Working with Cortex-M4 on iMX6 SoloX COM

Working with Cortex-M4 on
i.MX6 SoloX COM Board

@ Embedded
Artists

Working with Cortex-M4 on iMX6 SoloX COM Board Page 2

Embedded Artists AB
Jorgen Ankersgatan 12

SE-211 45 Malmé

Sweden

http://www.EmbeddedArtists.com

Copyright 2020 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

Copyright 2020 © Embedded Artists AB Rev G

http://www.embeddedartists.com/

Working with Cortex-M4 on iMX6 SoloX COM Board Page 3

Table of Contents

1 Document Revision HiStOryccccccevvvviiiiiiinnnnnn. 5
2 INtrodUCtioN ..o 6
2.1 MUKI=COT .ttt 6
2.2 Additional DOCUMENTAtIONccoiiiiiiiiiieeiiiiee e 6
2.3 CONVENTIONS .eeiieiiitiie ettt ee e e 6
3 Hardware Related...........ccuvvvvviiiiiiiiiiiiiiiiiiiiiiiiiennns 7
3.l Prer@QUISITES it 7
3.2 UART Interfaces on COM Carrier board version 1cc....... 7
3.2.1 Applications for Freescale Sabre Board.............cccccvvvvvviiiienennnnnn, 8
3.3 UART interfaces on COM Carrier board version 2cc.cccee.. 8
3.4 Terminal applicationccccccvviiiiiiii 9
4 Download and Start an Application................... 10
4.1 Update boot partition with needed filescccceeviiiiiiincnn 10
4.2 Change the device tree filecoooviiiiiiii 11
4.3 RUNTIOM QSPl. .. 11
4.4 RUNTrOM TCM. it 11
45 RUNfrOM OCRAM ..ottt 12
4.6 Run from DDR RAM ...coiiiiiiiiiiii et 13

5 Remote communication applications (RPMsg) 14

5.1 Ping-pong appliCationcccccoiiiiiiiiiiiciiic e 14
6 FreeRTOS ... 15
6.1 INSTAIALION e 15
6.1.1 File SIIUCIUIE ..ottt 15
6.2 Board Support Package (BSP)cooeiiiiiiiiiiiiiiiiiiiiieeee e 15
6.2.1 UART ..o 15
6.3 Build With ARM DS-5.....cciiiiiiiiiiieiiiee e 16
6.3.1 BSP fllES..iiiiiiiiiiie 18
6.4 Debug using DS-5 ... 18
6.4.1 Setup the hardwareccccoiiiiiiiiiiiiii e 18
6.4.2 Import TCM version of “hello world”cccccoovviiiiii, 19
6.4.3 Create a new Debug configurationcccocveeeriinieiniineeninnn. 19
6.5 Build With ARM GCCooiiiiiiiiiiiieiii e 22
6.5.1 INStall ARM GCC ...coiiiiiiiiiiiie e 22
6.5.2 INStall MINGW ... 22
6.5.3 INStall CMAKE......ciiiiiiiiiiiiiiie e 25
6.5.4 Build APPICAtION....ccoiiiiiiiiiie e 26
6.6 Build with Eclipse and ARM GCCooiciiiiiiiiiiiiiiiiieeee e 26
6.6.1 Install “GNU ARM Eclipse” plugins.........cccuuevieieiiiiiiiiiiiieee e, 27

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 4

6.6.2 Create ProjeCt: NEW.........ueiiiiaiiiiiiiie et 27
6.6.3 Create project: Linked folders..........cccccoviiiiiieiiiiiiiiiieee e, 28
6.6.4 Create project: Exclude from buildccccoooviiiiiiiini, 30
6.6.5 Create project: “Include” pathsccoocviiiiiiiiiie 31
6.6.6 Create Project: SEttiNGScccouiiiiiiiiiiee e 32
6.6.7 Build appliCationc.eueiiiiiiiii e 36
6.7 Debug using ECliPSE ..cccvviiiiiiiiiciiee e 36
6.7.1 LPC-Link 2 with J-Link firmwareccccoeriiiniiiniiciicniec 36
6.7.2 J-LINK GDB SEIVET ..ottt 36
6.7.3 J-LinK SCHPt fileS...ccciiiiiiiiiiee e 36
6.7.4 Connect LPC-Link 2 tothe board ..o 36
6.7.5 Create a debug configurationccccooiiiiiiiiiiiiie e, 38
6.7.6 Start a debug SESSION.......cueiiiiiiiieiie e 39
6.8 Build with IAR Embedded Workbenchccccccovvvviiii, 41
7 Use DS-MDK for Application Development 42
7.1 INSTAIALION e 42
7.2 Package Man@QETccuuiiiiiiieiiiiieeee et 42
7.3 UART PiN MUXING «eetiiiiiiieiiiiie et 43
7.4 Debug the M4 AppliCationcccveeiiiiiiiiiiie e 43
7.4.1 Build the appliCationccceeiiiiiiiiiiie e 43
7.4.2 Setup the debug adapter..........cccceeviiiiiiiiiie e 43
7.4.3 Create a debug configurationcccccovvveiiiiiieiiiicee e 44
7.5 Debug the Linux Application........ccocvviiiiiiiiiiiicc e 47
7.5.1 Build the appliCationccceoiiiiiiiiiii e a7
7.5.2 Setup Remote System Explorer (RSE)ccocooeviiiviiiiiineeninnn, a7
7.5.3 Create Debug Configuration............ccccooiiiiiiiieeiiiiiiiiiieeeee i 49
7.6 Simultaneous DebUGQING ..cccooiiiiiiiiiiiiiiiie e 52
8 Troubleshooting.......cccooeeeiiiiiiiiiiiie e, 53
8.1 JTAG connection problem when Linux has booted.................. 53
8.1.1 Description of Problem..........ccooiiiiiiiii 53
8.1.2 SOIULION vttt 53
8.2 Allow user “root” to use an SSH connection............................. 53

8.3 Linux (A9) terminal/console doesn’t accept input while
debugging M4 ... 54

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 5

1 Document Revision History

Revision Date Description
A 2015-11-11 | First release
B 2016-01-20 | - Added description about how to build FreeRTOS: Chapter Error!

Reference source not found. and Chapter 6

- Updated Chapter 4 to describe how to load an application to TCM,
OCRAM, and DDR memory.

2016-09-02 | Added chapter 8 (troubleshooting)

D 2017-03-06 | - Added section 6.6 describing how to build using Eclipse
- Added section 6.7 describing how to debug using Eclipse
E 2017-04-25 | - Added chapter 7 describing how to use DS-MDK

2017-09-22 | - Removed chapter about MQX. FreeRTOS is recommended to use.
- Minor updates and clarifications to other sections.

- Added section 8.3

G 2020-11-05 | - Updated instructions with regard to the COM Carrier board V2.

- Major updates to chapter 4

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 6

2 Introduction

This document provides you with step-by-step instructions for how to work with the Cortex-M4
microcontroller on the iIMX6 SoloX COM Board (EAC00244). The iMX6 SoloX Developer's Kit
(EAK00245) has been used when writing these instructions.

2.1 Multi-Core

The i.MX6 SoloX processor has two cores; one ARM Cortex-A9 core and one ARM Cortex-M4 core.
This is also known as heterogeneous multiprocessing (HMP). When developing and application that
will utilize both these cores there are a number of things you need to be aware of.

- Both cores might have access to peripheral blocks in the processor. For your application you
have to decide which core that is responsible for a peripheral. This decision can affect, for
example, the device tree (dtb) file used by Linux when initializing device drivers.

o Inthe instructions a specific dtb file will be used that disable some peripherals
conflicting with Cortex-M4

- Cortex-A9 is always the primary core that is the first to boot and responsible for starting
Cortex-M4. This is done by the u-boot in our examples

- The Cortex-M4 application must be stored on the QSPI flash. In the examples the u-boot will
write the application image to QSPI flash

- There are ways to communication between the cores. Chapter Error! Reference source not
found.describes how to run an application that utilizes Multi-Core Communication (MCC).
2.2 Additional Documentation
Additional recommended documentation:
o Getting Started with the i.MX6 SoloX Developer’s Kit — shows you how to get started with the
hardware.

2.3 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text —is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the
development workstation, i.e., on the workstation where you edit,
configure and build Linux

This field illustrates user input on the target hardware, i.e.,
input given to the terminal attached to the COM Board

This field is used to illustrate example code or excerpt from a
document.

This field is used to highlight important information

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 7

3 Hardware Related

3.1 Prerequisites
To be able to follow all the instructions in this document the following is required.

e One iMX6 SoloX Developer’s Kit (EAK00331, EAK00245)

o [fusing the Developer’s Kit version 1 (V1) you need two FTDI cables for console output/input
from both the Cortex-A9 and the Cortex-M4. Please note that only one cable is included with
the Developer’s Kit V1. If you are using a Developer’s Kit version 2 (V2) you don’t need any
FTDI cables.

e One Debug interface board with 10-pos FPC cable (included with Developer’s Kit). Only
needed when debugging with ARM DS-5 as described in section 6.4

o Keil ULINK-Pro. Only needed when debugging with ARM DS-5 as described in section 6.4

e ARM DS-5 commercial license. Only needed when debugging with ARM DS-5 as described in
section 6.4

3.2 UART Interfaces on COM Carrier board version 1

Two consoles are needed when working with both the Cortex-A9 (running Linux) and the Cortex-M4
microcontroller. Connector J35 is used by Cortex-A9 and connector J15 is used by Cortex-M4 as
shown in Figure 1 below.

{ JOPDTEN) iitilL L aedadne
(R R R F R R R R R R PR R R R R R R R R R L R R R R R R R R R R RN R R LR

- IV

\ W

Cortex-M4

Cortex-A9

[} ~ ~)
€ ' ‘e
& v
ID14AR | ~ Vi y & 1=
L -
> s 30
=

Figure 1 — COM Carrier board V1, UART connectors

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 8

3.2.1 Applications for Freescale Sabre Board

If you are testing pre-compiled applications developed for the Freescale Sabre board then console
output will be available on different pins, that is, not on J15 connector. UART2 is used, but on pins that
are available on the XBee connector (J17), see Figure 2.

- Pin4-RXon board, TX on FTDI cable (yellow)
- Pin9-TXon board, RX on FTDI cable (orange)
- Pin 10 - Ground (black)

Figure 2 - UART2 on XBee connector

3.3 UART interfaces on COM Carrier board version 2

The COM Carrier board version 2 has a dual channel UART-to-USB bridge, meaning that you will get
two UART interfaces via one USB cable connected between the micro-B USB connector (J16) on the
carrier board and your PC.

There are jumpers on the carrier board that lets you select which UART interface that is connected to
the UART-to-USB bridge, see Figure 3. Jumpers J19/J20 let you select between using UART-A or
UART-C as console for the Cortex-A side. By default, these jumpers select the UART-A interface, that
is, jJumpers are in upper position. This is the position they should have for the iIMX6 SoloX.

Jumpers J17/18 lets you select between using UART-B or UART-C as console for the Cortex-M side.
By default, these jumpers are not inserted, but they should be in upper position for the iMX6 SoloX.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 9

||

J18, J17, J19, J20
Left to right

J19, J20
Upper position: connect UART-A to Cortex-A console
- Lower position: connect UART-C to Cortex-A console

J18, J17
Upper position: connect UART-B to Cortex-M console
Lower position: connect UART-C to Cortex-M console

J16
micro-B USB
connector

|
=
g L0Ee O
oM hn

Ll -—-)

Figure 3 - COM Carrier board V2, UART interface connectors

3.4 Terminal application

You need a terminal application (two instances of it to connect both to the Cortex-A side and the
Cortex-M side). We recommend Tera Term, but you can use the terminal application of your choice.
Connect to the virtual COM ports using 115200 as baud rate, 8 data bits, 1 stop bit, and no parity.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 10

4 Download and Start an Application

This section describes how to download and start a pre-compiled application.

41 Update boot partition with needed files

The remaining parts of this chapter assumes that the first partition of the eMMC contains the pre-
compile applications. If you have programmed your board using a UUU bundle from 2020-11-06 or
later the files will already have been copied to the eMMC flash. If you have programmed using an older
version and don’t want to update you can follow these instructions.

Note: It is not necessary to have the M4 applications on the eMMC, but for simplicity the
following instructions in this chapter assumes they are.

Download pre-compile applications
Go to http://imx.embeddedartists.com and download the file compiled cortex m4 apps.zip.

Direct link: http://imx.embeddedartists.com/imx6sx/compiled cortex m4 apps.zip

Copy via USB memory stick

There are several ways to copy these pre-compiled files to the eMMC, but here we will use a USB
memory stick.

1. Unpack the file compiled cortex m4 apps.zip file and copy the unpacked files to
the USB memory stick. This is something you do on your computer.

