

Stepper 16 Click

PID: MIKROE-4751

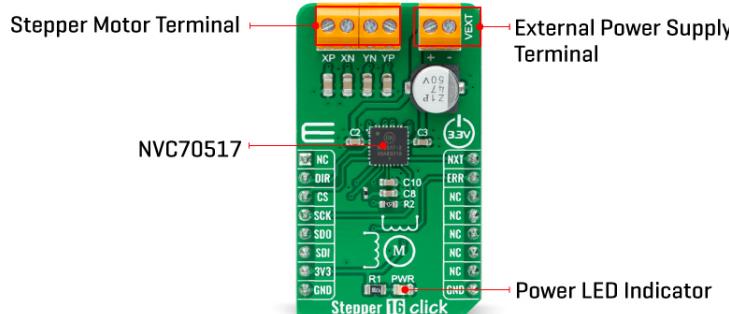
Stepper 16 Click is a compact add-on board that contains a micro-stepping stepper motor driver. This board features the [NCV70517](#), an SPI and I/O configurable motor driver for bipolar stepper motors from [ON Semiconductor](#). The NCV70517 contains a current-translation table and takes the next micro-step depending on the clock signal on the NXT input pin and the status of the DIR pin. It also provides an error message if an electrical error, an undervoltage, or an elevated junction temperature is detected. This Click board™ is fully compatible with the automotive voltage requirements and ideally suited for general-purpose stepper motor applications in the automotive, industrial, and applications with fluctuating battery supplies.

Stepper 16 Click is supported by a [mikroSDK](#) compliant library, which includes functions that simplify software development. This [Click board™](#) comes as a fully tested product, ready to be used on a system equipped with the [mikroBUS™](#) socket.

How does it work?

Stepper 16 Click as its foundation uses the NCV70517, an integrated motor-driver solution for bipolar stepper motors with integrated current sense and current regulation from ON Semiconductor. Two H-bridges are integrated to drive a bipolar stepper motor with a PWM current control loop with on-chip current sensing implemented for each H-bridge. It provides complete output protection, overcurrent protection, and thermal warning and shutdown, alongside with proprietary PWM algorithm used for reliable, current control allowing automatic selection of fast and slow decay.

Mikroe produces entire development toolchains for all major microcontroller architectures.


Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
 ISO 14001: 2015 certification of environmental management system.
 OHSAS 18001: 2008 certification of occupational health and safety management system.

ISO 9001: 2015 certification of quality management system (QMS).

The NCV70517 communicates with MCU using the standard SPI serial interface with a maximum frequency of 10MHz. One of five possible stepping modes is selectable through bits of the SPI registers. After Power-On or hard reset, the coil-current translator, which translates consecutive steps into corresponding currents in both motor coils for a given step mode, is set to the default to 1/16 micro-stepping at position '8'. Besides the micro-step modes, full step mode is implemented, which always activates only one coil.

The direction of rotation is selected by input pin DIR routed to the RST pin of the mikroBUS™ socket and its polarity bit DIRP, which allows changing the direction of rotation through only SPI commands instead of the dedicated input pin. Besides, it also takes the next micro-step depending on the clock signal on the NXT input pin routed to the PWM pin of the mikroBUS™ socket and provides an error message on the ERR pin routed to the INT pin of the mikroBUS™ socket if an electrical error, an undervoltage, or an elevated junction temperature is detected.

This Click board™ supports an external power supply for the motor, which can be connected to the input terminal labeled as VEXT and should be within the range of 6V to 29V, while the stepper motor coils can be connected to the terminals labeled as XP, XN, YP, and YN.

This Click board™ can be operated only with a 3.3V logic voltage level. Therefore, the board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

Specifications

Type	Stepper
Applications	Can be used for general-purpose stepper motor applications in the automotive, industrial, and applications with fluctuating battery supplies.
On-board modules	NCV70517 - integrated motor-driver solution for bipolar stepper motors with integrated current sense and current regulation from ON Semiconductor
Key Features	Dual H-bridge for 2-phase stepper motors, fully integrated current-sensing and

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
 ISO 14001: 2015 certification of environmental management system.
 OHSAS 18001: 2008 certification of occupational health and safety management system.

