the board's SPI with the easy shortcut
function board.SPI(). By using this function, it finds the SPI module and
initializes using the default SPI parameters. Next we set the Chip Select and
Data/Command pins that will be used.

spi = board.SPI()
tft_cs = board.D5
tft_dc = board.D6

In the next line, we set the display bus to FourWire which makes use of the
SPI bus. We would normally pass in reset with other displays, but this one
has an automatic reset circuit built in.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

Finally, we initialize the driver with a width of 240 and a height of 135.
Because the ST7789 chip is capable of driving both 320 and 240 pixel width
displays. With the 240x135 display, the rectangle is in the middle of that
space, we will need to tell the display that our row starts at 40 pixels over
and our columns start 53 pixels down. If we stopped at this point and ran
the code, we would have a terminal that we could type at and have the
screen update.

display = ST7789(display_bus, rotation=270, width=240, height=135, rowstart=40, colstart=53)

Next we create a background splash image. We do this by creating a group
that we can add elements to and adding that group to the display. In this
example, we are limiting the maximum number of elements to 10, but this
can be increased if you would like. The display will automatically handle
updating the group.

splash = displayio.Group(max_size=10)
display.show(splash)

Next we create a Bitmap, which is like a canvas that we can draw on, and
set it to the same size as the display. In this case we are creating the Bitmap
to be the same size as the screen, but only have one color. The Bitmaps can
currently handle up to 256 different colors. We create a Palette with one
color and set that color to the value of BACKGROUND_COLOR. Even though the
Bitmaps can only handle 256 colors at a time, you get to define what those
256 different colors are.

color_bitmap = displayio.Bitmap(display.width, display.height, 1)
color_palette = displayio.Palette(1)
color_palette[0] = BACKGROUND_COLOR

With all those pieces in place, we create a TileGrid by passing the bitmap
and palette and draw it at (0, 0) which represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,
 pixel_shader=color_palette,
 x=0, y=0)
splash.append(bg_sprite)

Next we will create a smaller purple square. The easiest way to do this is the
create a new bitmap that is a little smaller than the full screen with a single
color and place it in a specific location. In this case, we will create a bitmap
that is the size of the display with the value of BORDER, which is 20 pixels,
subtracted from each side. The screen is 240x135, so we'll end up
subtracting 40 from each of those numbers.

We'll also want to place it at the position (20, 20) so that it ends up
centered.

inner_bitmap = displayio.Bitmap(display.width - BORDER * 2, display.height - BORDER * 2, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = FOREGROUND_COLOR
inner_sprite = displayio.TileGrid(inner_bitmap,

pixel_shader=inner_palette,
x=BORDER, y=BORDER)

splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on
top. Here's what it looks like now.

Next let's add a label that says "Hello World!" on top of that. We're going to
use the built-in Terminal Font and scale it up by a factor of two, which is
what we have FONTSCALE set to. To scale the label only, we will make use of a
subgroup, which we will then add to the main group.

We create the label first so that we can get the width of the bounding box
and multiply it by the FONTSCALE. This gives us the actual with of the text.

Labels are automatically centered vertically, so we'll place it at half the
display height for the Y coordinate, and we calculate the X coordinate to
horizontally center the label. For the color, we just use the value inside of
TEXT_COLOR.

text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=TEXT_COLOR)
text_width = text_area.bounding_box[2] * FONTSCALE
text_group = displayio.Group(max_size=10, scale=FONTSCALE, x=display.width // 2 - text_width // 2,

y=display.height // 2)

text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen
remains in place and isn't replaced by a terminal.

while True:
 pass

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support
Using displayio (https://adafru.it/EGh)

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio

Python Wiring and Setup

Wiring
It's easy to use display breakouts with Python and the Adafruit CircuitPython
RGB Display (https://adafru.it/u1C) module. This module allows you to
easily write Python code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble
your display.

