Adafruit 1O

Created by Justin Cooper

https://learn.adafruit.com/adafruit-io

©Adafruit Industries Page 1 of 21

Table of Contents

Overview
Getting Started
Client Libraries

Arduino

« Adafruit MQTT Client Library
« PubSubClient MQTT Library
« Adafruit IO REST Client Library

Ruby
Python
Node.js

Browser

« Send Data
« Receive Data

REST API
HTTP Status Codes

MQTT API

« Connection Details
« Topics

« Publish QoS Levels
« Rate Limit

« Data Format

- Data with Location

« Sending JSON data through Adafruit 10

Projects

Data Policies

©Adafruit Industries

10

10

10

12

12

13

20

20

Page 2 of 21

Overview

Adafruit 10 is a system that makes data useful. Our focus is on ease of use, and
allowing simple data connections with little programming required.

IO includes client libraries that wrap our REST and MQTT APIs. 10 is built on Ruby on
Rails, and Node.js.

To get started, head over to io.adafruit.com to sign up (https://adafru.it/eZ8).

Click Here to Submit a Bug or

Feature Request

https://adafru.it/pIC

The client libraries are a work in progress. Please check back often for updates.

Getting Started

If you haven't already, log into your Adafruit account and then head over to
io.adafruit.com (https://adafru.it/fsU).

Check out the following guides to understand the basics of creating a feed and a
dashboard:

- Adafruit 10 Basics: Feeds (https://adafru.it/ioA)
« Adafruit 10 Basics: Dashboards (https://adafru.it/f5m)

Also check out the projects page (https://adafru.it/iQB) for a list of projects and
examples to help understand the service.

Continue on reading this guide to learn about the client libraries that are available to
send and receive data with Adafruit 10. In addition you can learn about the protocols
that Adafruit IO uses and how to use them with your own client code.

©Adafruit Industries Page 3 of 21

https://learn.adafruit.com/welcome-to-adafruit-io
https://io.adafruit.com
https://forums.adafruit.com/viewforum.php?f=56
https://learn.adafruit.com/welcome-to-adafruit-io
https://io.adafruit.com/
file:///home/adafruit-io-basics-feeds
file:///home/adafruit-io-basics-dashboards
file:///home/adafruit-io/projects

Client Libraries

The Adafruit 1O client libraries greatly simplify interacting with the server. We have a
few libraries built out already:

« Arduino (https://adafru.it/iQC)
* Ruby (https://adafru.it/iQD)

« Python (https://adafru.it/iQE)
« Node.js (https://adafru.it/iQF)

Arduino

On an Arduino there are two different libraries you can use to access Adafruit 10.
One library is based on the REST API, and the other library is based on the MQTT
API. The difference between these libraries is that MQTT keeps a connection to the
service open so it can quickly respond to feed changes. The REST API only connects
to the service when a request is made so it's a more appropriate choice for projects
that sleep for a period of time (to reduce power usage) and wake up only to send/
receive data. If you aren't sure which library to use, try starting with the Adafruit
MQTT library below.

Adafruit MQTT Client Library

To use Adafruit IO with the MQTT protocol on an Arduino you can use the Adafruit
MQTT Arduino library (https://adafru.it/fp6). This is a general-purpose MQTT library
for Arduino that's built to use as few resources as possible so that it can work with
platforms like the Arduino Uno. Unfortunately platforms like the Trinket 3.3V or 5V
(based on the ATtiny85) have too little program memory to use the library--stick with a
Pro Trinket or better!

©Adafruit Industries Page 4 of 21

https://learn.adafruit.com/welcome-to-adafruit-io
file:///home/adafruit-io/arduino
file:///home/adafruit-io/ruby
file:///home/adafruit-io/python
file:///home/adafruit-io/node-dot-js
https://learn.adafruit.com/welcome-to-adafruit-io
https://github.com/adafruit/Adafruit_MQTT_Library
https://github.com/adafruit/Adafruit_MQTT_Library

The Adafruit MQTT library currently supports the following networking hardware/
platforms:

« Adafruit CC3000 (https://adafru.it/iRa)

« Adafruit FONA (https://adafru.it/dFz)

« ESP8266 Arduino (https://adafru.it/eSH)

» Generic Arduino Client Interface (https://adafru.it/fpb) (including Ethernet shield
and similar network hardware)

To install the library you can use the Arduino library manager (https://adafru.it/flm) or
download the library from GitHub (https://adafru.it/fp7) and manually install it (https://
adafru.it/dNR).