2. Bootinto Linux and insert the USB memory stick into the USB host port on the carrier board.
You will see output like below in the console when inserting the USB memory stick. The most
important part is the last line that lists the device name (sda1).

23.104504] usb
23.165591] usb
cdDevice= 0.10

new high-speed USB device number 4 using ci_ hdrc
New USB device found, idVendor=0781, idProduct=5406,

[y
N N

[

[

b

[23.173972] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[23.194511] usb 1-1.2: Product: U3 Cruzer Micro

[23.199055] usb 1-1.2: Manufacturer: SanDisk Corporation

[23.204371] usb 1-1.2: SerialNumber: 0000185A49619848

[23.225447] usb-storage 1-1.2:1.0: USB Mass Storage device detected

[23.264533] scsi host0: usb-storage 1-1.2:1.0

[24.315418] scsi 0:0:0:0: Direct-Access SanDisk U3 Cruzer Micro 2.18 PQ:
0 ANSI: 2

[24.334542] scsi 0:0:0:1: CD-ROM SanDisk U3 Cruzer Micro 2.18 PQ:
0 ANSI: 2

[24.345768] sd 0:0:0:0: [sda] 8015505 512-byte logical blocks: (4.10 GB/3.82
GiB)

[24.364543] sd 0:0:0
[24.373248] sd 0:0:0
[24.378630] sd 0:0:0:
[24.443649] sda: sda

[sda] Write Protect is off
[sda] No Caching mode page found
[sda] Assuming drive cache: write through

= O o o

3. Mount the USB memory stick and eMMC partition. The USB memory stick has in this
example the device name sda1 as can be seen in the output in step 2 above. The partition
on the eMMC that we will use is available at /dev/mmcblk2p1l.

mkdir /mnt/usb
_# mount /dev/sdal /mnt/usb

Copyright 2020 © Embedded Artists AB Rev G

http://imx.embeddedartists.com/
http://imx.embeddedartists.com/imx6sx/compiled_cortex_m4_apps.zip

Working with Cortex-M4 on iMX6 SoloX COM Board Page 11

mkdir /mnt/mmcboot
mount /dev/mmcblk2pl /mnt/mmcboot

4. Copy the bin file(s) from the USB memory stick to the boot partition. In this example we are
only copyingm4 hello tcm.bin.

cp /mnt/usb/m4 hello tcm.bin /mnt/mmcboot/

5. Unmount the devices

umount /mnt/usb
umount /mnt/mmcboot

4.2 Change the device tree file
Some of the u-boot environment variables need to be updated.

1. You must have booted into the U-boot console.
2. Change the device tree file (dtb) to use by Linux.

=> setenv fdt file imx6sxea-com-kit v2-m4.dtb
=> saveenv

4.3 Run from QSPI
In this section the application is copied from eMMC to QSPI flash and then started.

Make sure you have built an application for QSPI or selected a pre-built application for QSPI (name
ends with _gspi). The application file must have been copied to eMMC as described in section 4.1
above.

1. You must have booted into the U-boot console.

2. Set the M4 file name in the m4 image variable.

=> setenv md4image m4 hello gspi.bin

3. Copy the Cortex-M4 application to QSPI flash.

=> run update m4 from sd

4. Boot the M4 application.

=> run mdboot

Note: If you have modified the m4boot variable as described in the sections below you can
revert back to the default setting (for QSPI booting) by running env default -a.

44 Runfrom TCM

Make sure you have built an application for TCM or selected a pre-built application for TCM (name
ends with tcm). The application file must have been copied to eMMC as described in section 4.1
above.

1. You must have booted into the U-boot console.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 12

2. Set the M4 file name in the m4 image variable.

=> setenv md4image m4 hello tcm.bin

3. Set the address where the application will run from (TCM memory in this case).

=> setenv md4runaddr 0x7£8000

4. Update the m4boot variable so it loads the image from eMMC to DDR memory, copies from
DDR memory to TCM memory and then boots the application.

=> setenv md4boot 'run loadmé4image; cp.b ${loadaddr} ${mé4runaddr}
S{filesize}; bootaux ${mdrunaddr}'

5. Save the changes

=> saveenv

6. Boot the M4 application.

=> run mdboot

4.5 Runfrom OCRAM

Make sure you have built an application for OCRAM or selected a pre-built application for OCRAM
(name ends with _ocram). The application file must have been copied to eMMC as described in
section 4.1 above.

1. You must have booted into the U-boot console.

2. Setthe M4 file name in the m4 image variable.

=> setenv md4image m4 hello ocram.bin

3. Set the address where the application will run from (OCRAM memory in this case).

=> setenv m4runaddr 0x910000

4. Update the m4aboot variable so it loads the image from eMMC to DDR memory, copies from
DDR memory to OCRAM memory and then boots the application.

=> setenv mé4boot 'run loadmd4image; cp.b S${loadaddr} ${mé4runaddr}
S{filesize}; bootaux ${md4runaddr}'’

5. Save the changes.

=> saveenv

6. Boot the M4 application.

=> run mi4boot

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 13

4.6 Runfrom DDR RAM

Make sure you have built an application for DDR RAM or selected a pre-built application for DDR RAM
(name ends with _ddr). The application file must have been copied to eMMC as described in section
4.1 above.

1. You must have booted into the U-boot console.
2. Set the M4 file name in the m4 image variable.

=> setenv m4image m4 hello ddr.bin

3. Set the address where the application will run from (DDR memory in this case).

=> setenv md4runaddr 0x9f£00000

4. The default 10adm4image variable will load to the address set in 1oadaddr variable. We
don’t want to set 10adaddr to the same address as used by the M4 application since
loadaddr will also be used when loading the kernel. Instead we create a new
loadm4image ddr variable that will load the application directly to the address where it
will be started.

=> setenv loadmd4image ddr 'fatload mmc ${mmcdev}:S${mmcpart}
${md4runaddr} ${mdimage}'

5. Update the m4boot variable so it loads the image from eMMC to DDR memory and then
boots the application.

=> setenv md4boot 'run loadm4image ddr; bootaux ${m4runaddr}’

6. Save the changes.

=> saveenv

7. Boot the M4 application.

=> run mdboot

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 14

5 Remote communication applications (RPMsg)

5.1 Ping-pong application

The RPMsg ping-pong application is an example of communication between the Cortex-A9 core and
the Cortex-M4 core using the RPMsg API.

1. Make surethem4 rpmsg ping gspi.bin fileis available on eMMC as described in
section 4.1 above.

2. Follow the instruction in section 4.3 for how to run an application from QSPI memory, but use
the file name m4_rpmsg_ping gspi.bininstead ofm4 hello gspi.bin.

3. Inthe u-boot console add the boot argument uart from osct0oextra bootargsto
make Cortex-A9 and Cortex-M4 UART clocks match.

=> setenv extra bootargs uart from osc
=> saveenv

4, Boot the M4 application

=> run mi4boot

5. In the console for the Cortex-M4 you will now see the output below

RPMSG PingPong FreeRTOS RTOS API Demo...
RPMSG Init as Remote

6. In the console for Cortex-A9 boot into Linux

=> boot

7. When Linux has booted you need to load the rpmsg pingpong module.

modprobe imx rpmsg pingpong

8. You will now see messages in both consoles / terminals.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 15

6 FreeRTOS

NXP has developed a number of sample applications and peripheral drivers for the Cortex-M4 bundled
together with the real-time operating system FreeRTOS.
6.1 Installation

The bundle can be downloaded from NXP’s website and the version used when writing these
instructions is v1.0.1. Follow the link below to download the bundle.

https://www.nxp.com/webapp/Download?colCode=FreeRTOS MX6SX 1.0.1 WIN

NOTE: You need to register an account at nxp.com in order to get access to the FreeRTOS
installation package.

6.1.1 File Structure
When FreeRTOS has been installed you will have a file structure as shown in Figure 4.

2 FreeRTOS_BSP_1.0.0_iMX65X

. doc
. examples
., middleware
. platform
. rtos
. tools

Figure 4 - FreeRTOS file structure

6.2 Board Support Package (BSP)

The board support package (BSP) that is available in the FreeRTOS package is for the Freescale/NXP
i.MX6 SoloX Sabre board. Embedded Artists has at the time of writing this document not developed a
BSP for the i.MX6 SoloX COM board / Developer's Kit. This means that changes (most often only pin
muxing) might be necessary before building and running any of the examples.

BSP files are located in the directory <FreeRTOS>\examples\imx6sx sdb m4\ where
<FreeRTOS> is the installation path to FreeRTOS.

6.2.1 UART

The pin muxing for UART2 must be changed in order for console output (printf) to be available on
connector J15. For the Sabre board the GPIO1_l006 and GPIO1_I007 pins are used by UART2, but
on the iIMX6 SoloX Developer’s Kit SD1_DATAQ and SD1_DATA1 must be used.

1. Openfile <FreeRTOS>\examples\imx6sx sdb m4\pin mux.c
2. Gotofunction configure uart pins

3. Goto the case statement and change the code as below (pin muxing is changed to use
SD1_DATAO and SD1_DATA1).

case UART2_ BASE:

Copyright 2020 © Embedded Artists AB Rev G

https://www.nxp.com/webapp/Download?colCode=FreeRTOS_MX6SX_1.0.1_WIN

Working with Cortex-M4 on iMX6 SoloX COM Board Page 16

IOMUXC_SW MUX CTL PAD SD1 DATAO
IOMUXC_SW MUX CTL PAD SD1 DATAl
IOMUXC_SW_PAD_CTL_PAD_SD1_DATAO

IOMUXC_SW MUX CTL PAD SD1 DATAQ MUX MODE (4);
IOMUXC_SW MUX CTL PAD SD1 DATAl MUX MODE (4);
IOMUXC_SW_PAD_CTL_PAD_SD1_DATAO_ PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_SD1_DATAO_PUE_MASK |
IOMUXC_SW _PAD CTL PAD SD1 DATAO PUS(2) |
IOMUXC_SW _PAD CTL PAD SD1 DATAQO SPEED(2) |

|

|

IOMUXC_SW PAD CTL PAD SD1 DATAO DSE (6)
IOMUXC SW PAD CTL PAD SD1 DATAO SRE MASK
IOMUXC SW PAD CTL PAD SD1 DATAO HYS MASK;
IOMUXC SW PAD CTL PAD SD1 DATAl = IOMUXC SW PAD CTL PAD SD1 DATAl PKE MASK |
IOMUXC_SW PAD CTL PAD SD1 DATAl PUE MASK |
IOMUXC SW PAD CTL PAD SD1 DATAl PUS(2) |
|
|

P

IOMUXC_SW PAD CTL PAD SD1 DATAl SPEED(2)
IOMUXC_SW PAD CTL PAD SD1 DATAl DSE(6)
IOMUXC_SW PAD CTL PAD SD1 DATAl SRE MASK |
IOMUXC_SW_PAD CTL PAD SD1 DATAl HYS MASK;

IOMUXC UART2 IPP UART RXD MUX SELECT INPUT =
IOMUXC UART2 IPP UART RXD MUX SELECT INPUT DAISY(2);

6.3 Build with ARM DS-5

This section describes how to setup ARM DS-5 to build the sample applications. The instructions are
originally from the document found at the location below (<FreerTOS> is the path to where the
FreeRTOS bundle was installed).

<FreeRTOS>\doc\
Getting Started with FreeRTOS BSP for i.MX 6SoloX.pdf.

NOTE: You need a commercial license in order to run ARM DS-5 and you must also have
installed ARM DS-5 before following the instructions.

1. Start ARM DS-5
2. Import an application

a. Goto File > Import > General - “Existing Projects into Workspace” and click the
“Next” button as shown in Figure 5.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 17

= Import Elﬂlg
Select \J
Create new projects from an archive file or directory. | E 5]

Select an import source:

type filter text

I 4 (= General
B Archive File i
> Existing Projects into Workspace
[File System
[T Preferences

s O/C++

> = CVS

s = Install

> [Remote Systemns

> = Run/Debug

» = Scatter File Editor

» = Target Configuration Editor

» = Team

@ < Back Next » Finish

Figure 5 - Import Existing Projects

b. Browse to the DS-5 project files for the application to import. In this example it is the

OCRAM version of “hello world” found at:
<FreeRTOS>\examples\imx6sx sdb m4\demo apps\hello world\

ds5
c. Click the Finish button

3. Choose build target by clicking on the arrow to the right of the “hammer” in to toolbar, see
Figure 6. When the target has been selected the project will be built. If target has previously
been selected it is enough to click on the “hammer” icon.

Kv D) @
v 1debug

‘ 2 release

P —

Figure 6 - Build targets

4. The built application is now available at the location below. There will be both an axf file and a
bin file. It is the bin file that should be loaded to the iMX6 COM SoloX Board as described in
chapter 4

<FreeRTOS>\examples\imx6sx sdb mé4\demo apps\hello world\ds5\de
bug

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 18

6.3.1 BSP files

Section 6.2 described changes that must be made to BSP files. When a project has been imported to
DS-5 it is possible to edit these files in DS-5 instead of an external editor. The files are found in the
“board” folder in the project, see Figure 7.