Since there's dozens of Linux computers/boards you can use we will show
wiring for Raspberry Pi. For other platforms, please visit the guide for
CircuitPython on Linux to see whether your platform is supported (https://
adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Note this is not a kernel driver that will let you have the console appear on
the TFT. However, this is handy when you can't install an fbtft driver, and
want to use the TFT purely from 'user Python' code!
You can only use this technique with Linux/computer devices that have
hardware SPI support, and not all single board computers have an SPI
device so check before continuing

ILI9341 and HX-8357-based Displays

2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, that's SCLK
MOSI connects to SPI MOSI. On the Raspberry Pi, that's also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but
this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be
changed later as well.
Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground

•
•
•
•

•

•
•

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Download the Fritzing Diagram
https://adafru.it/H6C

2.4", 2.8", 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to
use them for SPI. To do that, you'll need to either solder bridge some pads
on the back or connect the appropriate IM lines to 3.3V with jumper wires.
Check the back of your display for the correct solder pads or IM lines to put
it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but
this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be
changed later as well.

These larger displays are set to use 8-bit data lines by default and may need
to be modified to use SPI.

•
•
•
•
•
•

•

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335

Download the Fritzing Diagram
https://adafru.it/H7a

ST7789 and ST7735-based Displays

1.3", 1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
RST connects to our Reset pin. We'll be using GPIO 24 but this can be
changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but
this can be changed later as well.

•
•
•
•
•
•

•

https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

Download the Fritzing Diagram
https://adafru.it/H7A

0.96", 1.14", and 1.44" Displays

Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
RST connects to our Reset pin. We'll be using GPIO 24 but this can be
changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but
this can be changed later as well.

•
•
•
•
•
•

•

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392

Download the Fritzing Diagram
https://adafru.it/H7B

1.8" Display

GND connects to the Raspberry Pi's ground
Vin connects to the Raspberry Pi's 3V pin
RST connects to our Reset pin. We'll be using GPIO 24 but this can be
changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but
this can be changed later as well.
CS connects to our SPI Chip Select pin. We'll be using CE0
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
LITE connects to the Raspberry Pi's 3V pin. This can be used to
separately control the backlight.

•
•
•

•

•
•
•
•

https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

Download the Fritzing Diagram
https://adafru.it/H8a

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground
Vin connects to the Raspberry Pi's 3V pin
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CS connects to our SPI Chip Select pin. We'll be using CE0
RST connects to our Reset pin. We'll be using GPIO 24 but this can be
changed later.
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but
this can be changed later as well.

•
•
•
•
•
•

•

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

Download the Fritzing Diagram
https://adafru.it/H8A

SSD1331-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but
this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be
changed later as well.
CS connects to our SPI Chip Select pin. We'll be using CE0
Vin connects to the Raspberry Pi's 3V pin
GND connects to the Raspberry Pi's ground

•
•
•

•

•
•
•

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

Download the Fritzing Diagram
https://adafru.it/OaF

Setup
You'll need to install the Adafruit_Blinka library that provides the
CircuitPython support in Python. This may also require enabling SPI on your
platform and verifying you are running Python 3. Since each platform is a
little different, and Linux changes often, please visit the CircuitPython on
Linux guide to get your computer ready (https://adafru.it/BSN)!

If you have previously installed the Kernel Driver with the PiTFT Easy Setup,
you will need to remove it first in order to run this example.

https://cdn-learn.adafruit.com/assets/assets/000/096/092/original/0.96_OLED.fzz?1603118637
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just
make sure you aren't trying to use CircuitPython on Python 2.x, it isn't
supported!

If that complains about pip3 not being installed, then run this first to install
it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in
case it didn't, you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older
version of Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using
text with custom fonts. There are several system libraries that PIL relies on,
so installing via a package manager is the easiest way to bring in
everything:

sudo apt-get install python3-pil

If you installed the PIL through PIP, you may need to install some additional
libraries:

sudo apt-get install libopenjp2-7 libtiff5 libatlas-base-dev

That's it. You should be ready to go.