On some platforms the Adafruit MQTT library uses the hardware watchdog to help
ensure sketches run reliably. You'll need to install the Adafruit SleepyDog sleep and
watchdog library (https://adafru.it/fp8), again using either the Arduino library manager
or with a manual install.

Finally make sure you have any required libraries for your network hardware installed,
such as the CC3000 library (https://adafru.it/cFn) or FONA library (https://adafru.it/
dDC).

Once the library is installed open or restart the Arduino IDE and check out the
example code included with the library. These examples show the basic usage of the
library, like how to connect to Adafruit 10, subscribe to receive changes to a feed, and
how to send values to a feed.

PubSubClient MQTT Library

Another popular MQTT library for the Arduino is the PubSubClient MQTT

library (https://adafru.it/e1W) and it works great to access Adafruit IO. Note that the
library only works with networking libraries that support the Arduino Client interface.
This means the library will work with the Ethernet shield, CC3000 or even ESP8266
Arduino, but not the FONA platform because it does not have a Client interface.

Below is a small example that shows using the PubSubClient library with the CC3000.
To use this you will need the Adafruit CC3000 library (https://adafru.it/
cFn) and PubSubClient library (https://adafru.it/e1W) installed in Arduino.

©Adafruit Industries Page 5 of 21

file:///home/adafruit-cc3000-wifi/cc3000-library-software
file:///home/adafruit-fona-mini-gsm-gprs-cellular-phone-module/overview
https://github.com/esp8266/Arduino
http://www.arduino.cc/en/Reference/ClientConstructor
http://www.arduino.cc/en/Guide/Libraries#toc3
https://github.com/adafruit/Adafruit_MQTT_Library/archive/master.zip
file:///home/adafruit-all-about-arduino-libraries-install-use/arduino-libraries
https://github.com/adafruit/Adafruit_SleepyDog
https://github.com/adafruit/Adafruit_SleepyDog
https://github.com/adafruit/Adafruit_CC3000_Library
https://github.com/adafruit/Adafruit_FONA_Library
https://github.com/knolleary/pubsubclient
https://github.com/knolleary/pubsubclient
https://github.com/adafruit/Adafruit_CC3000_Library
https://github.com/knolleary/pubsubclient

Note that you'll need to change the following #define configuration lines at the top to
fill in your wireless AP connection details and Adafruit IO username, key, and feed
name:

#define WLAN SSID "... your WiFi SSID..."

#define WLAN_PASS “... your WiFi password..."

#define ADAFRUIT USERNAME "... your Adafruit username (see
accounts.adafruit.com)..."

#define AIO KEY "... your Adafruit IO key..."

#define FEED PATH ADAFRUIT USERNAME "/feeds/feed-name/"

The FEED_PATH is the path to publish or subscribe to for interacting with a feed.
Notice that the path starts with the Adafruit account name and is followed by "/feeds/
feed-name" (where "feed-name" is the name of the feed).

For example if your account name was Mosfet and you were accessing a feed called
Photocell the full path would look like "Mosfet/feeds/Photocell".

Below is the full example source:

//Example modified from the pubsubclient library linked above

#include <Adafruit CC3000.h>
#include <ccspi.h>

#include &1t;SPI.h>

#include &1lt;PubSubClient.h>

#define aref voltage 3.3

// These are the interrupt and control pins
#define ADAFRUIT CC3000 IRQ 3 // MUST be an interrupt pin!

// These can be any two pins
#define ADAFRUIT CC3000 VBAT 5
#define ADAFRUIT CC3000 CS 10

// Use hardware SPI for the remaining pins

// On an UNO, SCK = 13, MISO = 12, and MOSI = 11

Adafruit CC3000 cc3000 = Adafruit CC3000(ADAFRUIT CC3000 CS, ADAFRUIT CC3000 IRQ,
ADAFRUIT CC3000 VBAT, SPI CLOCK DIVIDER);

#define WLAN SSID "... your WiFi SSID..."

#define WLAN_ PASS "... your WiFi password..."

// Security can be WLAN SEC UNSEC, WLAN SEC WEP, WLAN SEC WPA or WLAN SEC WPA2
#define WLAN SECURITY WLAN SEC WPA2

#define ADAFRUIT USERNAME "... your Adafruit username (see
accounts.adafruit.com)..."
#define AIO KEY "... your Adafruit IO key..."

