"Zero Height" Amplified SiSonicTM Microphone Specification # Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143 ### 1. DESCRIPTION AND APPLICATION - 1.1 Description Zero Height Amplified Surface Mount Silicon Microphone - 1.2 Application Hand held telecommunication devices #### 2. PART MARKING #### **Identification Number Convention** S 1 2 3 4 5 6 S: Manufacturing Location "S" – Knowles Electronics Suzhou Suzhou, China "No Alpha Character" – Knowles Electronics Itasca Itasca, IL USA "E" - Engineering Samples Digits 1 – 6: Job Identification Number #### 3. TEMPERATURE RANGE 3.1 Operating Temperature Range: -40°C to +100°C 3.2 Storage Temperature Range: -40°C to +100°C ## 4. ACOUSTIC & ELECTRICAL SPECIFICATIONS | | Symbol | Condition | Limits | | | Unit | |------------------------------------|------------------|--|--------|------|-------|---------| | | Symbol | Condition | Min. | Nom. | Max. | Offic | | Directivity | | Omni-directional | | | | | | Sensitivity | S | @ 1kHz (0dB=1V/Pa) | -26 | -22 | -18 | dB | | Output impedance | Z _{OUT} | @ 1kHz (0dB=1V/Pa) | n/a | n/a | 100 | Ω | | Current Consumption | I _{DSS} | across 1.5 to 5.5 volts | 0.100 | n/a | 0.350 | mA | | Signal to Noise Ratio | S/N | @ 1kHz (0dB=1V/Pa) | 55 | 59 | n/a | dB | | Supply Voltage | Vs | | 1.5 | n/a | 5.5 | V | | Typical Input Referred
Noise | ENL | A-weighted | n/a | 35 | n/a | dBA SPL | | Sensitivity Loss across
Voltage | | Change in sensitivity over 5.5v to 1.5v No Change Across Voltage Range | | dB | | | | Maximum Input Sound
Level | | At 100dB SPL, THD < 1%
At 115dB SPL, THD = < 10% | | | dB | | | Contact Resistance | | | | | 100 | Ohms | ## 5. FREQUENCY RESPONSE CURVE Revision: A 3 of 11 ## 6. MECHANICAL SPECIFICATIONS | <u>ltem</u> | <u>Dim.</u> | <u>Tol.</u>
(+/-) | <u>Units</u> | | |-------------|-------------|----------------------|--------------|--| | Height | 1.65 | +0.20
-0.10 | mm | | | Length | 6.15 | 0.10 | mm | | | Width | 3.76 | 0.10 | mm | | | Weight | 0.09 | grams | | | | Coplanarity | < 0.1 | | mm | | | · · | · | ' | ' | | | Din Output | | | | |------------|--------------|--|--| | Pin Output | | | | | Pin # | Function | | | | 1 | Output | | | | 2 | Gain Control | | | | 3 | Ground | | | | 4 | Power | | | (Note: Tolerance +/-0.15mm unless otherwise specified) ## 7. RECOMMENDED CUSTOMER LAND PATTERN * Note: Minimum PCB Hole Diameter: 1.02 mm #### 8. RECOMMENDED SOLDER STENCIL PATTERN #### Notes: - The design requires that an acoustic seal be established between the SiSonic and customer PCB. This is accomplished via a solder seal. - Solder Stencil Thickness = 0.127 min to 0.178 max - Stencil Material = Stainless Steel #### 9. RECOMMENDED INTERFACE CIRCUIT | Desired Gain | Pin 2 Termination Method | | |------------------|---|--| | Unity Gain (0dB) | Tie Terminal 2 directly to Output (Terminal 1). | | | 20dB Gain | Tie Terminal 2 through C1 (0.47uF) to Ground. | | | Adjustable Gain | Add R3 and C1. Use formulas provided to calculate settings, or contact Knowles for support. | | #### Setting Gain Formulas: Gain of non-inverting Op-Amp is determined as: $$\longrightarrow$$ G=1+ {R1 / (R2 + R3)} Gain(dB) = 20 * log(G) High-pass-filter Corner Frequency: $$\longrightarrow$$ C.F. = 1 / {2*p*(R2 + R3) * C1} ## 10. PACKAGING DETAIL | Model Number | Suffix | <u>Reel</u>
<u>Diameter</u> | <u>Qty per</u>