ISO 9001: 2015 certification of quality management system (QMS).

	current-regulation, integrated current translator, 5 step modes from full-step up to 16 micro-steps, PWM current control with automatic selection of fast and slow decay, and more
Interface	GPIO, SPI
ClickID	No
Compatibility	mikroBUS™
Click board size	M (42.9 x 25.4 mm)
Input Voltage	3.3V, External

Pinout diagram

This table shows how the pinout on Stepper 16 Click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).

Notes	Pin	mikro™ BUS				Pin	Notes
	NC	1	AN	PWM	16	NXT	Next micro-step
Rotation Direction	DIR	2	RST	INT	15	INT	Error Indicator
SPI Chip Select	CS	3	CS	RX	14	NC	
SPI Clock	SCK	4	SCK	TX	13	NC	
SPI Data OUT	SDO	5	MISO	SCL	12	NC	
SPI Data IN	SDI	6	MOSI	SDA	11	NC	
Power Supply	3.3V	7	3.3V	5V	10	NC	
Ground	GND	8	GND	GND	9	GND	Ground

Onboard settings and indicators

Label	Name	Default	Description
LD1	PWR	-	Power LED Indicator

Stepper 16 Click electrical specifications

Description	Min	Typ	Max	Unit
Supply Voltage VCC	-	3.3	-	V
External Supply Voltage VEXT	6	-	29	V
Maximum Output Current (Normal Operation)	-	800	-	mA
Step Resolution	1	-	1/16	steps
Operating Temperature Range	-40	+25	+145	°C

Software Support

We provide a library for the Stepper 16 Click as well as a demo application (example), developed using MikroElektronika [compilers](#). The demo can run on all the main MikroElektronika [development boards](#).

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our [LibStock™](#) or found on [Mikroe github account](#).

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
 ISO 14001: 2015 certification of environmental management system.
 OHSAS 18001: 2008 certification of occupational health and safety management system.

ISO 9001: 2015 certification of quality management system (QMS).

Library Description

This library contains API for Stepper 16 Click driver.

Key functions:

- stepper16_cfg_setup - Config Object Initialization function.
- stepper16_init - Initialization function.
- stepper16_default_cfg - Click Default Configuration function.

Examples description

This example showcases the device's ability to control the motor. It initializes the device for control and moves the motor in two directions in a variety of speeds and step resolutions for 360 degrees.

The demo application is composed of two sections :

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our [LibStock™](#) or found on [Mikroe github account](#).

Other Mikroe Libraries used in the example:

- MikroSDK.Board
- MikroSDK.Log
- Click.Stepper16

Additional notes and informations

Depending on the development board you are using, you may need [USB UART click](#), [USB UART 2 click](#) or [RS232 click](#) to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika [compilers](#), or any other terminal application of your choice, can be used to read the message.

mikroSDK

This Click board™ is supported with [mikroSDK](#) - MikroElektronika Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the [LibStock](#) and installed for the compiler you are using.

For more information about mikroSDK, visit the [official page](#).

Resources

[mikroBUS™](#)

[mikroSDK](#)

[Click board™ Catalog](#)

[Click boards™](#)

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

ISO 9001: 2015 certification of quality management system (QMS).

Downloads

[Stepper 16 click 2D and 3D files](#)

[NCV70517 datasheet](#)

[Stepper 16 click schematic](#)

[Stepper 16 click example on Libstock](#)

Mikroe produces entire development toolchains for all major microcontroller architectures.

Committed to excellency, we are dedicated to helping engineers bring the project development up to speed and achieve outstanding results.

ISO 27001: 2013 certification of informational security management system.
ISO 14001: 2015 certification of environmental management system.
OHSAS 18001: 2008 certification of occupational health and safety management system.

ISO 9001: 2015 certification of quality management system (QMS).