# UTC UNISONIC TECHNOLOGIES CO., LTD

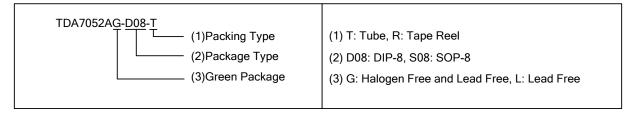
### **TDA7052A**

#### LINEAR INTEGRATED CIRCUIT

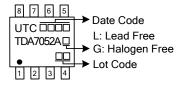
## **1W BTL MONO AUDIO** AMPLIFIER WITH DC VOLUME CONTROL

#### **DESCRIPTION**

The UTC TDA7052A is mono BTL output amplifier with DC volume control. It is designed for use in TV and monitors, additionally it is suitable for portable recorders and radios.


In the IC, a Missing Current Limiter (MCL) is built-in. This function is activated when the difference of current between the OUT+ and OUT- exceed 100mA (typical 300mA). This level of 100mA suit for headphone applications (single-ended).

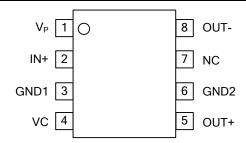
#### **FEATURES**


- \* Low power consumption
- \* DC volume control
- \* Mute mode
- \* No switch-on and off clicks
- \* Short-circuit proof
- \* Good overall stability
- \* Low HF radiation
- \* Few external components
- \* Thermal protection
- \* ESD protected on all pins
- \* Missing Current Limiter (MCL)

#### **ORDERING INFORMATION**

| Ordering Number |                      | Doolsono | Packing   |  |
|-----------------|----------------------|----------|-----------|--|
| Lead Free       | Halogen Free Package |          |           |  |
| TDA7052AL-D08-T | TDA7052AG-D08-T      | DIP-8    | Tube      |  |
| TDA7052AL-S08-R | TDA7052AG-S08-R      | SOP-8    | Tape Reel |  |

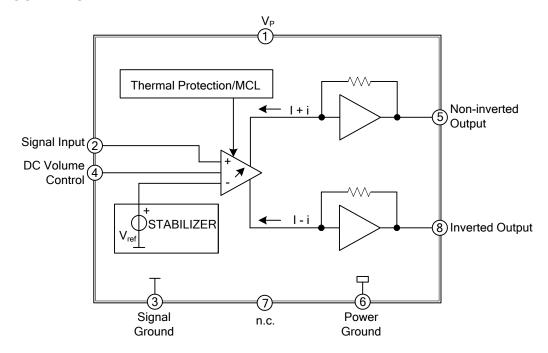



#### **MARKING**



#### **PIN CONFIGURATION**

DIP-8 SOP-8


www.unisonic.com.tw 1 of 5 QW-R107-075.B



#### **■ PIN DESCRIPTION**

| PIN NO. | PIN NAME | DESCRIPTION                  |  |  |
|---------|----------|------------------------------|--|--|
| 1       | $V_{P}$  | Power Supply                 |  |  |
| 2       | IN+      | Signal Input Terminal        |  |  |
| 3       | GND1     | Signal Ground                |  |  |
| 4       | VC       | DC Volume Control Terminal   |  |  |
| 5       | OUT+     | Non-inverted Output Terminal |  |  |
| 6       | GND2     | Power Ground                 |  |  |
| 7       | NC       | Not Connected                |  |  |
| 8       | OUT-     | Inverted Output Terminal     |  |  |

#### ■ BLOCK DIAGRAM

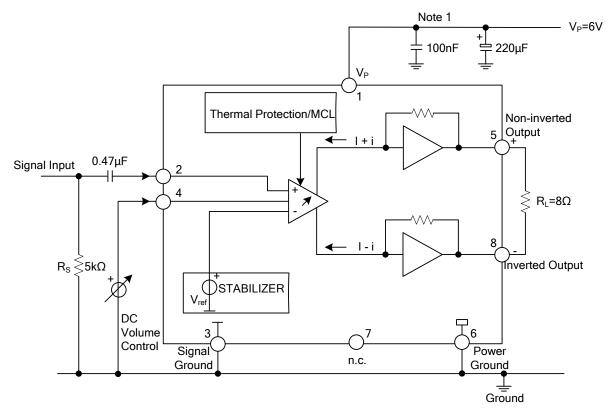


#### **■ ABSOLUTE MAXIMUM RATING**

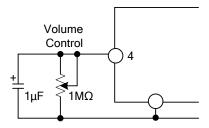
| PARAMETER                                     |       | SYMBOL                   | RATINGS            | UNIT |
|-----------------------------------------------|-------|--------------------------|--------------------|------|
| Supply Voltage Range                          |       | $V_P$                    | 18                 | V    |
| Input Voltage Pin 2                           |       | V <sub>2</sub>           | 8                  | V    |
| Input Voltage Pin 4                           |       | $V_4$                    | 8                  | V    |
| Repetitive Peak Output Current                |       | I <sub>ORM</sub>         | 1.25               | Α    |
| Non-Repetitive Peak Output Current            |       | I <sub>OSM</sub>         | 1.5                | Α    |
| Short-Circuit Time                            |       | T <sub>SC</sub>          | 1                  | hr   |
| Total Davier Dissipation (T. <25%)            | DIP-8 |                          | 1.25               | W    |
| Total Power Dissipation (T <sub>A</sub> ≤25%) | SOP-8 | P <sub>D</sub>           | 0.8                | W    |
| Operating Ambient Temperature Range           |       | T <sub>A</sub> -40 ~ +85 |                    | °C   |
| Junction Temperature                          |       | $T_J$                    | +150               | °C   |
| Storage Temperature Range                     |       | T <sub>STG</sub>         | -55 ~ <b>+</b> 150 | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