4 =5 hello_world_qgspi_imx6sx_sdb_md
> [Includes
4 p board
> | board.c
b [g board.h
b | clock_freq.c
b g clock_freq.h
. |y FreeRTOSConfig.h
. | hardware_init.c
b [pin_mux.c
- (B pin_mux.h

PR+~ ST T R
Figure 7 - DS-5 board folder

6.4 Debug using DS-5

With ARM DS-5, a Keil ULINK Pro, and a debug interface board it is possible to download and debug
an application on the Cortex-M4.

6.4.1 Setup the hardware

Figure 8 and Figure 9 show how the ULINK Pro and debug interface board is connected to the iMX6
SoloX COM Board.

Figure 8 - Debug interface board connected to COM board

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 19

Figure 9 — ULINK Pro and debug interface board

6.4.2 Import TCM version of “hello world”

In this example we are going to debug the same application as was built in section 6.3 which is the
TCM version of Hello World.

6.4.3 Create a new Debug configuration
To be able to download and debug a “Debug configuration” must be created.

1. Go to Run - Debug Configurations and select DS-5 Debugger as shown in Figure 10.
2 Debug Configuration =3

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session,

[# | = 3~ Configure launch settings from this dialog:
type filter text [} - Press the 'New' button to create a configuration of the selected type.
[c] C/C++ Application =] - Press the 'Duplicate’ button to copy the selected configuration,
[E] C/C++ Attach to Applic , , ; -
. [5] C/C++ Postmortem Del 3 - Press the 'Delete’ button to remove the selected configuration. I
B [E] C/C++ Remote Applical ;"=:€> - Press the 'Filter' button to configure filtering options.

|£5 DS-5 Debugger |
@ IronPython Run
a’ IronPython unittest
Java Applet Configure launch perspective settings frem the 'Perspectives’ preference page.

- Edit or view an existing configuration by selecting it.

Figure 10 - Debug Configurations

2. Right click on DS-5 Debugger and select “New”.

3. Give the configuration a name such as SoloX Cortex-M4 and then select the “Connection” tab
as shown in Figure 11.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 20

| = Debug Configuration:

Create, and run config

3 [Debugger]: Debugging from a symbol, but no symbol files defined in the Files tab ﬁ

- EY
FEX 23~

type filter text

[t] C/C++ Application
[E] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[€] C/C++ Remote Application
#5 DS-5 Debugger
25 New_configuration
& IronPython Run
,5“' IrenPython unittest
Java Applet
[Java Application
Ju JUnit
Pa Jythen run
,5“' Jython unittest
= Launch Group
E] PyDev Django
A5 PyDev Google App Run
& Python Run
& Python unittest
Remote Java Application

[N

Name: SoloX Cortex-M4

<= Connection [Files| B% Debugger| i 05 Awarene;s])= Argumant;] m Envlronmenq

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
Freescale / i.MX6 SoloX Sabre SDB / Bare Metal Debug / Debug Cortex-M4

Filter platforms

> i.MX6 Dual {Generic) -
» 1.MX6 Duallite (Generic)
> LMX6 Quad (Generic)
> 1.MX6 Solo (Generic)
> 1LMX6 SoloLite (Generic)
4 1.MXB SoloX Sabre SDB o
4 Bare Metal Debug I
Debug Cortex-A9
Debug Cortex-M4
> Linux Application Debug
» Linux Kernel and/or Device Driver Debug

Target Connection ULINKpro -

DTSL Options Cenfigure ULINKpro trace or other target options. Using "default” configuration options

DS-5 Debugger will connect to a ULINKPro to debug a bare metal application.

Connections

Bare Metal Debug | Connection P1018103:Keil ULINKpro

Figure 11 - Setup Debug Connection

4. In the “Connection” tab go to NXP = i.MX6 SoloX Sabre SDB - Bare Metal debug and
choose “Debug Cortex-M4” as shown in Figure 11.

5. Stillin the “Connection” tab select ULINKpro in the “Target Connection” list and then click the
“Browse” button in the Connections section. Select the ULINKpro connection.

Please note that the ULINK pro debug adapter must be connected to your computer before
clicking the “Browse” button

6. Click on the “Files” tab and then the “Workspace” button. Select the ax £ file in the “debug”
folder as shown in Figure 12.

= Open BT

Select a files

» % hello_world_imxGsx_sdb_md -
a =5 hello_world_ocram_imxbsx_sdb_méd

.cproject I
project
> = board
4 [debug
(= board
= driver

m

= freertos
hello_world_ocram_imx®sx_sdb_md.axdf
é hello_world_ocram_imuxbsx_sdb_md.bin
[source

Figure 12 - Application to download

7. Go to the “Debugger” tab and select “Debug from entry point” as shown Figure 13.

Copyright 2020 © Embedded Artists AB

Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

W= DebLg Configuratia

Create, manage, and run configurations

Create, edit or choose a configuration to launch a DS-5 debugging session.

™ |,
L X| = MName: SoloX Cortex-M4

type filter text <Ji= Connection Fﬁ. Files | 5 Debugger %‘" Qs Awarenesq)= Argumentq E Environmenq

[E] C/C++ Application
[E] C/C++ Attach to Application

[€] €/C++ Postmortem Debugger R:un conit
[C] C/C++ Remote Application () Connect only (") Debug from symbol | main
a &} D5-5 Debugger [C1Run target initialization debugger script (.ds / .py)
#5 SoloX Cortex-M4
@' IronPython Run
& TronPython unittest [] Run debug initialization debugger script (.ds / .py)
G Java Applet
[T Java Application
| Ju JUnit [7] Execute debugger commands
a7 Jython run

& Jython unittest

= Launch Group

m PyDev Django

23 PyDev Google App Run
| eF Python Run

é’ Python unittest

| @. Remote Java Application s tcrnadi=ton

[¥] Use default

S{workspace loch

Figure 13 - Debug from entry point

8. Go to the “OS Awareness” tab and choose FreeRTOS in the list as shown in Figure 14.

,
Sommcmigmions | WU MABARE N ® s e s

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

[b 4 | S Mame: SoloX Cortex-Mé4
type filter text -it= Connection (Files (ﬂv‘ Debugger ﬁ" 05 Awareness - = Argument;I B Environmenﬂ

[E] C/C++ Application

[E] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[€] C/C++ Remote Application

a4 5 DS-5 Debugger @R F-Qﬁ I

Select O5 awareness:

5 SoloX Cortex-M4
@7 IronPython Run

& TronPython unittest
4] Java Applet FreeRTOS™ is a market leading real-time operating systern (RTOS) suitable for highly-constrained men
5 (D5-5™) can benefit from the in-built task aware debug and detailed system information.

[T Java Application

Ju JUnit For more information on FreeRTOS™ and D5-5 toolchain:
Pa Jython run http://ds.arm.com/partners/real-time-engineers

@ Jython unittest

= Launch Group

E PyDev Django

i 23 PyDev Google App Run
eF Python Run

éj Python unittest

E. Remote Java Application

Figure 14 - OS Awareness

9. Click the “Apply” button and then the “Debug” button to initiate a debug session. When the
application has been downloaded to the target it could look like Figure 15.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 22

& Deb.. 2 | [[5Pro.. 4§ Re.. = B | Commands i |j@ Historn Scripts = B8 ®=Vi B oo R E P = 8
SIE SRR JECRERdN < BEES-» ® 2
- &, Linked: SoloX Cortex-M4 = &, Linked: SoloX Cortex-M4 ~
2 W SoloX Cortex-M4 connected ;E:;E;ngf::;g:;t:llthoizige C:\Freescale\Frees = Mame | ‘u’a.lue |-|—5‘r

A ﬁ Cortex-M4 #1 stopped wait g ¥y P == Locals 0 variables i
= boot \RNING(ROSE8): Could not enable 05 su + & (= File Static Variables 0 of 179 variables
= _ WARNING(ROS6@): Could not enable 05 support -
Execution stopped at: BxB898B7EC i (= Globals 0 of 32 varizbles
In boot.S [
Bx@a9ea7EC 66,8 ldr r@, =NVIC_ICER® S
4| ; LI T — ’

‘ SoloX Cortex-M4 connected

Freescale MQX: Waiting for the 05 to | | Command: Press (Ctrl+Space) for Content Assist Add Global or File Static Variable

[8) boots 22 = H DX A A % =7
59 N $ =
60 #if MQX_AUX_CORE))

61 e “msr MSP, r@ B, Linked: SoloX Cortex-M4 =

B

52 isb #15 B & ~ <NetInstructic 100

63 #endif -

64 | Address | Opcode | Disassembl

65 /* Disable interrupts and clear pending flags */ BxBBIBATEA BX La
® 66 1dr r@, =NVIC_ICER® __boot

67 1dr rl, =NVIC_ICPR® ® | exeegee7EC LDR i

68 1dr r2, =@8xFFFFFFFF @x88I887EE LDR 4|

59 mov r3, #8 BxOBIBHTFE MOV r

78 BxEe9ee7rL MoV r

71 ASM_LABEL(_boot_loop) | _ Bx@e9@e7Fs CBZ s

72 cbz r3, _boot_loop_end PN e T— B

73 str r2, [r@], #4 /* NVIC_ICERx - clear enable IRQ register */|_ F

74 str r2, [r1], #4 /* NVIC_ICPRx - clear pending IRQ register *| BAe. 2 E T =7

75 sub r3, r3, #1

76 b _boot_loop i B G Sﬁ -

77 & linkerk SnlnY Carkev-hid -

Figure 15 - Active debug session

NOTE 1: If you are not able to start the debug session please make sure that you have only
booted into u-boot on the Cortex-A9 and not into Linux when you start the debug session.

NOTE 2: If the terminal/console attached to the A9-core (Linux) seem to be unresponsive,
that is, it doesn’t accept any input please read section 8.3 .

6.5 Build with ARM GCC

6.5.1 Install ARM GCC

Download and install GCC ARM Embedded. The file gcc-arm-none-eabi-4 8-2014gl-
20140314-win32.exe was used when writing these instructions.

https://launchpad.net/gcc-arm-embedded/+download

6.5.2 Install MinGW

MinGW - native Windows port of the GNU Compiler Collection (GCC) is also needed to build the
applications on a Windows machine.

1. Go to the link below and click the “Download” button
http://sourceforge.net/projects/mingw/

2. Start the downloaded installation file and click the Install button and then click the “Continue”
button on the dialog windows that will appear.

Copyright 2020 © Embedded Artists AB Rev G

https://launchpad.net/gcc-arm-embedded/+download
http://sourceforge.net/projects/mingw/

Working with Cortex-M4 on iMX6 SoloX COM Board Page 23

& n|

MinGW Installation Manager Setup Tool

mingw-get version 0.6.2-beta-20131004-1
Written by Keith Marshall

Copyright @ 2009-2013, MinGW.org Project
http://mingw.org

This is free software; see the product documentation or source code, for copying and
redistribution conditions. There is NO WARRANTY; not even an implied WARRANTY OF
MERCHANTABILITY, nor of FITNESS FOR ANY PARTICULAR PURPOSE.

This tool will guide you through the first time setup of the MinGW Installation Manager
software (mingw-get) on your computer; additionally, it will offer you the opportunity to
install some other common components of the MinGW software distribution.

After first time setup has been completed, you should invoke the MinGW Installation
Manager directly, (either the CLI mingw-get.exe variant, or its GUI counterpart,
according to yvour preference), when you wish to add or to remove components, or to
upgrade your MinGW software installation.

View Licence] [Install | ’ Cancel

Figure 16 - MinGW Installation

3. When the installation manager window appears, as shown in Figure 17, choose mingw32-
base and msys-base in the “Basic Setup” section.

-
B MinGW Installation Manager

Installation Package Settings

Basic Setup Package Class Installed version Repository Version Description

All Packages . . . -
[mingw-developer-taolkit bin 2013072300 An MSYS Installation for M
mingw32-base bin 2013072200 A Basic MinGW Installation
D mingw32-gcc-ada bin 4.8.1-4 The GNU Ada Compiler
[mingw32-gce-fortran bin 4.8.1-4 The GNU FORTRAN Compil
] mingw32-gcc-g++ bin 4.8.1-4 The GNU C++ Compiler
D mingw32-gcc-objc bin 4.8.1-4 The GNU Objective-C Com
msys-base bin 2013072300 A Basic MSYS Installation |

4| 1

| Generall Description Dependenciesl Installed Files I Versions

No package selected.

Flease =elect a package from the list abowve, to view related data.