Python Usage
If you have previously installed the Kernel Driver with the PiTFT Easy Setup,
you will need to remove it first in order to run this example.

Now that you have everything setup, we're going to look over three different
examples. For the first, we'll take a look at automatically scaling and
cropping an image and then centering it on the display.

•

•

•

•

•

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the
1.3" TFT Bonnet with Joystick. On such displays, running the below code will
likely result in the display remaining black. To turn on the backlight, you will
need to add a small snippet of code. If your backlight pin number differs, be
sure to change it in the code:

Turn on the Backlight
backlight = DigitalInOut(board.D26)
backlight.switch_to_output()
backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section
to help you better understand what is going on. Let's start by downloading
an image of Blinka. This image has enough border to allow resizing and
cropping with a variety of display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your
script. Here's the code we'll be loading onto the Raspberry Pi. We'll go over
the interesting parts.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries
"""

import digitalio
import board
from PIL import Image, ImageDraw
from adafruit_rgb_display import ili9341
from adafruit_rgb_display import st7789 # pylint: disable=unused-import
from adafruit_rgb_display import hx8357 # pylint: disable=unused-import
from adafruit_rgb_display import st7735 # pylint: disable=unused-import
from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import
from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14" ST7789
disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, # 1.47" ST7789
disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, # 1.9" ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT Rev A ST7735R
disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT Rev B ST7735R
x_offset=26, y_offset=1,
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = ili9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,
dc=dc_pin,
rst=reset_pin,
baudrate=BAUDRATE,

)
pylint: enable=line-too-long

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:

height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = width / height
if screen_ratio < image_ratio:

scaled_width = image.width * height // image.height
scaled_height = height

else:
scaled_width = width
scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image
x = scaled_width // 2 - width // 2
y = scaled_height // 2 - height // 2
image = image.crop((x, y, x + width, y + height))

Display image.
disp.image(image)

So we start with our usual imports including a couple of Pillow modules and
the display drivers. That is followed by defining a few pins here. The reason
we chose these is because they allow you to use the same code with the
PiTFT if you chose to do so.

import digitalio
import board
from PIL import Image, ImageDraw
import adafruit_rgb_display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789
import adafruit_rgb_display.hx8357 as hx8357
import adafruit_rgb_display.st7735 as st7735
import adafruit_rgb_display.ssd1351 as ssd1351
import adafruit_rgb_display.ssd1331 as ssd1331

Configuration for CS and DC pins
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a
variety of displays. The exception to this is the SSD1351 driver, which will
automatically limit it to 16MHz even if you pass 24MHz. We'll set up out SPI
bus and then initialize the display.

We wanted to make these examples work on as many displays as possible
with very few changes. The ILI9341 display is selected by default. For other
displays, go ahead and comment out these lines:

disp = ili9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

and uncomment the line appropriate for your display and possibly the line
below in the case of longer initialization sequences. The displays have a
rotation property so that it can be set in just one place.

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14" ST7789
#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT Rev A ST7735R
#disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT Rev B ST7735R
#x_offset=26, y_offset=1,#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = ili9341.ILI9341(

spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,
dc=dc_pin,
rst=reset_pin,
baudrate=BAUDRATE

)

Next we read the current rotation setting of the display and if it is 90 or 270
degrees, we need to swap the width and height for our calculations,
otherwise we just grab the width and height. We will create an image with
our dimensions and use that to create a draw object. The draw object will
have all of our drawing functions.

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:

height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This
isn't strictly necessary since it will be overwritten by the image, but it kind
of sets the stage.

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which
assumes it is in the same directory that you are running the script from. Feel
free to change it if it doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that
it matches either the width or height of the display, depending on which is
smaller, so that we have some of the image to chop off when we crop it. So
we start by calculating the width to height ration of both the display and the
image. If the height is the closer of the dimensions, we want to match the
image height to the display height and let it be a bit wider than the display.
Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new
dimensions and using a Bicubic rescaling method, we reassign the newly
rescaled image back to image. Pillow has quite a few different methods to
choose from, but Bicubic does a great job and is reasonably fast.