#### ■ ELECTRICAL CHARACTERISTICS

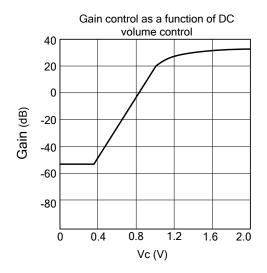

 $V_P=6V$ ,  $T_{amb}=25$ °C, f=1kHz;  $R_L=8\Omega$ , unless otherwise specified.

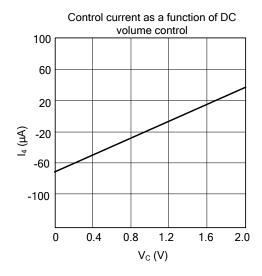
| VP-0V, Tamb-23 C, I-TKI IZ, IXL-012, UITIESS OTHERWISE SPECIFIED. |                |                                               |      |          |      |      |  |  |
|-------------------------------------------------------------------|----------------|-----------------------------------------------|------|----------|------|------|--|--|
| PARAMETER                                                         | SYMBOL         | TEST CONDITIONS                               | MIN  | TYP      | MAX  | UNIT |  |  |
| Power Supply Voltage Range                                        | $V_{P}$        |                                               | 4.5  |          | 18   | V    |  |  |
| Total Quiescent Current                                           | $I_P$          | V <sub>P</sub> =6V, R <sub>L</sub> =∞, Note 1 |      | 7        | 12   | mA   |  |  |
| DC Volume Control                                                 |                |                                               |      |          |      |      |  |  |
| Gain Control Range                                                | φ              |                                               | 75   | 80       |      | dB   |  |  |
| Control Current                                                   | I <sub>4</sub> | V <sub>4</sub> =0.4V                          |      | 70       | 80   | μΑ   |  |  |
| Characteristics In Mute Position                                  |                |                                               |      |          |      |      |  |  |
| Output Voltage In Mute Position                                   | Vo             | V <sub>4</sub> ≤0.3V, V <sub>I</sub> =600mV   |      |          | 30   | μV   |  |  |
| Characteristics In Minimum Gain, V <sub>4</sub> =0.5V             |                |                                               |      |          |      |      |  |  |
| Voltage Gain                                                      | $G_{V}$        |                                               |      | -44      |      | dB   |  |  |
| Noise Output Voltage (RMS value)                                  | $V_{NO(RMS)}$  | Note 2                                        |      | 20       | 30   | μV   |  |  |
| Characteristics In Maximum Gain, V₄=1.4V                          |                |                                               |      |          |      |      |  |  |
| Output Power                                                      | Po             | THD=10%                                       | 1.0  | 1.1      |      | W    |  |  |
| Total Harmonic Distortion                                         | THD            | Po=0.5W                                       |      | 0.3      | 1    | %    |  |  |
| Voltage Gain                                                      | G∨             |                                               | 34.5 | 35.5     | 36.5 | dB   |  |  |
| Input Signal Handling                                             | $V_{I}$        | V <sub>4</sub> =0.8V, THD<1%                  | 0.5  | 0.65     |      | V    |  |  |
| Noise Output Voltage (RMS value)                                  | $V_{NO(RMS)}$  | f=500kHz, Note 3                              |      | 210      |      | μV   |  |  |
| Bandwidth                                                         | В              | −1dB                                          |      | 0.02~300 |      | kHz  |  |  |
| Supply Voltage Ripple Rejection                                   | SVRR           | Note 4                                        | 38   | 46       |      | dB   |  |  |
| DC Output Offset Voltage                                          | $ V_{OFF} $    |                                               |      | 0        | 150  | mV   |  |  |
| Input Impedance (Pin 2)                                           | $Z_{l}$        |                                               | 15   | 20       | 25   | kΩ   |  |  |
|                                                                   |                |                                               |      |          |      |      |  |  |


Notes: 1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage dividend by R<sub>L</sub>.

- 2. The noise output voltage (RMS value) is measured with  $R_S$ =5k $\Omega$  unweighted.
- 3. The noise output voltage (RMS value) at f=500kHz is measured with  $R_S=0\Omega$  and bandwidth=5kHz.
- 4. The ripple rejection is measured with  $R_S=0\Omega$  and f=100Hz~10kHz. The ripple voltage of 200mV, (RMS value) is applied to the positive supply rail.

#### **■ TYPICAL APPLICATION CIRCUIT**





Note 1. This capacitor can be omitted if the  $220\mu F$  electrolytic capacitor is connected close to pin 1.



Application with potentiometer as volume control; maximum gain=30dB

#### **■ TYPICAL CHARACTERISTICS**





UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.