Figure 17 - MinGW Installation Manager

4. Click Installation >Apply Changes for the packages to be installed.

5. When the installation has finished add ¢ : \MinGw\bin (if this is where you installed
MinGW) to the PATH variable. There are several ways to add something to the PATH
variable.

a. Inacommand prompt write set PATH=%PATHS;C:\MinGW\bin

b. To permanently add MinGW to PATH open System properties by (this applies for
Windows 7) right clicking on Computer in an Explorer window and then select
Properties. Click “Change settings” and then the Advanced tab as shown in Figure
18. Click on the “Environment Variables” button and edit the PATH variable as
shown in Figure 19.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 24

,

| Computer Name I Hardware | Advanced |System Protection | F{Emotel

‘Y'ou must be logged on as an Administrator to make maost of these changes.

Performance

Visual effects, processor scheduling, memony usage, and virtual memory
Settings...

User Profiles
Deshtop settings related to your logon

Startup and Recovery
System startup, system failure, and debugaing information

Settings...

i Environment Variables...]

0K || Ccancel Apply

Figure 18 - System Properties in Windows

r ki
Environment Variables ﬂ

User variables for andre

Variable Value

e
MOZ_PLUGIM_P... C:\Program Files (x86)\Foxit Software!... H

C:\Jsers\andre\AppData\Roamingnpm. ..

TEMP %USERPROFILE%\AppData \Lacal {Temp
™P %LUSERPROFILE%\AppData\Local Temp ™
New.. || Edit.. |[Delete |

System variables

Variable Value it

ComSpec C:\Windows'system32\cmd.exe D

ESET_OPTIONS

FP_MNO_HOST_C... NO

MQ¥X_PATH C:'\Freescale'\Freescale_MQX_4_1_IMX... 7
[Chewe) (Ceaee] [osee]

[ok || cance |

e ——————————— 4

Figure 19 - Environment Variables in Windows

6. Create the ARMGCC DIR environment variable

a. Click the “New” button below “System variables” as seen in Figure 19.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 25

b. Add ArMGCC DIR as variable name and specify the path to ARM GCC as value.
The default installation path of ARM GCC which has been installed when following
these instructions is:

C:\Program Files (x86)\GNU Tools ARM Embedded\4.8 2014qgl

7
Environment Variables |

New System Variable

Variable name: ARMGCC_DIR

Variable value: 86)\GNU Tools ARM Embedded'4.8 2014g1

ok [concel]

System variables

Variable Value =
ComSpec C:\Windows\system32\cmd.exe L4
ESET_OPTIONS

FP_NO_HOST_C... NO

MQX_PATH C:\Freescale\Freescale_MQX_4_1_IMX... ~

| mew.. || Edt. || Delete |

ook [concel |

Figure 20 - ARMGCC_DIR variable

7. Click Ok and then Ok again.

6.5.3 Install CMake

Download and install CMake from the link below. Make sure to add CMake to the system path as
shown in Figure 21.

http://www.cmake.org/cmake/resources/software.html

Copyright 2020 © Embedded Artists AB Rev G

http://www.cmake.org/cmake/resources/software.html

Working with Cortex-M4 on iMX6 SoloX COM Board Page 26

.
A CMake 3.4.1 Setup I e

Install Options
Choose options for installing CMake 3.4.1

By default CMake does not add its directory to the system PATH.

() Do not add CMake to the system PATH

(@) iAdd CMake to the system PATH for all usersi |
() Add CMake to the system PATH for current user |
[] create cMake Desktop Icon

Mullsoft Install Syskem w2, 46

< Back][Mext = J [Cancel

Figure 21 - CMake Install Options

6.5.4 Build Application

1. Open a GCC Command prompt. When ARM GCC was installed a shortcut was created in the
start menu as shown in Figure 22.
. GNU Tools ARM Embedded 4.8 2014q1
, Documentation
___§CC Command Prompt

\g Uninstall GNU Tools for ARM Embeci’

Figure 22 - GCC Command Prompt shortcut

2. Change directory to the application that should be built. In this example the
hello world gspi application is built.

cd <FreeRTOS>\examples\imx6sx sdb md4\demo apps\hello world gspilarmgcc

3. Runbuild debug.bat to build the application

4. The output of the build will be both an elf file and a bin file located in the sub-directory
debug. Use the instructions in chapter 4 to download the application to the iIMX6 SoloX

COM board.
6.6 Build with Eclipse and ARM GCC

How to install and use ARM GCC from the command line is described in section 6.5 above. Most often
you however need to use a development environment (editor) when developing an application. This
section will describe how you can setup Eclipse to use ARM GCC when developing the application.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 27

NOTE: You must have followed the instructions in section 6.5 before continuing with the
instructions in this section.

Itis assumed that you have installed Eclipse with the CDT (C/C++ Development Tooling) plugin.
Eclipse version 4.4.2 (Luna) and CDT 8.6.0 where used when writing these instructions.

6.6.1 Install “GNU ARM Eclipse” plugins

We will utilize CDT extensions called “GNU Arm Eclipse”. Follow the instructions on the link below to
install these extensions/plugins.

http://gnuarmeclipse.github.io/plugins/install/

6.6.2 Create project: New

Start by creating a new “C Project”. Go to File > New Project and then select “C Project” under the
“CIC++” group as shown in Figure 23.

& New Project O X

Select a wizard p—>

Create a new C project

Wizards:
type filter text

= General
v (= GG+
[C Project
@ C++ Project
[&4 Makefile Project with Existing Code
= CVs

P -

Figure 23 - Select project wizard

Click “Next”, select “Empty Project’, “Cross ARM GCC” as toolchain and give the project a name as
shown in Figure 24.

C Project p—>
Create C project of selected type

Project name: | md_hell o_worldl

Use default location

Location: | E\Develop\iMX\debugging\test?m4_hello_world Browse...
Project type: Toolchains:
Executable Cross ARM GCC

@ Empty Project MinGW GCC
@ Hello World ANSI C Project

@ Hello World ARM C Project

® ADuCM36x C/C++ Project

@ Hello World ARM Cortex-M C/C++ Project
@ Freescale Kinetis Koo C/C++ Project

& Freescale Processor Expert C/C++ Project
@ STM32F0hor C/C++ Project

Figure 24 - Project type and toolchain

Click “Next” and then “Next” again. The toolchain and path should be selected. If “GNU Tools” hasn’t
been selected by default change to this as shown in Figure 25.

Copyright 2020 © Embedded Artists AB Rev G

http://gnuarmeclipse.github.io/plugins/install/

Working with Cortex-M4 on iMX6 SoloX COM Board Page 28

& C Project O s

Cross GNU ARM Toolchain —

Select the toolchain and configure path

Toolchain name: | GNU Tools for ARM Embedded Processors (arm-none-eabi-gec) v|

Toolchain path: | C:/Program Files (x86)/GNU Tools ARM Embedded/4.8 2014q1/bin | Browse...

Figure 25 - GNU ARM Toolchain

6.6.3 Create project: Linked folders

Section 6.1.1 shows the file structure of the installed FreeRTOS bundle for iMX6. The source code that
we need to build is located in several different folders and we need to add these to the Eclipse project.
There are several ways to do this, but in this example we will use “linked folders” and keep the
structure created when installing the bundle.

Begin by adding a linked folder to the demo application. In this example we will be using the
“hello_world” demo. Click on the “Add Folder” icon in the toolbar as shown in Figure 26. Then select
“Folder”. An alternative way is to do this from the menu: File > New - Folder.

& C/C++ - Eclipse

File Edit Source Refactor MNavigate Search Ppaject Run Window Help
ﬁvl—i}v _|®v%v@@vﬁv@v#v07%v
a5

% Source Folder

] I . - -

[Folder

[Project Explorer &3 l = 0
B&|e ~

% m4_hello_waorld

Figure 26 - Add folder

In the dialog window click on the “Advanced” button and then to “Link to alternate location” and browse
to the <FreeRTOS path>/examples/imx6sx_sdb m4/demo apps/hello world
folder. This is shown in Figure 27.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 29

& Mew Folder
Folder
Mo folder specified. D

Enter or select the parent folder:

th <

y 5 mésx_hello_werld

Folder name: | hello_world

<< Advanced

() (= Use default location
O (-7 Folder is not located in the file system (Virtual Folder)

(O] [Link to alternate location (Linked Folder)

| 'r|pIes\imxﬁsx_sdb_md\demo_apps\helIoLworId | Browse... Variables...

Resource Filters...

Cancel

@ Finish

Figure 27 - Linked folder

Repeat the above steps for the following folders:
<FreeRTOS path>/examples/imx6sx sdb m4

o This folder contains board specific code

® <FreeRTOS path>/platform
o Contains initialization and driver code for the iMX7 processor
e <FreeRTOS path>/rtos/FreeRTOS
o The FreeRTOS code
When all folders have been added to the project it will look like in Figure 28.

o C/C++ - Eclipse
File Edit Source Refactc

e &1

[Project Explorer i3

W J(:B mdsyi_hello_world

> ello_world
> [y imxbex_sdb_md
> &% platform

Figure 28 - File structure in Eclipse

Rev G

Copyright 2020 © Embedded Artists AB

Working with Cortex-M4 on iMX6 SoloX COM Board Page 30

6.6.4 Create project: Exclude from build

Some of the sub-folders added to project as described in section 6.6.3 shouldn’t be part of the build.
These can be excluded by right-clicking on the folder and then selecting “Resource Configurations” >
“Exclude from Build”. This is shown in Figure 29

& C/C++ - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

-~ S ®-[-BE - f-E-H-0-%r ®E -6
IR 7 &
@mmaMMax] = 8

B&|e ¥

W 65_‘5 md_hello_world
(7@ FreeRTOS
(7% hello_world_ocram
~ [imaTd_sdb_md

= demo_ap=-
(2= driver_exi New *
[€] board.c Go Into
[K] board.h .)
[clock fre Open in New Window
[B] clock_fre 2 Copy ChrlsC
@ gpfo_pfne Paste Ctrl+V
[n| gpio_pin:
[pin_mux. K Delete Delete
[B] pin_mux. Remove from Context Ctrl+Alt+Shift+ Down
[’z middleware Source 3
(% platform Move...
i N 55| Properties|
fua Import..
[Export.. Resource Path
&] Refresh 5 arh rn4_hello_wor...
Index b
Make Targets >
Resource Configurations » Exclude from Build...
Validate Reset to Default...
Compare With > [

Figure 29 - Exclude folder from build

We must also specify which configurations to exclude the folders from. In our case we select both
‘Debug” and “Release” as shown in Figure 30.

& Exclude from build O X

Exclude object(s) from build in the following configurations

Figure 30 - Configurations to exclude from

Exclude all of the following files and folders:
e imx6sx sdb m4/demo apps

o The demo_apps folder contains several applications. We only want to build
hello_world.

e imx6sx sdb m4/driver examples

o The driver_examples folder contains several applications. We only want to build
hello_world.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 31

® TFreeRTOS/Source/portable/IAR
o This folder contains code specific for the IAR compiler
® TFreeRTOS/Source/portable/RVDS
o This folder contains code specific for the RVDS compiler

® FreeRTOS/Source/portable/MemMang/heap 2.c (also heap 3.c and
heap 4.c)

o The MemMang folder contains several implementations of memory allocation
routines. We can only use one and will keep the one implemented in heap_1.c.
Exclude all other files.

e platform/CMSIS/DSP Lib

6.6.5 Create project: “Include” paths

Header files are located at several different locations in this project structure. These header files must
be found during a build. This can be done by right-clicking on the project and then select “Properties”.

Go to “C/C++ General” - “Paths and Symbols”. Select “GNU C” as language and then click the “Add”
button as shown in Figure 31.

& Properties for md_hello_world O *
type filter text Paths and Symbols - A
Resource
Builders
C/C++ Build Configuration: |Debug [Active] ~| | Manage Configurations...
w CfC++ General
Code Analysis
Documentation (= Includes # Symbols =\ Libraries (B Library Paths (2 Source Location] References
File Types
Formatter Languages Include directories
Indexer Assembly T
Language Mappings GNU C e
Paths and Symbaols Tt
Preprocessor Include Pz
Project References Export
Run/Debug Settings
Task Repository
Task Tags Move Up
Validation Mowve Down
WikiTest (1) "Preprocessor Include Paths, Macros etc.” property page may define additional entries
Show built-in values
&% Import Settings... | | S Export Settings...
a 5 Restore Defaults Apply

Figure 31 - Include paths

We are going to add the paths as relative to the workspace so click in the “Workspace” button and then
browse to the folder to include. In Figure 32 it is shown how the “include” folder for FreeRTOS is
selected.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 32

&= GeC Indlexer £ Folder selection O X
v (= MemMa Language Mappings
@ heap Paths and Symbols Select a folder from workspace:
[head Prenrocessorlnclude Pz | [
B Add directory path % v 5 md_hello_world ~
(= .settings
Directory: v = FreeRTOS
| | (== License
v [Source

[[]Add to all configurations iakle Il = include L

[JAdd to all languages = portable i
[= Is aworkspace path HIEREER) [croutine.c

File system... [[¢] event groups.c
[list.c
oK Cancel H [£] queue.c B
=T 1 7 readme.bet E
readme.tet [tasks.c :
& hello_world_ocram ® [timers.c 5
& imx7d_sdb_m4 - B readme.txt B
[€] board.c (== hello_world_ocram v| [
[h] board.h
[€ clock_freq.c
[h clock_freq.h
& s @ ==

@ gpio_pins.h

Figure 32 - Workspace folder

Add the following folders as include paths:
e FreeRTOS/Source/include
e FreeRTOS/Source/portable/GCC/ARM CM4F
e hello world
e 1imx6sx sdb m4
e platform/CMSIS/Include
e platform/devices
e platform/devices/MCIMX6X/include
e platform/devices/MCIMX6X/startup
e platform/devices/drivers/inc
e platform/devices/utilities/inc

6.6.6 Create project: Settings

There are a number of project settings that must be updated. Right click on the project and then select
Properties.