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = width / height
if screen_ratio < image_ratio:

scaled_width = image.width * height // image.height
scaled_height = height

else:

scaled_width = width
scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we
want to begin cropping it so that it ends up centered. We do that by using a
standard centering function, which is basically requesting the difference of
the center of the display and the center of the image. Just like with scaling,
we replace the image variable with the newly cropped image.

Crop and center the image
x = scaled_width // 2 - width // 2
y = scaled_height // 2 - height // 2
image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should
have the exact same dimensions at the display and fill it completely.

disp.image(image)

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is
very similar to the displayio example, but it uses Pillow instead. Here's the
code for that.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This demo will draw a few rectangles onto the screen along with some text
on top of that.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries
"""

import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
from adafruit_rgb_display import ili9341
from adafruit_rgb_display import st7789 # pylint: disable=unused-import
from adafruit_rgb_display import hx8357 # pylint: disable=unused-import
from adafruit_rgb_display import st7735 # pylint: disable=unused-import
from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import
from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.
BORDER = 20
FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14" ST7789
disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, # 1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, # 1.9" ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT Rev A ST7735R
disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT Rev B ST7735R
x_offset=26, y_offset=1,
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = ili9341.ILI9341(

spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,
dc=dc_pin,
rst=reset_pin,
baudrate=BAUDRATE,

)
pylint: enable=line-too-long

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:

height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Draw a smaller inner purple rectangle
draw.rectangle(

(BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)
)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(

(width // 2 - font_width // 2, height // 2 - font_height // 2),
text,

font=font,
fill=(255, 255, 0),

)

Display image.
disp.image(image)

Just like in the last example, we'll do our imports, but this time we're
including the ImageFont Pillow module because we'll be drawing some text
this time.

import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays.
The BORDER will be the size in pixels of the green border between the edge of
the display and the inner purple rectangle. The FONTSIZE will be the size of
the font in points so that we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the
rotation, and create a draw object. If you have are using a different
display than the ILI9341, go ahead and adjust your initializer as
explained in the previous example. After that, we will setup the
background with a green rectangle that takes up the full screen. To get
green, we pass in a tuple that has our Red, Green, and Blue color values in
it in that order which can be any integer from 0 to 255.

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as
our example in displayio quickstart, except the hexadecimal values have
been converted to decimal. We use the BORDER parameter to calculate the
size and position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded
on your Pi in the location in the code. We also make use of the FONTSIZE
parameter that we discussed earlier.

Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may
recognize the centering calculation was the same one we used to center

crop the image in the previous example. In this example though, we get the
font size values using the getsize() function of the font object.

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((width//2 - font_width//2, height//2 - font_height//2),

text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

Displaying System Information

In this last example we'll take a look at getting the system information and
displaying it. This can be very handy for system monitoring. Here's the code
for that example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This will show some Linux Statistics on the attached display. Be sure to adjust
to the display you have connected. Be sure to check the learn guides for more
usage information.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!
"""

import time
import subprocess
import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
from adafruit_rgb_display import ili9341
from adafruit_rgb_display import st7789 # pylint: disable=unused-import
from adafruit_rgb_display import hx8357 # pylint: disable=unused-import
from adafruit_rgb_display import st7735 # pylint: disable=unused-import
from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import
from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CE0)
dc_pin = digitalio.DigitalInOut(board.D25)
reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54" ST7789
disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y_offset=40, # 1.14" ST7789
disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, # 1.47" ST7789
disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, # 1.9" ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, # 1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT Rev A ST7735R
disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT Rev B ST7735R
x_offset=26, y_offset=1,
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,
dc=dc_pin,
rst=reset_pin,
baudrate=BAUDRATE,

)
pylint: enable=line-too-long

Create blank image for drawing.
Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:

height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

First define some constants to allow easy positioning of text.
padding = -2
x = 0

