

MATERIAL

Zinc-plated steel disc with threaded hole insert.

NO-SLIP COATING

(TPE) thermoplastic elastomer, black colour, 80 shore A.

STANDARD EXECUTION

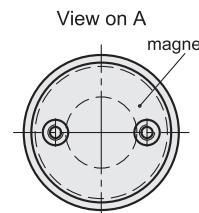
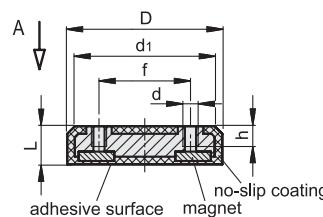
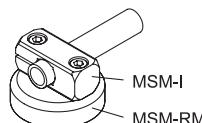
(NdFeB) Neodymium-iron-boron retaining magnet, for temperatures up to 60°C.

Retaining magnets technical data (see page 759).

FEATURES AND APPLICATIONS

MSM-RM magnetic bases are shielded magnetic systems with high performances and moderate overall dimensions.

The elastomer surface increases the friction coefficient when lateral retaining forces are present, giving a better adhesion. These magnets are preferably used on sensitive surfaces.




KEY TO TABLE DIMENSIONS

f = fixing holes centre distance: it allows matching and fixing to bases

MSM-B (see page 910), connecting clamps MSM-I (see page 914) and flanged bolts type MSM-P (see page 925).

Conversion Table	
1 mm = 0.039 inch	
D	
mm	inch
43	1.69
57	2.24

Code	Description	d	d1	L	D	h	f	Nominal adhesive forces* [N]	
500521	MSM-RM-ND-43-22-M4	M4	39	10.3	43	6	22	85	9
500523	MSM-RM-ND-43-27-M5	M5	39	10.3	43	7	27	85	21
500525	MSM-RM-ND-57-32-M6	M6	53	11.3	57	7	32	175	29
500527	MSM-RM-ND-57-36-M6	M6	53	11.3	57	7	36	175	55

* The values of the nominal adhesive forces are approximate and refer to magnetic properties observed on laboratory samples.