By default “make” is used to build the application, but since we have installed mingw make we need to
do an update to the toolchain setting. Go to “C/C++ build” = Settings and click on the “Toolchains” tab
as shown in Figure 33. Change the value of the “Build command” field from “make” to “mingw32-
make”.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

nesue
Builders
v C/C++ Build
Build Variables
Environment

Configuration: |Debug [Active]

Logging i Tool Settings & Toolchains Bl Devices # Build Steps Build Artifact B
Settings
Tool Chain Editor Name: | GMNU Tools for ARM Embedded Processors (arm-none-eabi-gec)
Tools Paths .
C/Crr General Architecture: ARM (Ahrch32) b
Project References Prefic:
Task Repository
Task Tags C compiler: gec
Validation C++ compiler: g++
WikiText
Archiver

Hex/Bin converter: | objcopy

Listing generator: objdump

ar

Size command:

Build command:

mingw32-make

Remove command:

Toaolchain path: | C:/Program Files (x86)/GNU Tools ARM Embedded/4.8 2014q1/bin

(to change it use the global or workspace preferences pages or the proje

Figure 33 - Build command

Go to the “Tool Settings” tab and click on “Target Processor”. Change the values of the following fields.
This is also shown in Figure 34.

e ARM family = cortex-m4
o Float ABI = FB instructions (hard)
e FPU Type = fpv4-sp-d16

Builders
w C/C++ Build
Build Variables
Environment

Configuration: | Debug [Active]

(2 Preprocessor
@ Includes
(% Optimization
(# Warnings
@ Miscellanecus
w B3 Cross ARM GNU C Linker
@ General
(2 Libraries
@ Miscellaneous
~ B3 Cross ARM GMU Create Flash Image
(# General

Figure 34 - Target processor

Unaligned access
Adpchod farmily
Feature cre
Feature crypto
Feature fp
Feature simd

Code rmodel

Logging & Tool Settings 3 Toolchains ! Devices .j" Build Steps Build Artifact Binary Parsers

Settings

Tool Chain Editor (2 Target Processor ARM family cortex-md

- L
c/ C-E_oflé ::::l g \?\,:?:;a:lon Architecture Toolchain default
Project References (% Debugging Instructionset | Thumb (-mthumb)
Run/Debug Settings v & Cross ARM GNU Assembler [Thumb interwark (-mthumb-interwork)
Task Repository (2 Preprocessar
Task Tags 3 Includes Endianness Toolchain default
Validation @ Warnings Float ABI P instructions (hard)
WikiText (# Miscellaneous
~ B Cross ARM GNU C Compiler FPU Type fpvd-sp-d16

Toolchain default
Generic (-mcpu=generic)
Taolchain default
Toolchain default
Teolchain default
Enabled (+simd)

Small (-mcmodel=small)

Still in the “Tool Settings” tab go to “Cross ARM GNU C Compiler” - Preprocessor. Add the symbols

below:
e CPU MCIMX6X M4

e DEBUG

Copyright 2020 © Embedded Artists AB

Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 34

e FPU PRESENT

e ARM MATH CM4

type filter text Settings
» Resource
Builders
w CfC++ Build Configuration: |Debug [Active]
Build Variables
Environment
Logging & Tool Settings %5 Toolchains M Devices & Build Steps Build Artifact
Settings
Tool Chain Editor (5 Target Processor [1Do not search system directories (-no
Tools Paths (2 Optimization [IPreprocess only (-E)
» C/C++ General @ Warnings Defined symbols (-D)
Project References (2 Debugging
Run/Debug Settings ~ B3 Cross ARM GNU Assembler CPU_MCIMEKEX_M4
» Task Repository (# Preprocessor _EFESUPGRESENT
Jask Tags & Includes
> Validation (# Warnings B .
WikiText (# Miscellaneous
~ &3 Cross ARM GNU C Compiler
(2 Preprocessor
@ Includes
(# Optimization
@ Warnings
(# Miscellaneous

LB oL ARRASRIL S el

Figure 35 - Preprocessor symbols

Still in the “Tool Settings” tab go to “Cross ARM GNU C Linker” - General. Add the workspace path to
the linker file that is going to be used. Since we are building an application for OCRAM we select
platform/devices/MCIMX7D/linker/gcc/MCIMX6X M4 ocram.ld.

& Tool Settings B3 Toolchains ! Devices .i' Build Steps Build Artifact Binary Parsers @@ Error Parsers

(%2 Target Processor Script files (-T) & 8 ¢
(# Optimization - . . - - _ - _
@ Warnings ! !
(# Debugging
~ [Cross ARM GNU Assembler
(5 Preprocessor
(2 Includes
(22 Warnings
(# Miscellaneous
~ 3 Cross ARM GNU C Compiler
(5 Preprocessor
2 Includes
(2 Optimization
(# Warnings
@ Miscellanecus
~ 53 Cross ARM GNU C Linker
@ General
(E2 Libraries

Figure 36 - Linker file

Still in the Linker group select “Miscellaneous”. Check the “Use newlib-nano” checkbox and enter
“-specs=nosys.specs” in the “Other linker flags” field. These settings are shown in Figure 37.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

i Tool Settings &3 Toolchains M Devices # Build Steps

Build Artifact Binary Parsers @ Error Pi

(5 Target Processor
@ Optimization
(2 Warnings
(# Debugging
~ 3 Cross ARM GNU Assembler
(2 Prepracessor
(2 Includes
Warnings
Miscellaneous
~ 3 Cross ARM GNU C Compiler
(2 Preprocessor
 Includes
@ Optimization
(2 Warnings
(2 Miscellaneous
~ 3 Cross ARM GNU C Linker
@ General
(2 Libraries
(% Miscellaneous
~ 3 Cross ARM GNU Create Flash Image
@ General
v B Cross ARM GNU Print Size
% General

Linker flags (-Xlinker [option])

Other objects

Generate map | "${BuildArtifactFileBaseName}.map"

[] Cross reference (-Xlinker --cref)

[Print link map (-Xlinker --print-map)

Use newlib-nano (--specs=nano.specs)
[] Use float with nano printf (-u _printf_float)
[[] Use float with nano scanf {-u _scanf_float)
[Verbose (-v)

Other linker flags | -SpECS=NOSYS.Specs

Figure 37 - Misc linker settings

In the “Tool Settings” tab go to “Cross ARM GNU Create Flash Image”. Change output format to “Raw

binary”.

Settings

Configuration: | Debug [Active]

@ Tool Settings @ Toolchains ! Devices ,ﬁ' Build Steps

(# Target Processor
@ Optimization
@ Warnings
(%2 Debugging
~ B8 Cross ARM GNU Assembler
(2 Preprocessor
@ Includes
(2 Warnings
(% Miscellaneous
w B3 Cross ARM GNU C Compiler
@ Preprocessor
Includes
(% Optimization
(22 Warnings
@ Miscellaneous
w BB Cross ARM GMU C Linker
General
@ Libraries
(2 Miscellaneous
w BB Cross ARM GMU Create Flash Image
(% General

Figure 38 - Create Flash Image

Copyright 2020 © Embedded Artists AB

Build Artifact Binary Parsers @ Erne

Output file format (-Qf | Raw binary

[Section: -j .text
[]Section: -j .data

Other sections (-}

Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 36

6.6.7 Build application

Now it is time to build the application. This can, for example, be done by clicking on the “Build” icon in
the toolbar as shown in Figure 39. It can also be done by right-clicking on the project and then click on
“Build Project”.

actor avigate \oearch Project Run Window Help
ENESY LW @-e-@
7

= Wd 'Debug’ for project 'md_hello_world' }Id g

52 HEAP SIZE = DEFINED(
53 STACK_SIZE = DEFINED|
54

55 /* Specify the memory i
5& MEMORY

574

58 m interrupts

53 m text

60 m data
Figure 39 - Build icon
When the application has been built there will be a binary file in the project’s “Debug” folder. Use the

instructions in section 4.5 to run this application on target. It is also possible to download and debug
the application by following the instructions in section 6.7 below.

6.7 Debug using Eclipse

Before following the instructions in this section you must have followed the instructions in section 6.6
and being able to build an application.

6.7.1 LPC-Link 2 with J-Link firmware

We are going to use an LPC-Link 2 with Segger's J-Link firmware as debug adapter. Follow the
instructions on the link below to prepare an LPC-Link 2 with the J-Link firmware.

Instructions

https://www.segger.com/Ipc-link-2.html

LPC-Link 2
http://www.embeddedartists.com/products/Ipcxpresso/Ipclink2.php

6.7.2 J-Link GDB Server

Segger’s J-Link GDB Server is used when debugging the target. Download and install the “J-Link
Software and Documentation Pack”. This package contains the GDB server.

https://www.segger.com/downloads/jlink

6.7.3 J-Link script files

A script file is needed when connecting to the M4 core using J-Link. Segger has published script files
for both the A9 core and M4 core. You need to download at least the script file for the M4 core.

https://wiki.segger.com/IMX6SX

6.7.4 Connect LPC-Link 2 to the board
Begin by connecting the LPC-Link 2 to the Debug interface board as shown in Figure 40.

Copyright 2020 © Embedded Artists AB Rev G

https://www.segger.com/lpc-link-2.html
http://www.embeddedartists.com/products/lpcxpresso/lpclink2.php
https://www.segger.com/downloads/jlink
https://wiki.segger.com/IMX6SX

Working with Cortex-M4 on iMX6 SoloX COM Board Page 37

S B TTTTEEE LI | g“gugg-q’r"

Sf

Connect the FPC cable for the Debug interface board to the connector on the COM Board as shown in
Figure 41.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 38

Also make sure that the LPC-Link 2 board is connected to your PC via a USB cable.

6.7.5 Create a debug configuration

In Eclipse go to Run - Debug Configurations and then select “GDB SEGGER J-Link Debugging”.
Create a new “launch configuration” by clicking on the icon shown in Figure 42.

& Debug Configurations

Create. manage. and run configurations

o~

7\
« ._.) | = }:9 T Configure launch settings from this dialog:
type filter text | | - Press the 'New' button to create a configuration of the selecte
[©] C/C++ Application ~ =| - Press the 'Duplicate’ button to copy the selected configuratio

[£] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[&] C/C++ Remote Application
[t]| GDB Hardware Debugging

[£] GDB OpenOCD Debugging

[£] GDB PyOCD Debugging

[£] GDB QEMU Debugging Configure launch perspective settings from the 'Perspectives’ prefer
[t | GDB SEGGER J-Link Debugging
&' IronPython Run

& IronPython unittest

Java Applet

Java Application

Ju JUnit

- Press the 'Delete’ button to remove the selected configuratior

gt 3¢

- Press the 'Filter' button to configure filtering options.

i

- Edit or view an existing configuration by selecting it.

Figure 42 - Debug configuration

Go to the “Debugger” tab. The device name for i.MX 6SoloX is mcimx6s4. We can however not use
this name since Segger LPC-Link 2 firmware considers this device to be a Freescale part and not an
NXP part. The license for the firmware only allows debugging of NXP parts. The SoloX is now an NXP
part, but the firmware hasn’t been updated.

1. Enter “m4” as device name instead of mximx6s4
2. Select “JTAG” as interface

3. Inthe “Other options” field add -scriptfile and the path to the script file downloaded in
section 6.7.3 above.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

Pr_ e sy

EE I e
Main #;? Debugger . = Startup} E/ Source} i Qommon}

J-Link GDB Server Setup
Start the J-Link GDE server locally

[sfjlink_path}/s{jlink_gdbserver}

SN
Device namghd) |

Executable:

[[] Connect to running target

Browse... | Variables...

Supported device names

Endianness: (@) Little () Big

Connection: (@ USB | | (UUSB serial or IP name/address)
Interface: OSWD

Initial speec: () Aute (_) Adaptive (@ Fixed kHz

GDE port:

SWO port: Verify downloads [/ Initialize registers on start
Telnet port: Local hostonly []Silent

Log file: |

| Browse...