Load a TTF font. Make sure the .ttf font file is in the
same directory as the python script!
Some other nice fonts to try: http://www.dafont.com/bitmap.php
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:
Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Shell scripts for system monitoring from here:
https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-load
cmd = "hostname -I | cut -d' ' -f1"
IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''
Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Write four lines of text.
y = padding
draw.text((x, y), IP, font=font, fill="#FFFFFF")
y += font.getsize(IP)[1]
draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]
draw.text((x, y), MemUsage, font=font, fill="#00FF00")
y += font.getsize(MemUsage)[1]
draw.text((x, y), Disk, font=font, fill="#0000FF")
y += font.getsize(Disk)[1]
draw.text((x, y), Temp, font=font, fill="#FF00FF")

Display image.
disp.image(image)
time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported,
but we're adding two more imports. The first one is time so that we can add
a small delay and the other is subprocess so we can gather some system
information.

import time
import subprocess
import digitalio
import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the
rotation, and create a draw object. If you have are using a different
display than the ILI9341, go ahead and adjust your initializer as
explained in the previous example.

Just like in the first example, we're going to draw a black rectangle to fill up
the screen. After that, we're going to set up a couple of constants to help
with positioning text. The first is the padding and that will be the Y-position
of the top-most text and the other is x which is the X-Position and represents
the left side of the text.

First define some constants to allow easy positioning of text.
padding = -2
x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True:, it will loop until
Control+C is pressed on the keyboard. The first item inside here, we clear
the screen, but notice that instead of giving it a tuple like before, we can just
pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to
the Operating System to get information. The in each command is passed
through awk in order to be formatted better for the display. By having the
OS do the work, we don't have to. These little scripts came from https://
unix.stackexchange.com/questions/119126/command-to-display-
memory-usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d\' \' -f1"
IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"
Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.1f C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long
Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to
pass color information. We can pass it as a color string using the pound
symbol, just like we would with HTML. With each line, we take the height of
the line using getsize() and move the pointer down by that much.

y = padding
draw.text((x, y), IP, font=font, fill="#FFFFFF")
y += font.getsize(IP)[1]
draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]
draw.text((x, y), MemUsage, font=font, fill="#00FF00")
y += font.getsize(MemUsage)[1]
draw.text((x, y), Disk, font=font, fill="#0000FF")
y += font.getsize(Disk)[1]
draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image().
Since we are looping, we tell Python to sleep for 0.1 seconds so that the
CPU never gets too busy.

disp.image(image)
time.sleep(.1)

Downloads

Files
1.14" display EagleCAD files on GitHub (https://adafru.it/GfU)
3D models on GitHub (https://adafru.it/11vB)
Display Module datasheet (https://adafru.it/GfV)
ST7789VW datasheet 1.0 (https://adafru.it/GfW)

•
•
•
•

https://github.com/adafruit/Adafruit-1.14-inch-240x135-TFT-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/4383%201.14in%20TFT%20Display
https://cdn-learn.adafruit.com/assets/assets/000/082/881/original/C13930-001_1.14__ZJY114IPS_datasheet.pdf?1571860941
https://cdn-learn.adafruit.com/assets/assets/000/082/882/original/ST7789VW_SPEC_V1.0.pdf?1571860977

Fab Print

Schematic

	Adafruit 1.14" 240x135 Color TFT Breakout LCD Display
	Table of Contents
	Overview
	Pinouts
	Arduino Wiring & Test
	Adafruit GFX library
	Drawing Bitmaps
	CircuitPython Displayio Quickstart
	Python Wiring and Setup
	Python Usage
	Downloads

	Overview
	Pinouts
	Arduino Wiring & Test
	Basic Graphics Test Wiring
	Install Arduino Libraries
	Changing Pins
	Adafruit GFX library
	Drawing Bitmaps
	CircuitPython Displayio Quickstart
	Preparing the Breakout
	Required CircuitPython Libraries
	Code Example Additional Libraries
	CircuitPython Code Example
	Where to go from here

	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display

	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Downloads
	Files
	Fab Print
	Schematic