#define FEED PATH ADAFRUIT USERNAME "/feeds/feed-name/"

Adafruit CC3000 Client client = Adafruit CC3000 Client();
PubSubClient mgttclient("io.adafruit.com", 1883, callback, client);

void callback (char* topic, byte* payload, unsigned int length) {
Serial.println(topic);
Serial.write(payload, length);
Serial.println("");

©Adafruit Industries Page 6 of 21

}

void setup(void)

{
Serial.begin(115200);
Serial.println(F("Hello, CC3000!\n"));

// If you want to set the aref to something other than 5v
analogReference (EXTERNAL) ;

Serial.println(F("\nInitialising the CC3000 ..."));

if (!cc3000.begin()) {
Serial.println(F("Unable to initialise the CC3000! Check your wiring?"));
for(;;);

}

uintl6 t firmware = checkFirmwareVersion();

if (firmware < 0x113) {
Serial.println(F("Wrong firmware version!"));
for(;;);

}

displayMACAddress();
Serial.println(F("\nDeleting old connection profiles"));

if (!'cc3000.deleteProfiles()) {
Serial.println(F("Failed!"));

while(1);
}
/* Attempt to connect to an access point */
char *ssid = WLAN_SSID; /* Max 32 chars */

Serial.print(F("\nAttempting to connect to ")); Serial.println(ssid);

/* NOTE: Secure connections are not available in 'Tiny' mode! */
if (!cc3000.connectToAP(WLAN SSID, WLAN PASS, WLAN SECURITY)) {
Serial.println(F("Failed!"));
while(1l);
}

Serial.println(F("Connected!"));

/* Wait for DHCP to complete */
Serial.println(F("Request DHCP"));
while (!cc3000.checkDHCP()) {

delay(100); // ToDo: Insert a DHCP timeout!

/* Display the IP address DNS, Gateway, etc. */

while (!displayConnectionDetails()) {
delay(1000);

}

// connect to the broker, and subscribe to a path
if (mgttclient.connect(ADAFRUIT USERNAME, AIO KEY, "")) {
Serial.println(F("MQTT Connected"));
mgttclient.subscribe(FEED PATH);
}
}

void loop(void) {

// are we still connected?

if (!mgttclient.connected()) {
mgttclient.subscribe(FEED PATH);
mgttclient.publish(FEED PATH, "11");

} else {
mgttclient.publish(FEED PATH, "11");

©Adafruit Industries Page 7 of 21

mgttclient.loop();
delay(250);
}

/**/
/*!
@brief Tries to read the CC3000's internal firmware patch ID

*/
/**/
uintl6 t checkFirmwareVersion(void)
{

uint8 t major, minor;

uintl6 t version;

#ifndef CC3000 TINY DRIVER
if(!'cc3000.getFirmwareVersion(&major, &minor))
{
Serial.println(F("Unable to retrieve the firmware version!\r\n"));
version = 0;
}
else
{
Serial.print(F("Firmware V. : "));
Serial.print(major); Serial.print(F(".")); Serial.println(minor);
version = major; version <&Llt;= 8; version |= minor;
}
#endif
return version;
}

/**/
/*!

@brief Tries to read the 6-byte MAC address of the CC3000 module
*/
/**/
void displayMACAddress(void)

{
uint8 t macAddress[6];

if(!'cc3000.getMacAddress(macAddress))

Serial.println(F("Unable to retrieve MAC Address!\r\n"));
}

else
{
Serial.print(F("MAC Address : "));
cc3000.printHex((byte*)&macAddress, 6);
}
}

/**/
/*!

@brief Tries to read the IP address and other connection details
*/

/**/
bool displayConnectionDetails(void)

{

uint32 t ipAddress, netmask, gateway, dhcpserv, dnsserv;

if(!'cc3000.getIPAddress(&ipAddress, &netmask, &gateway,
&dhcpserv, &dnsserv))

Serial.println(F("Unable to retrieve the IP Address!\r\n"));
return false;

}

else

©Adafruit Industries Page 8 of 21

Serial.print(F("\nIP Addr: "
Serial.print(F("\nNetmask: "

) cc3000.printIPdotsRev(ipAddress);

)
Serial.print(F("\nGateway: ")

)

)

cc3000.printIPdotsRev(netmask) ;
cc3000.printIPdotsRev(gateway);
cc3000.printIPdotsRev(dhcpserv);

Serial.print (F("\nDHCPsrv: "
" cc3000.printIPdotsRev(dnsserv);

Serial.print(F("\nDNSserv:
Serial.println();
return true;

Ne ~s ows we o~

Adafruit IO REST Client Library

The Adafruit IO Arduino library (https://adafru.it/fpd) is a simple library for sending and
receiving the latest value for a feed. This library uses the send (https://adafru.it/

iRb) and last (https://adafru.it/iRb) Adafruit IO REST API calls and takes care of all the
work to use the Adafruit IO REST API.

The REST client library supports the following networking platforms/hardware:

« Adafruit CC3000 (https://adafru.it/iRa)

« Adafruit FONA (https://adafru.it/dFz)

« ESP8266 Arduino (https://adafru.it/eSH)

« Generic Arduino Client Interface (https://adafru.it/fpb) (including Ethernet shield
and similar network hardware)

To install the library you can use the Arduino library manager (https://adafru.it/fim) or
download the library from GitHub (https://adafru.it/fpd) and manually install it (https://
adafru.it/dNR).

Finally make sure you have any required libraries for your network hardware installed,
such as the CC3000 library (https://adafru.it/cFn) or FONA library (https://adafru.it/
dDCQC).

Once the library is installed open or restart the Arduino IDE and check out the
example code included with the library. These examples show the basic usage of the
library, like how to connect send or receive the latest value for a feed.

Ruby

©Adafruit Industries Page 9 of 21

https://github.com/adafruit/Adafruit_IO_Arduino
file:///home/adafruit-io/streams#send
file:///home/adafruit-io/streams#last
file:///home/adafruit-cc3000-wifi/cc3000-library-software
file:///home/adafruit-fona-mini-gsm-gprs-cellular-phone-module/overview
https://github.com/esp8266/Arduino
http://www.arduino.cc/en/Reference/ClientConstructor
http://www.arduino.cc/en/Guide/Libraries#toc3
https://github.com/adafruit/Adafruit_IO_Arduino
file:///home/adafruit-all-about-arduino-libraries-install-use/arduino-libraries
https://github.com/adafruit/Adafruit_CC3000_Library
https://github.com/adafruit/Adafruit_FONA_Library
https://learn.adafruit.com/welcome-to-adafruit-io

To use Adafruit IO with a Ruby program you can install and use the Adafruit io-client-
ruby code from Github (https://adafru.it/enB). This library wraps the REST API to
access feeds and data on Adafruit 0.

The library readme shown on GitHub (https://adafru.it/enB) describes how to install

and use the library. Be sure to also see the examples (https://adafru.it/fpf) included
with the library.

Python

To use Adafruit IO with a Python program you can install and use the Adafruit io-
client-python code from Github (https://adafru.it/eli). This library can use both the
REST APl and MQTT API to access feeds and data on Adafruit 10.

The library readme shown on GitHub (https://adafru.it/eli) describes how to install and

use the library. Be sure to also see the examples (https://adafru.it/fpg) included with
the library.

Node.js

To use Adafruit IO with a Node.js program you can install and use the Adafruit io-
client-node code from Github (https://adafru.it/elj). This library can use both the REST
APl and MQTT API to access feeds and data on Adafruit IO.

The library readme shown on GitHub (https://adafru.it/elj) describes how to install and
use the library.

Browser

©Adafruit Industries Page 10 of 21

https://github.com/adafruit/io-client-ruby
https://github.com/adafruit/io-client-ruby
https://github.com/adafruit/io-client-ruby
https://github.com/adafruit/io-client-ruby/tree/master/examples
https://learn.adafruit.com/welcome-to-adafruit-io
https://github.com/adafruit/io-client-python
https://github.com/adafruit/io-client-python
https://github.com/adafruit/io-client-python
https://github.com/adafruit/io-client-python/tree/master/examples
https://learn.adafruit.com/welcome-to-adafruit-io
https://github.com/adafruit/io-client-node
https://github.com/adafruit/io-client-node
https://github.com/adafruit/io-client-node
https://learn.adafruit.com/welcome-to-adafruit-io

An easy way to interact with 10 is just by using GET requests in your browser (or
wherever).

The one drawback to this is you must pass in your unique AlIO key as a query
parameter which could then be cached somewhere along the way, and used to gain
access to your data. That being said, if you're not doing anything mission critical, this
is just another way you can interact with Adafruit |10.

The following isn't terribly secure due to the AlO Key being part of the query

string.

That being said, this should work fine for something like an output only weather
station.

Send Data

An example to send data (simple GET request):

https://io.adafruit.com/api/groups/weather/send.json?x-aio-
key=a052ecc32b2delc80abcO3bd471lacdld6b218e5c& temperature=13& humidity=12&wind=45

The above url would create a 'weather' group, and three feeds, 'temperature’,
'humidity’, and 'wind' all with corresponding stream values for you.

Let's break that down into the core components.

https://io.adafruit.com/api/groups/:group_name/send.json
group_name: alphanumeric and dashes.

The group_name will be created automatically, or found and used, if it already exists.

?x-aio-key=1234567890& feed name=value& feed name=value

x-aio-key: this is your unique AlO-key. The master key can be found on your
dashboard on i.adafruit.com.

feed_name: This is the name of a new or existing feed. A new feed will be created
automatically for you.

value: The new value to be stored.

©Adafruit Industries Page 11 of 21

Receive Data

You can receive data from a group with a get request as well.

An example (simple GET request):

https://io.adafruit.com/api/groups/weather/receive.json?x-aio-
key=a052ecc32b2delc80abc03bd471acd1ld6b218e5¢

The only difference between sending and receiving is that we swapped out 'send' for
'receive’, and removed the additional feed_name parameters.

REST API

The new IO API docs can now be found at: https://io.adafruit.com/api/docs (https://
adafru.it/ikf)

The IO APl is over HTTPS where possible. Some devices may not support HTTPS
easily, so we do offer the APl over the unsecure HTTP protocol, used at your own risk.

The base URL is:

https://io.adafruit.com/api

The current version of the api is: v2.

If you'd like to keep working with the v1 API, you can use /api/v1.

HTTP Status Codes

HTTP 200: OK

Standard response, everything is OK. The response body will include the data, if
applicable.

©Adafruit Industries Page 12 of 21

https://learn.adafruit.com/welcome-to-adafruit-io
https://io.adafruit.com/api/docs
https://learn.adafruit.com/welcome-to-adafruit-io

HTTP 400: Bad Request

There was a problem understanding the request sent to the service. In most cases
this means the code that generated the request has a bug and generated a
malformed HTTP request. For example a common problem is if the length of the
request doesn't match the Content-Length header sent to the service.

HTTP 401: Unauthorized

The API Key is invalid. The response body will indicate the error condition.

HTTP 404: Unauthorized

There was a problem locating the resource you requested. Either check the spelling
of the key or id given, or it's possible the resource no longer exists.

HTTP 503: Unavailable

It's possible you've bumped up against the API limits, and have been throttled. Try
again in a short while.

MQTT API

MQTT (https://adafru.it/f29), or message queue telemetry transport, is a protocol for

device communication that Adafruit 10 supports. Using a MQTT library or client you
can publish and subscribe to a feed to send and receive feed data.

If you aren't familiar with MQTT check out this introduction from the HiveMQ
blog (https://adafru.it/fpt). All of the subsequent posts in the MQTT essentials
series (https://adafru.it/fpu) are great and worth reading too.

To use the MQTT API that Adafruit IO exposes you'll need a MQTT client library. For
Python, Node.js, and Arduino you can use Adafruit's 1O client libraries as they include
support for MQTT (see the client libraries section (https://adafru.it/iRc)). For other
languages or platforms look for a MQTT library that ideally supports the MQTT 3.1.1
protocol.

©Adafruit Industries Page 13 of 21

https://learn.adafruit.com/welcome-to-adafruit-io
http://mqtt.org/
http://www.hivemq.com/mqtt-essentials-part-1-introducing-mqtt/
http://www.hivemq.com/mqtt-essentials-part-1-introducing-mqtt/
http://www.hivemq.com/mqtt-essentials-wrap-up/
http://www.hivemq.com/mqtt-essentials-wrap-up/
file:///home/adafruit-io/client-libraries

Connection Details

You will want to use the following details to connect a MQTT client to Adafruit 10:

» Host: io.adafruit.com

« Port: 1883 or 8883 (for SSL encrypted connection)

« Username: your Adafruit account username (see the
accounts.adafruit.com (https://adafru.it/fpw) page here to find yours)

- Password: your Adafruit IO key (click the AlO Key button on a dashboard to find
the key)

We strongly recommend using SSL (https://adafru.it/oSd) if your MQTT client allows it.

If the MQTT library requires that you set a client ID then use a unique value like a
random GUID. Most MQTT libraries handle setting the client ID to a random
value automatically though.

Topics

Adafruit I0's MQTT API exposes feed data using special topics. You can publish a
new value for a feed to its topic, or you can subscribe to a feed's topic to be notified
when the feed has a new value. Any one of the following topic forms is valid for a
feed:

« (username)/feeds/(feed name or key)
« (username)/f/(feed name or key)

Where (username) is your Adafruit IO username (the same as specified when
connecting to the MQTT server) and (feed name or key) is the feed's name or key.
The smaller '/f/' path is provided as a convenience for small embedded clients that
need to save memory.

Check out our guide to Feed Naming for the full details (https://adafru.it/oSe).

For example if your username is mosfet and you're accessing a feed called Photocell
One (which has a Key of photocell-one) you can use any of these paths:

- mosfet/feeds/Photocell One
- mosfet/f/Photocell One

©Adafruit Industries Page 14 of 21

http://accounts.adafruit.com/
https://io.adafruit.com/blog/security/2016/07/05/adafruit-io-security-esp8266/
https://io.adafruit.com/blog/tips/2016/07/14/naming-feeds/

« mosfet/feeds/photocell-one
- mosfet/f/photocell-one

To append a new value to a feed perform a MQTT publish against the feed path and
provide the new feed value as the payload of the request.

To be notified of a change in a feed perform a MQTT subscribe against the feed path.
When a new value is added to the feed then the Adafruit IO MQTT server will send a
notification with the new feed value in the payload.

You can also subscribe to the parent 'feeds' path to be notified when any owned feed
changes using MQTT's # wildcard character. For example the mosfet user could
subscribe to either:

- mosfet/feeds/#
- mosfet/f/#

Once subscribed to the path above any change to a feed owned by mosfet will be
sent to the MQTT client. The topic will specify the feed that was updated, and the
payload will have the new value.

Be aware the MQTT server sends feed updates on all possible paths for a specific
feed. For example, subscribing to mosfet/f/# and publishing to mosfet/f/
photocell-one would produce messages from: mosfet/f/photocell-one, mosfet/f/
photocell-one/json, and mosfet/f/photocell-one/csv; each referring to the same
updated value. To reduce noise, make sure to grab the specific topic of the feed /
format you're interested in and change your subscription to that.

PLEASE NOTE: as we adjust which identifiers we use for Feeds internally, the feed
updates you receive when using a wildcard will include but may not be limited to the
ones shown above.

If you'd like to avoid the formatted feeds ("/json" and "/csv" topics) but still see all the
feeds you're publishing to, you can use MQTT's + wildcard in place of #. In this
case, subscribing to mosfet/f/+ would produce output on mosfet/f/photocell-
one, but not mosfet/f/photocell-one/json.

©Adafruit Industries Page 15 of 21

Publish QoS Levels

One feature of MQTT is the ability to specify a QoS, or quality of service, level when
publishing feed data. This allows an application to confirm that its data has been
sucessfully published. If you aren't familiar with MQTT QoS levels be sure to read this
great blog post (https://adafru.it/fpz) explaining their meaning.

For publishing feed values the Adafruit IO MQTT API supports QoS level O (at most
once) and 1 (at least once) only. QoS level 2 (exactly once) is not currently supported.

Rate Limit

Adafruit I0's MQTT server imposes a rate limit to prevent excessive load on the
service. If a user performs too many publish actions in a short period of time then
some of the publish requests might be rejected. The current rate limit is at most 1
request per second (or 60 requests within 60 seconds).

If you exceed this limit, a notice will be sent to the (username)/throttle topic. You can
subscribe to the topic if you wish to know when the Adafruit 10 rate limit has been
exceeded for your user account.

This limit applies to all connections so if you have multiple devices or clients
publishing data be sure to delay their updates enough that the total rate is below 2
requests/second.

Data Format

There are a few ways to send data to our MQTT API if you're writing your own client
library.