Other options: | -singlerun -strict -timeout 0 —noﬁcriptfile E:\Develop\iMX\debugging\lMXﬁ@Conne¢_|

Allocate console for the GDB server

GDB Client Setup

Executable: | Slcross_preficigdb${cross_suffix}

[~] Allocate censole for semihosting and SWO

Browse... | Vanables...

Ffren oeifors |

Figure 43 - Debugger tab

Go to the “Startup” tab and then “Runtime Options”. Select “RAM application” as shown in Figure 44.

Name: | md_hello_world Debug

Main ﬁzﬁ: Debugger (9 Startup E_/ Source} 5| Qommon}

Load Symbols and Executable
Load symbols
(®) Use project binary: md_hello_world.elf

Executable offset (hex): l:l

Run/Restart Commands
Pre-run/Restart reset.

Type: l:l (always executed at Restart]

() Use file: Workspace...
Symbols offset (hex): I:I

Load executable

@ Use project binary: md_hello_world.elf

() Use file: Workspace...

File System...

File System...

[]5et program counter at (hex):

Set breakpoint at:
Continue

Figure 44 - Startup tab

6.7.6 Start a debug session

[R " S

There are several ways to start a debug session. One way is to click on the “Debug” button if the

“Debug configurations” window is still open as shown in Figure 45.

Copyright 2020 © Embedded Artists AB

Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

Runtime Options
RAM application (relead after each reset/restart)

Run/Restart Commands

Pre-run/Restart reset, Type: l:l (always executed at Restart)

[J5et program counter at (hex)

Continue

Restore defaults

Apply Rewert

Figure 45 - Start Debug session

When starting the debug session the J -Link terms and conditions must be accepted by clicking the
“Accept” button.

J-Link V6.14 - Terms of use

The connected emulator iz a LPC-Link 2 running aJ-Link. compatible firmware.
In arder to make uge of this firmware, the following Terms OF Use must be accepted.

TERMS OF USE ~

1] The firmware iz only to be used with WNXP target devices. Using it with other devices is prohibited and
ilegal.

2] The firmware iz for uze with evaluation boards anly. [tis nat for uze with custarn hardware.

3 The fimware may only be used for development and/or evaluation purposes. It may not be used far
production purposes.

4] The firmware iz made available without any warranty and without support.

) The firmware may be used with the NxP LPC-LINK 2 platform only.

Far more information, pleaze refer to http: 2w, segger. comelpc-link-2. html

If there iz any doubt if a certain uge may be considered within the foregoing scope,
it iz strongly recommended to consult SEGGER prior to use.
I order to contact SEGGER. please vizit http:/ Awwiw.segger. com/contact-us. himl

For development on target hardware, we recommend our industry lzading
J-Link PRO [http: Aww. segger. com/flink -pro_htrml)

J-Link Ulra+ [http: /e segaer. comAlink-ultra-plus. hkml)

J-Link PLUS [http: /A, segger. com/Alink-plug. html)

J-Link. [http:/ ey, zegger. com/Alink. html)

For profezsional production flazh programming we recommend:

[~ Danok show this message again for boday Decline I Accept

Figure 46 - J-Link Terms and conditions

Since we haven't specified a correct device we have to select which target to debug. Select a generic
Cortex-M4 as shown in Figure 47.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 41

SEGGER J-Link V&.14 - Target device settings *
Filter - -
M anufachurer Device Core Little endian =
ﬂ | |x ﬂ Care #0
 anufacturer | Device | Care | MWumCores | Flazh zize | RAM size | h
Unspecified ARMT ARMT 1 - -
Unzpecified ARMI ARMI 1
Unzpecified ARM11 ARMT1 1
Unspecified Cortex-A5 Cortex-45 1
Unzpecified Cortes-47 Cortes-a7 1
Unspecified Cortes-48 Cortex-88 1
Unzpecified Cortex-49 Cortex-49 1
Unzpecified Cortex-412 Cortex-812 1
Unspecified Cortes-415 Cortes-815 1
Unzpecified Cortex-417 Cortex-817 1
Unzpecified Cortex-k0 Cortex-t0 1
Unspecified Cortes-k 0+ Cortex-t0 1
Unspecified Cortex-t1 Cortex-k1 1 - -
Unzpecifies Cortex-t3 Cortes-3 1 - -
4 Corterhid Cortexhid I T S
Cortex-t7 Cortex-t7 1 - -
Unspec@f@ed Cortex-t23 Cortex-23 1 "
Select a device for J-Link.
Selecting a device is not required for most devices, but allows more efficient operation of J-Link. az well as flash
download, modification of flash memory during a debug session az well as unlimited breakpoints in flash memary (Flash
Breakpoints). Cancel
In caze of doubt, select the first entry in the list "Unspecified Device".

Figure 47 - J-Link device selection

Click Ok and the debug connection will be established.

NOTE 1: We have seen that you might have to start an application on the Cortex-M4 before
being able to debug a new application. Follow the instructions in section 4.5 to start an
application.

NOTE 2: One thing we have seen when debugging is that the second time you establish a
debug session you can get a strange behaviour. The debug session will halt in the main
function and you can single step, but when the FreeRTOS scheduler is started you end up in
the prvPortStartFirstTask function and won't get out of this function. When writing these
instructions we don’t know the reason why this happens. The workaround is to reset the
board between debug sessions.

6.8 Build with IAR Embedded Workbench

The FreeRTOS bundle contains project files for IAR Embedded Workbench and the documentation
also contains instructions.

NOTE: Embedded Artists has not tested the project files or documentation for IAR
Embedded Workbench

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 42

7 Use DS-MDK for Application Development

DS-MDK is a commercial Eclipse based IDE and debugger from ARM/Keil. The development
environment comes with support for NXP’s application processors and especially those supporting
Heterogeneous Multi-Processing such as the i.MX6 SoloX.

http://www2.keil.com/mdk5/ds-mdk/

This chapter describes how to install and use DS-MDK. The instructions are based on the document
“Getting Started with DS-MDK” from ARM.

https://armkeil.blob.core.windows.net/product/gs DS-MDK 5 24 2 en rev3.pdf

7.1 Installation

Begin by installing MDK ARM. You will find the installer and instructions on the link below. Please note
that MDK exists in a limited evaluation version, but it is a commercial product so if you want to continue
to use it you need to buy a license.

https://www.keil.com/demo/eval/arm.htm

When MDK ARM has been installed download and install DS-MDK. Installer and instructions are
available on the link below.

http://www2.keil.com/mdk5/ds-mdk/install/

When you start DS-MDK you have to specify where you installed MDK ARM and also choose a
workspace directory for your project.

7.2 Package Manager

DS-MDK comes with a package manager that lets you install drivers and example programs for a
specific device.

Open the Pack Manager by going to Window - Perspective > Open Perspective > CMSIS Pack
Manager in the menu.

In the Pack Manager, go to NXP - i.MX 6 Series and then i.MX 6SoloX. In the Packs view click on
Install button for the Keil iMX6_DFP package as shown in Figure 48.

& CMSIS Pack Manager - MCIMX6SX_RPMSG_TTY_RTX_Md4/MCIMXESX_RPMSG_TTY_RTX_M4.rteconfig - Eclipse Platform
File Edit MNavigate Search Project Run Window Help
mi | Q- B &~y e lo
B Devices 5 B E|®|'* ¥ =8 @Pa[ksm 1)Examples E|®|le' [L;ng ¥ =0
type filter text Search Pack
Device Surmmary = Pack Action Description
v @ NXP 573 Devices ~ # Device Specific ?_ Packs LMK 650loX selected
W ‘)@ LMK 6 Series 12 Devices 'ﬁa ClarinoxWireless arinox Bluetooth Classic, Bluetooth
» % iMX 6SoloX 4 Devices % Keil.iMXG_DFP @ Install NX i.MX 6 Device Support and Exam)
2 LMK BULL 4 Devices ~ @ Generic Oftware Packs with generic content r
“#2 LMK 6Ultralite 4 Devices ‘% ARM.CMSIS |’ Up todate | CMSIS (Cortex Microcontroller Softwa
‘)ES LMWK 7 Series 2 Devices % ARM.CMSIS-Driver_Validation Install . CMSI5-Driver Validation
‘)EZ K Series 1 Device % ARM.CMSIS-FreeRTOS I@ Install . Bundle of FreeRTOS for Cortex-M and
“42 KOO Series 2 Devices % ARM.CMSIS-RTOS_Validation @ Install CMS\S RTOS Valldatlon
A VAN Carinm 3 Pmsimnr ADAA rmbndf s & Eme Crbrne KA daiie.

Figure 48 - CMSIS Pack Manager

When beginning with the application development it is recommended to use one of the existing
example applications as a starting point. We are going to use the RPMSG TTY examples, that is, an
application that show how to communicate between a Linux application running on the A9 core and an
application running on the M4 core.

Go to the Examples tab in the Pack manager and then click on the Copy button for the RPMSG TTY
RTX example as shown in Figure 49.

Copyright 2020 © Embedded Artists AB Rev G

http://www2.keil.com/mdk5/ds-mdk/
https://armkeil.blob.core.windows.net/product/gs_DS-MDK_5_24_2_en_rev3.pdf
https://www.keil.com/demo/eval/arm.htm
http://www2.keil.com/mdk5/ds-mdk/install/

Working with Cortex-M4 on iMX6 SoloX COM Board Page 43

£ CMSIS Pack Manager - MCIMXE5X_RPMSG_TTY_RTX_M4/MCIMXESX_RPMSG_TTY_RTX_M4.rteconfig - Eclipse Platform

File Edit Navigate Search Project Run Window Help

Amis REE S HU R N SR R SR I SR el S Qui
B Devices 32 B Boards B ®@ | J* ¥ = B @ Packs [Examples 52 = 0
type filter text [Only show examples from installed packs | (@) | & (2 & <
Device Summary | || 5earch Example

v W NXP 573 Devices Example Action Description
v T LMK 6 Series 12 Devices CMSIS-RTOS Blinky (MCIMX65X-SABRE) & Copy CMSIS-RTOS based Blinky ex
> “if LMX SoloX 4 D“!ES Linux Application TTY (MCIMXB5X-SABRE) | Copy Linux Application TTY exam)
% LMK BULL 4 Devices RPMSG PingPong BM (MCIMXGSX-SABRE) ¢ Copy Bare-Metal RPMSG PingPon
4§ IMX BUltralite 4 Devices RPMSG PingPong RTX (MCIMXESX-SABRE) T —_CMSI5-RTOS RTX and Bare-N
T LMX 7 Series 2 Devices RPMSG TTV RTX (MCIMXE5K-SABRE] SIS-RTOS RTX TTY examp
“fg K Series 1 Device
‘%3 KDD Series 2 Devices

Figure 49 - RPMSG TTY Example

The application will now be added to your workspace. Go back to the Pack Manager and click on the
Copy button for the Linux Application TTY. Now you have both the application that will run on the A9
core and the application that will run on the M4 core in your workspace.

7.3 UART Pin Muxing

The pin muxing for the application is done for NXP’s Sabre board. You need to do the same changes
as described in section 6.2.1 (for the FreeRTOS package). You should do these changes in the
configure uart pins functioninthe RTE/Board Support/pin mux.c file.

7.4 Debug the M4 Application

741 Build the application
First build the application. Right-click on the RPMSG project and select Build Project as shown in

Figure 50.
File Edit Source Refactor MNavigate Search Project Run Window Help
i BRASAEERE S B EAARAGEACAZE A0 AT Rl BRI SRR 41T 4
5 ProjectBiplorer 32 | B 5 ¥ = O | [g ty_rbee 2
v [£5 Linux Application TTY 129
138
[t Includes 1310 /*
B src 132 * MU Interrrupt ISR
(== Debug 133 */

[/ Linux Application TTV.launch 134 void BOARD_MU_HANDLER[jvoid)

v % RPMSG_TTY_RT>" *** \ 135 L
ew)
@B]J :;::;:;es ol bo rpmsg_handler provided by middleware
% ';RTEd . Open in Mew Window er()s
ardware_in
] thy_rbec [B Copy
i RPMSG_TTy 26 Delete it();
- Maove...
Rename... For the MU Interrupt
be initialized before rpmsg init is called
iy Import...
(=5 RD_MU_BASE_ADDR);
g Export.. prity(BOARD_MU_IRQ_MUM, APP_MU_IRQ PRIORITY);
[TRQ(BOARD MU_TIRQ MNUM);
& CMSIS C/C++ Project » [RQ(BOARD_MU_TRQ_NUM)
Build Project demo thread */
Clean Project ate (osThread (hread), NULL);

Figure 50 - Build Project

742 Setup the debug adapter

A debug adapter must be connected to the board before the application can be debugged. Section
6.4.1 shows how ULINKpro is connected to the board.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 44

743 Create a debug configuration

Go to Run > Debug configurations in the menu. There should be a debug configuration called
MCIMX6SX_RPMSG_TTY_RTX_M4 under the CMSIS DS-5 Debugger as shown in Figure 51.