<u>Reel</u> | |--------------|--------|--------------------------------|-------------------------------| | SP0103BE3 | -5 | 7" | 900 | | SP0103BE3 | -4 | 13" | 3,600 | | Tape & Reel | Available in 13" and 7" diameter. | |------------------|---| | Leader
Length | 800mm or minimum of 100 empty pockets | | Label | Label applied to external package and direct to reel. Per JEDEC. | | Empty Units | No consecutive empty pockets; No more than 3 empty pockets per reel. (Does not include empty pockets for leader/follower) | #### 11. SOLDER REFLOW PROFILE #### Notes: - 1. Maximum condition = 260 C for 30 seconds. - 2. <u>Do not pull a vacuum</u> over the port hole of the microphone. Pulling a vacuum over the port hole can damage the device. - Do not board wash after the reflow process. Board washing and cleaning agents can damage the device. Do not expose to ultrasonic processing or cleaning. - 4. Number of Reflow = recommend no more than 2 cycles. #### 12. ADDITIONAL NOTES - (A) Packaging (reference SiSonic_Packaging_Spec.pdf) - (B) Shelf life: Twelve (12) months when devices are to be stored in factory supplied, unopened moisture sensitivity bag under environmental conditions of 30°C, 60% R.H. - (C) Exposure: Devices should not be exposed to high humidity, high temperature environment. Customer should follow standard baking times as stated in JEDEC J-STD-033A, reference Class 2A. Out of bag: 90 days out of ESD moisture sensitive bag, assuming 30C/60% RH as maximum. Baking Condition: After 90 days, refer to JEDEC J-STD-033A for recommend baking times and temperatures. ## 13. RELIABILITY SPECIFICATIONS Note: After test conditions are performed, the sensitivity of the microphone shall not deviate more than 3dB from its initial value. | Test | Description | |------------------------------------|---| | Thermal Shock | Microphone unit must operate when exposed to air-to-air thermal shock 100 cycles, from −40°C to +125°C. (IEC 68-2-4), | | High Temperature Storage
Test | Microphone unit must maintain sensitivity after storage at +105℃ for 1,000 hours. (IEC 68-2-2 Test Ba) | | Low Temperature Storage
Test | Microphone unit must maintain sensitivity after storage at –40°C for 1,000 hours. (IEC 68-2-1 Test Aa) | | High Temperature Operating
Test | Microphone unit must operate within sensitivity specifications for 1,000 hours at 105°C. (IEC 68-2-2 Test Ba) | | Low Temperature Operating
Test | Microphone unit must operate within sensitivity specifications for 1,000 hours at –40°C. (IEC 68-2-1 Test Aa) | | Humidity Test | Tested under Bias at 85℃/85% R.H. for 1,000 hours. (JESD22-A101A-B) | | Vibration Test | Microphone unit must operate under test condition: 4 cycles, from 20 to 2,000 Hz in each direction (x,y,z), 48 minutes, using peak acceleration of 20 G (+20%, -0%). (MIL 883E, method 2007.2, A) | | Electrostatic Discharge | Tested to 8kV direct contact discharge or 15kV air discharge as specified by IEC 1000-4-2, level 3 and level 4. | | Reflow | Microphone is tested to 5 passes through reflow oven, with microphone mounted upside-down under conditions of 260°C for 30 seconds maximum. | | Mechanical Shock | Microphone must operate after exposure to shock test of 10,000 G per IEC 68-2-27, Ea. | ## 14. SPECIFICATION REVISIONS | Revision | Detailed Specification Changes | Date | |----------|---------------------------------------|----------| | А | Initial Release | 12-01-04 |