The simplest way to send values to an IO Feed topic is to just send the value. For
example, a temperature sensor is going to produce numeric values like 22.587 . If
you're sending to mosfet/feeds/photocell-one you can send using a number
data type or a string data type. That means either 22.587 or "22.587" will be
accepted and stored as a numeric value.

Adafruit 10 does its best to treat data as numeric values so that we can show you your

data as a chart on an Adafruit IO dashboard and through our Charting API (https://
adafru.it/uff).

©Adafruit Industries Page 16 of 21

http://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
http://www.hivemq.com/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://io.adafruit.com/api/docs/#!/Data/chartData

Data with Location

To tag your data with a location value, you'll either need to wrap it in a JSON object
first or send it to the special /csv formatted MQTT topic.

Sending JSON

JSON can be sent to either the base topic or the /json topic-- for example, mosfet/
feeds/photocell-one or mosfet/feeds/photocell-one/json. The proper format
for location tagged JSON data is:

{
"value": 22.587,
"lat": 38.1123,
"lon": -91.2325,
"ele": 112

}

Specifically, JSON objects must include a "value" key, and may include "lat", "lon", and
"ele" keys.

Sending CSV

Alternatively, you can send location tagged data to /csv topics. In this example that
would be the topic mosfet/feeds/photocell-one/csv instead of mosfet/feeds/
photocell-one . Both store data in the same feed. The format IO expects for location
tagged CSV data is VALUE, LATITUDE, LONGITUDE, ELEVATION.

With the example data shown before, that means you could publish the string
"22.587,38.1123,-91.2325,112" to mosfet/feeds/photocell-one/csv.to
store the value "22.587" in the location latitude: 38.1123, longitude: -91.2325,
elevation: 112.

Examples

Using a simple Ruby MQTT library and the data shown, all these examples publish the
same data to the same feed:

first you'll need https://github.com/njh/ruby-mqgtt
require 'mqgtt’

©Adafruit Industries Page 17 of 21

username = 'test username'
key = 'not-a-real-key'
url = "mqtts://#{ username }:#{ key }@io.adafruit.com"

mgtt client = MQTT::Client.connect(url, 8883)

simplest thing that could possibly work
mgtt client.publish('test username/feeds/example', 22.587)

sending numbers as strings is fine, IO stores all data internally
as strings anyways
mgtt client.publish('test username/feeds/example', '22.587"')

CSV formatted, no location
mgtt client.publish('test username/feeds/example/csv', '22.587")

CSV formatted, with location
mgtt client.publish('test username/feeds/example/csv',
'22.587,38.1123,-91.2325,112")

JSON formatted, no location
mgtt client.publish('test username/feeds/example', '{"value":22.587}")
mgtt client.publish('test username/feeds/example/json', '{"value":22.587}"')

JSON formatted, with location

mgtt client.publish('test username/feeds/example',
"{"value":22.587,"lat":38.1123,"lon":-91.2325,"ele":112}")

mgtt client.publish('test username/feeds/example/json',
"{"value":22.587,"lat":38.1123,"lon":-91.2325,"ele":112}")

Sending JSON data through Adafruit 10

Because Adafruit 10 supports additional features beyond a basic MQTT brokering
service, such as location tagging for data points, the service supports data in the
JSON format described above. Namely:

{
"value": 22.587,
"lat": 38.1123,
"lon": -91.2325,
"ele": 112

}

This lets us store the individual value, 22.587 , and data about the value: its latitude,
longitude, and elevation. Metadata (https://adafru.it/Cwg)!

But what happens when the value you want to send is itself JSON? Good news! There
are a few solutions available to you in that situation.

©Adafruit Industries Page 18 of 21

https://en.wikipedia.org/wiki/Metadata

IO formatted JSON

The simplest way to send JSON data to Adafruit 10 is to wrap it in the format
described above. For example, if instead of 22.587, | wanted to send something like,
{"sensor-1":22.587,"sensor-2":13.182} , the "wrapped" version would look like
this:

{
"value": {"sensor-1":22.587,"sensor-2":13.182},
"lat": 38.1123,
"lon": -91.2325,
"ele": 112
}

It's worth noting that because Adafruit IO parses the entire JSON object that you send
it, any valid JSON will be parsed and when it is stored in our system and forwarded to
any subscribers, it will be regenerated. The significance of that is that if you publish
JSON data with whitespace, it will be stored and republished without whitespace,
because our generator produces the most compact JSON format possible.