< Debug Configurations X

Create, , and run configurati

Launch a D5-5 debugging session using a CMSIS D5-5 Debugger project.

CEX B2~ MName: | MCIMXESK_RPMSG_TTY_RTX_M4

ey pe filter text] 4 Connection ¢ Advance:ﬂ & Fla;hw & 05 Awareness]
[E] C/C++ Application
[€] €/C++ Attach to Application
[€] C/C++ Postmortem Debugger € MCIMXESX_RPMSG_TTY_RTX_M4
[€] C/C++ Remote Application

v 4 CMSIS DS-5 Debugger

W MCIMXESX_RPMSG_TTY_RTX_M4

#5 DS-5 Debugger
" IronPython Run
&’ IrenPython unittest
Java Applet

Project Selection

Connection Settings

Java Application Connection Type ULINKpre
Ju JUnit
@7 Jython run Connection Address | P1533195:Keil ULINKpro Browse...

& Jython unittest

= Launch Group

ﬂ PyDev Django

43 PyDev Google App Run
eP Python Run

& Python unittest

E Remote Java Application

Target Configuration...

' . Revert Apply
Filter matched 20 of 20 items
Q close

Figure 51 - CMSIS DS-5 Debug configuration

Click on the Connection tab and choose Connection Type. In Figure 51 a ULINKpro has been
connected to the board. You have to select the debug adapter you are using and then click on the
Browse button to find the actual connection (the adapter must be connected to your computer). When
writing these instructions the following debug adapter types could be used.

e DSTREAM
e ULINKpro
e CMSIS-DAP

The default settings were used for all other settings. Below are screen shots for the other tabs.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

Mame: | RPMSG_TTY_RTX_M4

4 Connection | 4 Advanced . & Flasﬂ & 05 Awarenesﬂ

File Settings

Program image | K{workspace_loc:/RPMSG_TTY_RTX_M4/Debug/RPMSG_TTY| | File System...| | Workspace..

[JLoad symbols only

Connect and reset

Mo reset Pre-connect reset Hold reset and connect

Run control
(O Connect only

(O Debug from entry point

(®) Debug from symbol | main

Scripts

[]Run target initialization debugger script (.ds / .py)

File System... | Workspace...

[[]Run debug initialization debugger script (.ds / .py)

File System... | Workspace...

Figure 52 - Advanced tab

Mame: | RPMSG_TTY_RTX_M4

’ Connection (‘ Advanced (‘ Flash ‘ 0s Awarenesq

Programming Algorithms

File Region Start Address Region Size
Download Function RAM for Algorithm
Erase Full Chip Program
RAM Start Address:
Erase Sectors Verify
RAM Size:

Do not Erase

Figure 53 - Flash tab

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

& Connection (‘ Advanced (‘ Flash (‘ 05 Awareness

Select OS awareness:

KEIL

Tools by ARM

The Keil® RTX Real-Time Operating System (RTOS) is the ideal choice for small footprint, deterministic
applications running on ARM® Cortex®-A% or Cortex-M series processors, The RTX RTOS is royalty-free and
CMSIS-RTOS compliant, making it an efficient and cost-effective platform for real-time applications.

For more information on RTX RTOS and D5-5™ toolchain:

https://developer.arm.com/products/software-development-tecls/ds-5-development-studie/solutions/real-time-

systems

Figure 54 - OS Awareness

When the debug configuration is ready click on the Debug button and a debug session will be

established as shown in Figure 55.

Cortex-A9.

NOTE: Make sure that you have only booted into u-boot on the Cortex-A9 and not into
Linux. See section 7.6 for information about simultaneous debugging of Cortex-M4 and

£ DS-5 Debug - MCIMX6SX_RPMSG_TTY_RTX_M4/tty_rtx.c - Eclipse Platform - m] X
File Edit Source Refactor Navigate Segrch Project Run Window Help
T I B L e e e [rcees | 8 | = @@
&5 Debug C... 52| [ProjectE.. 4§ Remote = 0O | Commands 2 [History 3 3 EEREE~% =0 ®Vv %8 m-r £ f0F Ho g =8
B %‘ " Wy % a&\ R R -| =S| 4, Linked: MCIMX6SX_RPMSG_TTY_RTX_M4 ~ -
- Entry point @x1FFFI3CS A %, Linked: MCIMX6SX_RPMSG_TTY_RTX_M4 =
set debug-from main
v T MCIMX6SX_RPMSG_TTY_RTX_M4 connected start Select atable | Keil CMSIS-RTOS RTX: Cortex-M4
* Cortex-M4 #1 stopped on breakpoint Starting target with image C:\Users‘\Andreas\Documents\DS-MDK !
Running from entry point Mo table selected
wait
Enabled Keil CMSIS-RTOS RTX kernel support
Execution stopped at breakpeint 1: @x1FFFCBA4
In tty rtx.c
@x1FFFCAA4 143,1
Deleted temporary breakpoint: 1
v
< >
Status: connected OS Support: Enabled Command:{Press (Ctrl+Space) for Content Assist Submit
& MCIMX6SX_RPMSG_TTY_RTX_} [tty_rbec 52 =0 o BM =s [T 2|FHE EFo = O
132 " MU LNTECEEMPE 15K . -
133 %/ A BDG ARG G B
134= void BOARD MU_HANDLER(void) -
135
e L &, Linked: MCIMX65X_RPMSG_TTY_RTX_M4:Cortex-M4 =
g; 7 calls into rpmsg_handler provided by middiewace Trace Capture Device Source Ranges
138 rpmsg_handler(); b Buffer Used: 1,1 KB
el L O scatterond zeroinit S N
141 lecompress [1171%]
142 int main(void) _init_box 1.22% v
®143 § stremin 1079%
141 hardware_init(); < ke
145 | Index | Address | Opcode | | ~
1468 = @x1FFF3416 BX
147 * Prepare for the MU Interrupt @ return
148 * MU must be initialized before rpmsg init is called
149 */ < >
150 MU_Init(BOARD_MU_BASE_ADDR);
151 NVIC_SetPriority(BOARD_MU_IRQ_NUM, APP_MU_IRQ_PRIORITY); B App Cons... 52 [Target Co.. 9] Erorlog
152 NVIC_EnableIRQ(BOARD_MU_IRQ_NUM);
153
154 /* Create a demo thread */
155 osThreadCreate (osThread (TTY¥Thread), NULL);
156 }
157
158
1592 /
168 * EOF
161 /
162 w

Figure 55 - Debug session

Copyright 2020 © Embedded Artists AB

Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 47

7.5 Debug the Linux Application

The Linux application will be debugged using gdbserver over a network connection. This means
that there is no need to use the debug adapter (such as ULINKpro) when debugging the Linux
application. It is however necessary to have the board connected to the same network as your
development computer.

7.5.1 Build the application

First build the application. Right-click on the Linux Application TTY project and select Build Project
as shown in Figure 56.

& C/C++ - RPMSG_TTY_RTX_Md/tty_rtx.c - Eclipse Platform
File Edit Source Refactor Mavigate Search Project Run Window Help

L R ACER IS R SRAERACRSE LA eV B el RU SiE
[Praject Explarer 52 g5 Y= 08 [tty_rbee 22
~ 5 Linux Application T T T [F("Name service handshake is de
New >
[l Includes
G src Go Into 2 (true)
(= Debug Open in New Window * Get RPMsg rx buffer with mes:
|2 Linux Applicatit esult = rpmsg_rtos_recv_nocopy|
v [RPMSG_TTY_RTX_I [2] Copy ssert(result == @);
Includes =,
g Debu [@ Paste * Copy string from RPMsg rx bui
9 K Delete ssert(len < sizeof(app_buf));
ﬁ' RTE o Move. pemcpy (app_buf, rx_buf, len);
[¢] hardware_init.c pp_buf[len] = @; /* End string
g thy_rbec Rename...
[E] MCIMXTD_Cort f ((len == 2) && (app_buf[@] ==
2 REMSG_TTY_R1 =2 Import... llsePRINTF("Get New Line From M:
iy Export..
 RPMSG_TTY_RT =4 = PRINTF("Get Message From Ma:
Build Proj
J_Ed x_buf = rpmsg_rtos_alloc_tx_bui
Clean Project ssert(tx_buf);
pemcpy (tx_buf, "Hello from M4!",
& Refresh F5
Close Project * Send message with nocopy */
: esult = rpmsg_rtos_send_nocopyi
Close Unrelated Projects ssert(result —= 8)3

Figure 56 - Build Linux application

752 Setup Remote System Explorer (RSE)

First get the IP address of the board. You can get this by using the i fcon i g utility as shown below
via a terminal application connected to the board..

ifconfig

ethO Link encap:Ethernet HWaddr CA:71:64:BD:1A:20
inet addr:192.168.1.72 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80:

In DS-MDK, go to Window - Perspective = Open Perspective - Other and then Remote
System Explorer. Click on the icon shown in Figure 57 to create a connection.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 48

£ Remote System Explorer - RPMSG_TTY_RTX_M4/tty_rte.c

Eile Edit 5ource Refactor Navigate 5Search Projed
1 (o £ O L S e =

=

4§ Remote Systems 353 | %5 Team
| cor|B|E ~

> *ED Local Files
% Local Shells

Figure 57 - RSE Perspective

Choose SSH Only as connection type as shown in Figure 58 and then click Next.

S Mew Connection

Select Remote System Type

Connection for 55H access to remote systems

System type:
[type fikter text

w = General
T FTP Only
A Linux
El Local
% SSH Only
uniz Unine
i Windows

Figure 58 - Remote System Type

Enter the IP address in the Host name field as shown in Figure 59 and then click Finish to create the
connection.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 49

& New Connection

Remote 55H Only System Connection

Define connection information

Parent profile: Living

Host name: | 192.168.1.72
Connection name: | 192.168.1.72
Description: |

Verify host name

Configure proxy settings

Figure 59 - Host name / IP address

It could now look like in Figure 60. If you click on Sftp Files > My Home you will see the home
directory on the target. You will be asked to enter the user name (root) and password (pass) to
login.

NOTE: By default root is not permitted to login over SSH. Read section 8.2 for a solution to
this problem.

& Remote System Explorer - RPMSG_TTY_RTX_M4/tty_rb
File Edit 5Source Refactor Mavigate Search Proj

= | e # 0B W 2 S
28 Remote Systems 52 | %5 Team |
£ 8 2Bl <
v E’ Local
*ED Local Files

% Local Shells
v T3 192.168.1.72
v ¥y Sftp Files
v }:D My Home
[boot
[tmp
}:D Root
T Ssh Shells
?‘ Sch Terminals

Figure 60 - Created RSE connection

753 Create Debug Configuration

Go to Run - Debug configurations in the menu. There should be a debug configuration called
MCIMX6SX_Linux_Application_TTY under the DS-5 Debugger as shown in Figure 61. Click on this
configuration and go to the Connection tab. Select Download and debug application and make sure
the RSE connection we created earlier is used under Connections.

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

Create, manage, and run configurations

€3 [Files]: Variable references non-existent resource : $workspace_loc:/Linux Application TTY/Debug/Linux Application TTY}

CEX B3

type filter text

[E] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugge
[€] C/C++ Remote Application
W CMSIS DS-5 Debugger
~v &% D5-5 Debugger
5 Linux Application TTY

@' IronPython Run

&’ IronPython unittest

4] Java Applet

[T Java Application

Ju JUnit

&7 Jython run

& lython unittest

= Launch Group

ﬂ PyDev Django

43 PyDev Google App Run

eP Python Run

éj Python unittest

E Remote Java Application

v

Name: | Linux Application TTY

=i Cnnnectin Files] Ta Debuggeﬂ i 08 Awarenesﬂ)= Arguments]] Environmenﬂ

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
Linux Application Debug / Application Debug / Connections via gdbserver / Download and debug a

Filter platforms

w Linux Application Debug
w Application Debug
v Connections via gdbserver
Connect to already running application
Download and debug application
Start gdbserver and debug target-resident application

DS-5 Debugger will download your application to the target system and then start a new gdbserver s
application. This configuration requires ssh and gdbserver on the target platform.

Connections

RSE connection | 192.168.1.72

Address:

gdbserver (TCP) | port: | 5000
Use Extended Mode

Figure 61 - DS-5 Debugger configuration

Go to the Files tab and select download and working directory. In this example we are using
/home/root/tmp as shown in Figure 62.

