<u>MOSFET</u> – N-Channel, POWERTRENCH[®], Dual

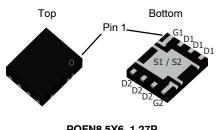
30 V, 167 A, 1.0 m Ω

General Description

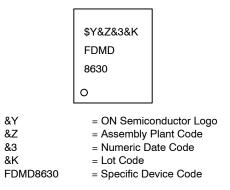
This package integrates two N–Channel devices connected internally in common–source configuration. This enables very low package parasitics and optimized thermal path to the common source pad on the bottom. Provides a very small footprint (5 x 6 mm) for higher power density.

Features

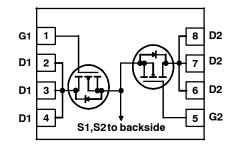
- Common Source Configuration to Eliminate PCB Routing
- Large Source Pad on Bottom of Package for Enhanced Thermals
- Max $r_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 38 \text{ A}$
- Max $r_{DS(on)} = 1.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 33 \text{ A}$
- Ideal for Flexible Layout in Secondary Side Synchronous Rectification
- 100% UIL Tested
- This Device is Pb-Free and is RoHS Compliant


Applications

- Isolated DC-DC Synchronous Rectifiers
- Common Ground Load Switches


ON Semiconductor®

www.onsemi.com



PQFN8 5X6, 1.27P CASE 483AS

MARKING DIAGRAM

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS $T_A = 25^{\circ}C$ Unless Otherwise Noted

Symbol	Parameter	Ratings	Units
VDS	Drain to Source Voltage	30	V
Vgs	Gate to Source Voltage	V	
Ι _D	Drain Current -Continuous - T _C = 25°C (Note 5)	167	A
	-Continuous - T _C =100°C (Note 5)	106	
	–Continuous – T _A = 25°C (Note 1a)	38	
	-Pulsed - (Note 4)	1178	
Eas	Single Pulse Avalanche Energy (Note 3)	726	mJ
P _D	Power Dissipation for Single Operation $T_C = 25 \text{ °C}$ 43		W
. D	Power Dissipation for Single Operation $T_A = 25 \text{ °C}$ (Note 1a)	2.3	
TJ, Tsтg	TJ, TSTG Operating and Storage Junction Temperature Range -55 to +150		°C

THERMAL CHARACTERISTICS

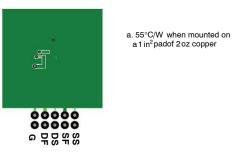
Symbol	Parameter	Ratings	Unit
Rejc	ReJC Thermal Resistance, Junction to Case 2.9		°C/W
Reja	Thermal Resistance, Junction to Ambient (Note 1a)	55	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMD8630	FDMD8630	Power 5 x 6	13"	12 mm	3000 Units

ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS			1	-	
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	30			V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
ON CHARA	CTERISTICS	-				
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$	1.0	1.6	3.0	V
${\Delta V_{GS(th)} \over \Delta T_J}/$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C		-6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 38 \text{ A}$		0.6	1.0	mΩ
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 33 \text{ A}$		0.8	1.3	
		V_{GS} = 4.5 V, I _D = 33 A, T _J = 125°C		0.9	1.5	
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 38 A		281		S
DYNAMIC (CHARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		7090	9930	pF
C _{oss}	Output Capacitance	7		2025	2835	pF
C _{rss}	Reverse Transfer Capacitance	7		212	300	pF
Rg	Gate Resistance	7	0.1	1.9	3.8	Ω
SWITCHING	G CHARACTERISTICS		•		•	•


Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
SWITCHIN	G CHARACTERISTICS						
t _{d(on)}	Turn-On Delay Time	V_{DD} = 15 V, I_D = 38 A V_{GS} = 10 V, R_{GEN} = 6 Ω			14	26	ns
t _r	Rise Time				15	27	ns
t _{d(off)}	Turn-Off Delay Time				66	105	ns
t _f	Fall Time				24	39	ns
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V$ to 10 V	V _{DD} = 15 V I _D = 38 A		97	142	nC
Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0 V to 4.5 V	10 - 00 A		46	74	nC
Q _{gs}	Gate to Source Gate Charge				17		nC
Q _{gd}	Gate to Drain "Miller" Charge	1			12		nC
DRAIN-SC	DURCE DIODE CHARACTERISTICS						
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 38 A (Note 2)			0.8	1.3	V
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2 A (Note 2)			0.7	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 38 A, di/dt = 100 A/µs			64	103	ns
Q _{rr}	Reverse Recovery Charge	1			56	90	nC

ELECTRICAL CHARACTERISTICS T₁ = 25°C Unless Otherwise Noted (continued)

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

b. 125°C/W when mounted on

a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 726 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 22 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 70 A. 4. Pulsed ld please refer to Fig 11 SOA graph for more details. 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