Double encoded JSON strings

The second way you can send JSON data as a value is to "double encode" it before
sending, in which case 10 will treat it as a raw string. If you're using something like
javascript's JSON.stringify function or Ruby's JSON.generate, double encoding
means passing the result of JSON.stringify through JSON.stringify a second
time. In this node.js console example, you can see the difference:

> JSON.stringify({"sensor-1":22.587, "sensor-2":13.182})
'"{"sensor-1":22.587,"sensor-2":13.182}"

> JSON.stringify(JSON.stringify({"sensor-1":22.587,"sensor-2":
13.182}))

""{\"sensor-1\":22.587,\"sensor-2\":13.182}""

The double encoded JSON string can be sent directly through Adafruit IO without
interference from our processing system, because the processing system will not
interpret it as JSON. In your receiving code, because the value passed through

©Adafruit Industries Page 19 of 21

includes surrounding double quotes, you have to call your parse function twice to
restore the JSON object.

> var input = '""{\\\"sensor-1\\\":22.587,\\\"sensor-2\\\":13.182}""'
> JSON.parse(JSON.parse(input))
{ 'sensor-1': 22.587, 'sensor-2': 13.182 }

Non-10 formatted JSON

The third way you can send raw JSON data is to just send it. If Adafruit IO doesn't find
a "value" key in the JSON object you send, it will treat the whole blob as plain text
and store and forward the data. That means with our example JSON object, sending
the string {"sensor-1":22.587,"sensor-2":13.182} will resultin {"sensor-1":
22.587,"sensor-2":13.182} being stored in 10 and sent to MQTT subscribers.

Projects

The following are useful guides and examples to help learn more and get started
using Adafruit 10:

- Adafruit 10 Basics: Feeds (https://adafru.it/ioA)

» Adafruit 10 Basics: Dashboards (https://adafru.it/f5m)

« Adafruit 10 Basics: Digital Output (https://adafru.it/iRe)

« Adafruit 10 Basics: Button Input (https://adafru.it/m9f)

« A Sillier Mousetrap: Logging Mouse Data To Adafruit IO With The Raspberry
Pi (https://adafru.it/iRA)

Check out the Adafruit IO section (https://adafru.it/iRB) of the learning system for
more recent guides too.

Data Policies

©Adafruit Industries Page 20 of 21

https://learn.adafruit.com/welcome-to-adafruit-io
file:///home/adafruit-io-basics-feeds
file:///home/adafruit-io-basics-dashboards
file:///home/adafruit-io-basics-digital-output
file:///home/adafruit-io-basics-digital-input
file:///home/a-sillier-mousetrap-logging-mouse-data-to-adafruit-io-with-the-raspberry-pi
file:///home/a-sillier-mousetrap-logging-mouse-data-to-adafruit-io-with-the-raspberry-pi
file:///home/category/adafruit-io
https://learn.adafruit.com/welcome-to-adafruit-io

[updated as of August 2017]

We're currently locking in how much and how long data should be retained. We had
to set some values for the beta, and will definitely be adjusting these as time goes on.

1. Each feed stores data for 30 days.

2. You can write data to the system, across all feeds, up to 60 times per minute.
Data creating, updating, and deleting all count against the limit.

3. You may read your data an unlimited amount of time, as long as you remain

within the throttle times.
4. 10k rows of "Activity" data is maintained. Activity data just tracks the last actions

of your IO account on your Activities page for your information.

©Adafruit Industries Page 21 of 21

	Adafruit IO
	Table of Contents
	Overview
	Getting Started
	Client Libraries
	Arduino
	Ruby
	Python
	Node.js
	Browser
	REST API
	HTTP Status Codes
	MQTT API
	Projects
	Data Policies

	Overview
	Getting Started
	Client Libraries
	Arduino
	Adafruit MQTT Client Library
	PubSubClient MQTT Library
	Adafruit IO REST Client Library

	Ruby
	Python
	Node.js
	Browser
	Send Data
	Receive Data

	REST API
	HTTP Status Codes
	MQTT API
	Connection Details
	Topics
	Publish QoS Levels
	Rate Limit
	Data Format
	Data with Location
	Sending JSON
	Sending CSV
	Examples

	Sending JSON data through Adafruit IO
	IO formatted JSON
	Double encoded JSON strings
	Non-IO formatted JSON

	Projects
	Data Policies