& Debug Configurations

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

= [F= !
CEREX B~

type filter text

[E] C/C++ Application
[€] C/C++ Attach to Application
[E] C/C++ Postmortem Debugge
[E] C/C++ Remote Application
A CMSIS DS-5 Debugger
~v &5 DS-5 Debugger
#5 Linux Application TTY

@ IronPython Run

& IronPython unittest

4] Java Applet

[T Java Application

Ju JUnit

&7 Jython run

@ Jython unittest

= Launch Group

m PyDev Django

L3 PyDev Google App Run

eF Python Run

éj Python unittest

E Remote Java Application

W

Figure 62 - Files tab

Copyright 2020 © Embedded Artists AB

Name: | Linux Application TTY

=== Connection Eﬁ. Files - 7% Debugger] as Awarenessj)= Arguments] & Environr

Target Configuration

Application on host to download:

| ${workspace_loc:/Linux Application TTY/Debug/Linux Application TTY}

File System... | | Workspace... []Load symbals

Target download directory:
| /home/root/tmp/

Target working directory:
| /home/root/tmp/

Files

Load symbols from file ~

File System... | | Workspace...

Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board

In the Debugger tab make sure Debug from symbol is chosen and the symbol is set to main as
shown in Figure 63.

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

L X | B3 Narme: | Linux Application TTY

type filter text -at- Connection Eﬁ Files (%5 Debugger . ‘i3 05 Awarenesﬂ - Argumentﬂ m Environmenﬂ
[€] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugge
[€] C/C++ Remote Application
3 ﬂ CMSIS DS-5 Debugger [] Run target initialization debugger script (.ds / .py)
v &% DS-5 Debugger
5 Linux Application TTY
@' IronPython Run [[] Run debug initialization debugger script (.ds / .py)

Run control

(O Connect only () Debug from entry point (®) Debug from symbol | main

File System... | | Wt

a’ IrenPython unittest File System...| | We¢
i Java Applet

[31 Java Application

Ju JUnit

a Jython run

@ lython unittest

= Launch Group

m PyDev Django

L3 PyDev Google App Run
eP Python Run

é’ Python unittest

E Remote Java Application

[Execute debugger commands

Haost working directory
Use default

S{workspace_loc} File System... | | Wao

Paths

Source search directory ~

File System... | Workspace...

Figure 63 - Debugger tab

Click on the Debug button to start the debug session.

S D5-5 Debug - Linux Application TTV/src/LinuxTTY.c - Eclipse Platform - o X
File Edit Source Refactor Navigate Search Project Run Window Help
A= RaEamN-EE RS~ FL R N RS SR SR [Cuict Access [} g5 | B/ 08
s Debug Control 2 orer gHR 5 s = B [Commands 53 | History & P BE&ESE-#=-0 « B m R E f0F BHo ® = 08
B wBE Rk Y-A-Dr el €Oy 5, Linked: Linux Apglication TTY ~ -
- Execution stopped in USR mode at Bx76FCFBB ~ 45, Linked: Linux Application TTY =
Ox76FCFBOG LDR r10, [pc,#148] ; [Bx76FCFBIC] = Bx2F464
~ T Linux Application TTY connected set debug-from main No tables available | No data source selected
4 Thread 447 #1 stopped on breakpoint start
RPMSG_TTY_RTX_M4 disconnected wait
B - Execution stopped at breakpoint 1: ©xBOAOSGFA Data source is unavailable
In LinuxTTY.c
2xBA0e86F4 61,0
Deleted temperary breakpoint: 1
v
< >
Status: connected Commandk Press (Ctrl+ Space) for Content Assist || submit
by tee | [8 LinuTY.c 82 = B |18} Disassembly iS5 Memory = Stack | Trace 5 |] Events O% Outline = 8
51 if (tesetattr (fd, TCSANOW, &tty) != @) " B LG ARG AN PG B T
2 t s . - 4G, Linked: Linux Application TTY:Thread 447 «
53 printf ("Error ¥d from tesetattr”, errno);
54 return -1; Trace Copture Device Source Ranges
55
e return 0 b Buffer Used: 0B
57 }
58
59
66= int main(int argc, char *argv[])
®61 f
62 char *portname = “/dev/ttyRPMSG";
63
64 int fd = open (portname, O_RDWR | O_NOCTTY | O_SYNC);
65 if (fd < @) [index| Address | Opcode | | Detail T
66 { : . N . @ Trace is not enabled.
67 printf ("Error %d opening %s: %s”, errno, portname, strerror (errno));
68 return -1;
59 1
70
71 set_interface_attribs (fd, B115200, @);
72
73 write (fd, "Hello from A7!", 14);
74
75 usleep (16600); B App Console onsole @ Terminal 1 €] Emor Log | B) Console 53 =g
76
77 char buf[14]; L8 BB
78 read (fd, buf, sizeof buf); CDT Build Console [Linux Application TTY]
79 ‘Building target: Linux Application TTY' ~
80 printf ("Get Message From Remote Side: ¥s", buf); *Invoking: GCC € Linker 4 [arm-linux-gueabihf]’
81 arm-1linux-gnueabihf-gcc -0 "Linux Application TTY" ./src/LinuxTTY.o
82 return EXIT_SUCCESS; *Finished building target: Linux Application TTY'
83 .
84 1 v -
< > < >

Figure 64 - Debug session of Linux application

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 52

7.6 Simultaneous Debugging
Follow these steps to simultaneously debug RPMSG_TTY_RTX_M4 and Linux Application TTY.
1. Boot into u-boot

2. Change device tree file (dtb) file and also mmcargs . The boot argument uart from osc
must be set to make Cortex-A9 and Cortex-M4 UART clocks match

=> setenv fdt file imx6sxea-com-kit-mé.dtb
=> setenv mmcargs "${mmcargs} uart from osc"
=> save

3. Now start the debug session of RPMSG_TTY_RTX_M4 as described in section 7.4 above.

4. ltis not possible to interact with u-boot while RPMSG_TTY_RTX_M4 is halted until RDC has
been initialized. RDC will be initialized in BOARD RdcInit which is called from
hardware init.Letatleastthe call to the function hardware init execute and you
will be able to interact with u-boot.

5. Enter boot in the u-boot console to boot Linux

=> boot

6. Tobe able to use the RPMsg TTY channel a kernel module must be loaded. When Linux has
booted run the following:

modprobe imx rpmsg tty
imx rpmsg_ tty rpmsg0: new channel: 0x400 -> 0x0!
Install rpmsg tty driver!

7. You can double-check that the module has been loaded by using 1 smod.

1lsmod
Module Size Used by

imx rpmsg tty 3418 O

8. When the module has been loaded, start the debug session of the Linux application as
described in 7.5 above.

9. You should now be able to debug the Linux application, for example, single step and when a
message is sent to the M4 application the M4 debug session should halt on the breakpoint at
rpmsg_rtos_ recv_nocopy

Copyright 2020 © Embedded Artists AB Rev G

Working with Cortex-M4 on iMX6 SoloX COM Board Page 53

8 Troubleshooting

8.1 JTAG connection problem when Linux has booted

8.1.1 Description of problem

It is not possible to make a debug connection to the target via JTAG when Linux has booted. It is
possible to establish a connection before Linux has booted, such as when the u-boot bootloader is
active.

8.1.2 Solution
The possible solutions were originally described on the NXP community:

https://community.nxp.com/thread/376786

Method 1 - Disable ‘clock off’ wait state in cpuidle driver

Itis possible to disable clock off through sysfs.

cd /sys/devices/system/cpu/cpul/cpuidle/statel

Make sure this is the correct state or else change to one of the other state folders. Reading the desc
node should give the result “Clock off” as shown below.

cat desc
Clock off

Disable the wait state

echo 1 > disable

Method 2 - Disable gating of the ARM clock domain

If you need to debug during startup you need to modify the source code. Apply the patch below.

diff --git a/arch/arm/mach-imx/pm-imx6.c b/arch/arm/mach-imx/pm-
imx6.c

index ela4d5e2..feadccb 100644
--- a/arch/arm/mach-imx/pm-imx6.c
+++ b/arch/arm/mach-imx/pm-inx6.c
@@ -552,8 +552,8 @@ int imx6g set lpm(enum mxc cpu pwr mode mode)
case WAIT CLOCKED:
break;
case WAIT UNCLOCKED:
- val |= 0x1 << BP_CLPCR_LPM;
- val |= BM CLPCR ARM CLK DIS ON LPM;
break;
case STOP POWER ON:
val |= 0x2 << BP_CLPCR_LPM;

8.2 Allow user “root” to use an SSH connection

By default the user “root” is not permitted to login via an SSH connection. By following these
instructions “root” will be permitted to login through an SSH connection. It is, however, not
recommended to use on a final application, but during development it can be permitted.

Copyright 2020 © Embedded Artists AB Rev G

https://community.nxp.com/thread/376786

Working with Cortex-M4 on iMX6 SoloX COM Board Page 54

1. Open the configuration file for the SSH server

nano /etc/ssh/sshd config

2. Find the line that starts with #PermitRootLogin and remove the ‘# (hash) character. If you
cannot find this line just add it to the file (without the hash)

PermitRootLogin yes

3. Save the file and exit the editor (in nano it is Ctrl-X followed by Y and Enter).
4. Restart the SSH server

/etc/init.d/sshd restart

8.3 Linux (A9) terminal/console doesn’t accept input while debugging M4

When you are debugging the M4-core and more specifically when you have halted the M4-core from
within the debugger it can seem as the Linux terminal/console is unresponsive (doesn’t accept any
input).

Solution

First of all make sure you have updated u-boot and Linux to the version (or later) publish 2017-09-22.
In this release u-boot was updated to include RDC initialization. The commit is available below in case
you need to run on older versions.

https://github.com/embeddedartists/uboot-imx/commit/8bbbd16c8f846f530ccd 1f7ee931aff05099f944

Secondly your M4-application must have assigned the M4 to domain 1 as shown below. If you are
using the example code from NXP this call is being made in board.c = BOARD RdcInit.
BOARD RdcInit iscalled from hardware init.c = hardware init.

RDC_SetDomainID (RDC, rdcMdaM4, BOARD DOMAIN ID, false);

Copyright 2020 © Embedded Artists AB Rev G

https://github.com/embeddedartists/uboot-imx/commit/8bbbd16c8f846f530ccd1f7ee931aff05099f944

	1 Document Revision History
	2 Introduction
	2.1 Multi-Core
	2.2 Additional Documentation
	2.3 Conventions

	3 Hardware Related
	3.1 Prerequisites
	3.2 UART Interfaces on COM Carrier board version 1
	3.2.1 Applications for Freescale Sabre Board

	3.3 UART interfaces on COM Carrier board version 2
	3.4 Terminal application

	4 Download and Start an Application
	4.1 Update boot partition with needed files
	4.2 Change the device tree file
	4.3 Run from QSPI
	4.4 Run from TCM
	4.5 Run from OCRAM
	4.6 Run from DDR RAM

	5 Remote communication applications (RPMsg)
	5.1 Ping-pong application

	6 FreeRTOS
	6.1 Installation
	6.1.1 File Structure

	6.2 Board Support Package (BSP)
	6.2.1 UART

	6.3 Build with ARM DS-5
	6.3.1 BSP files

	6.4 Debug using DS-5
	6.4.1 Setup the hardware
	6.4.2 Import TCM version of “hello world”
	6.4.3 Create a new Debug configuration

	6.5 Build with ARM GCC
	6.5.1 Install ARM GCC
	6.5.2 Install MinGW
	6.5.3 Install CMake
	6.5.4 Build Application

	6.6 Build with Eclipse and ARM GCC
	6.6.1 Install “GNU ARM Eclipse” plugins
	6.6.2 Create project: New
	6.6.3 Create project: Linked folders
	6.6.4 Create project: Exclude from build
	6.6.5 Create project: “Include” paths
	6.6.6 Create project: Settings
	6.6.7 Build application

	6.7 Debug using Eclipse
	6.7.1 LPC-Link 2 with J-Link firmware
	6.7.2 J-Link GDB Server
	6.7.3 J-Link script files
	6.7.4 Connect LPC-Link 2 to the board
	6.7.5 Create a debug configuration
	6.7.6 Start a debug session

	6.8 Build with IAR Embedded Workbench

	7 Use DS-MDK for Application Development
	7.1 Installation
	7.2 Package Manager
	7.3 UART Pin Muxing
	7.4 Debug the M4 Application
	7.4.1 Build the application
	7.4.2 Setup the debug adapter
	7.4.3 Create a debug configuration

	7.5 Debug the Linux Application
	7.5.1 Build the application
	7.5.2 Setup Remote System Explorer (RSE)
	7.5.3 Create Debug Configuration

	7.6 Simultaneous Debugging

	8 Troubleshooting
	8.1 JTAG connection problem when Linux has booted
	8.1.1 Description of problem
	8.1.2 Solution

	8.2 Allow user “root” to use an SSH connection
	8.3 Linux (A9) terminal/console doesn’t accept input while debugging M4