GPRSS

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ Unless Otherwise Noted

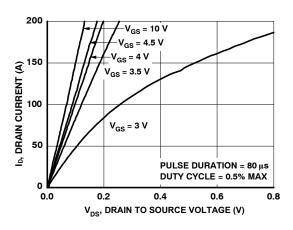


Figure 1. On-Region Characteristics

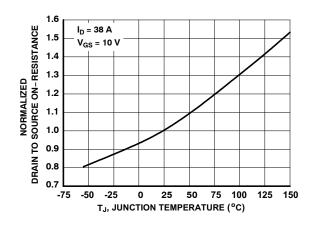


Figure 3. Normalized On Resistance vs Junction Temperature

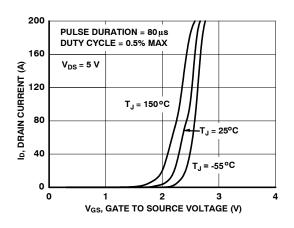


Figure 5. Transfer Characteristics

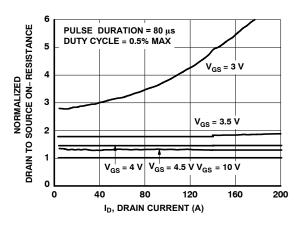


Figure 2. Normalized On–Resistance vs Drain Current and Gate Voltage

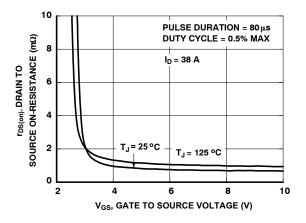


Figure 4. On-Resistance vs Gate to Source Voltage

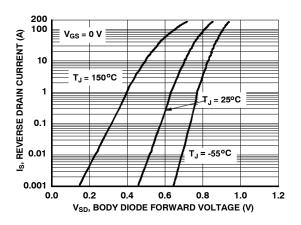


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ Unless Otherwise Noted (continued)

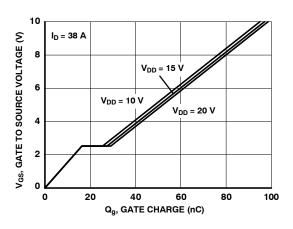


Figure 7. Gate Charge Characteristics

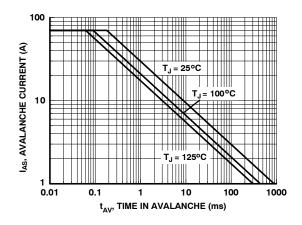


Figure 9. Unclamped Inductive Switching Capability

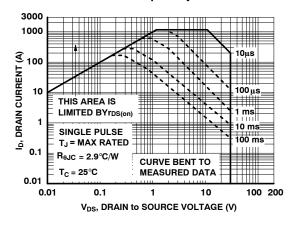


Figure 11. Forward Bias Safe Operating Area

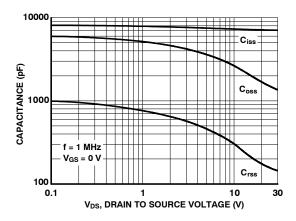


Figure 8. Capacitance vs Drain to Source Voltage

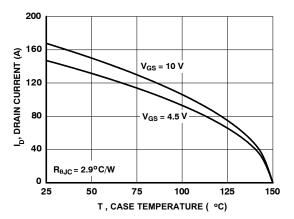


Figure 10. Maximum Continuous Drain Current vs Case Temperature

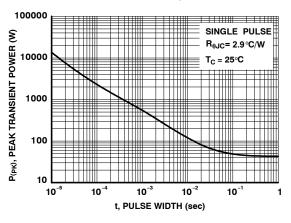


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

 T_J = 25°C Unless Otherwise Noted (continued)

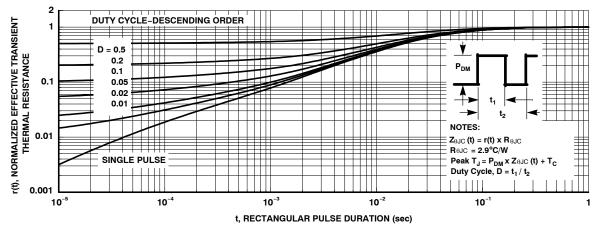


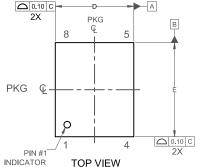
Figure 13. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PQFN8 5X6, 1.27P CASE 483AS

ISSUE A

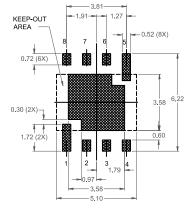
DATE 17 MAY 2021


ON Semiconductor

NOTES:

- A) PACKAGE REFERENCE :
- TO JEDEC REGISTRATION, MO-240B, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009

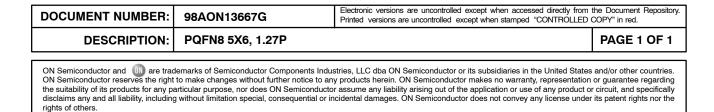
 - E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP-OUT AREA


DIM	MILLIMETERS			
DIM	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	
A1	0.00	-	0.05	
b	0.37	0.42	0.47	
A3		0.20 REF		
D	4.90	5.00	5.10	
D2	3.38	3.48	3.58	
D3	2.55	2.65	2.75	
D4	0.66	0.76	0.86	
Е	5.90	6.00	6.10	
E2	2.68	2.78	2.88	
E3	1	1.74 REF		
E4	0.25	0.30	0.35	
е	1	1.27 BSC		
k	0.60	0.70	0.80	
L	0.46	0.56	0.66	
L4	1.46	1.56	1.66	
L5	0.82	0.92	1.02	
z	0.39 REF			

SEE

DETAIL A

// 0.10 C 0.08 C С (A3) SEATING PLANE DETAIL A (SCALE: 2X)


RECOMMENDED LAND PATTERN

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

◆ 0.10 @ C A B 0.05**00** C • e -b (8X) (6X) Ш Ш Ш 2X (E3) E4 6X k 2X m Ш D4 (4X)-⊢(L5) 2X -D3 (2X)

SIDE VIEW

BOTTOM VIEW

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative