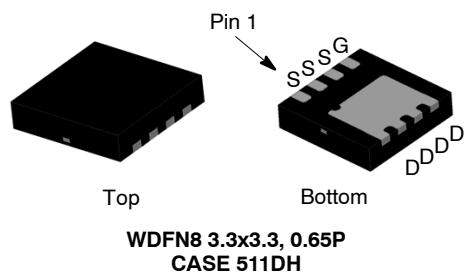


MOSFET – P-Channel, POWERTRENCH®

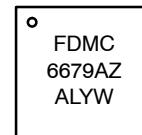
-30 V, -20 A, 10 mΩ

FDMC6679AZ

General Description

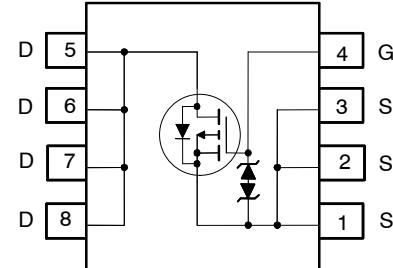

The FDMC6679AZ has been designed to minimize losses in load switch applications. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ and ESD protection.

Features


- Max $r_{DS(on)}$ = 10 mΩ at $V_{GS} = -10$ V, $I_D = -11.5$ A
- Max $r_{DS(on)}$ = 18 mΩ at $V_{GS} = -4.5$ V, $I_D = -8.5$ A
- HBM ESD Protection Level of 8 kV Typical (Note 3)
- Extended V_{GSS} range (-25 V) for Battery Applications
- High Performance Trench Technology for Extremely Low $r_{DS(on)}$
- High Power and Current Handling Capability
- This Device is Pb-Free and Halide Free

Applications

- Load Switch in Notebook and Server
- Notebook Battery Pack Power Management



MARKING DIAGRAM

FDMC6679AZ = Specific Device Code
A = Assembly Location
L = Wafer Lot Number
YW = Assembly Start Week

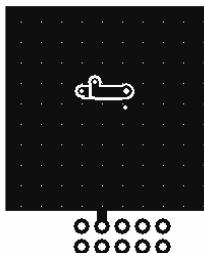
PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

FDMC6679AZ

MOSFET MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$ unless otherwise noted)


Symbol	Parameter			Rating	Unit
V_{DS}	Drain to Source Voltage			-30	V
V_{GS}	Gate to Source Voltage			± 25	V
I_D	Drain Current	Continuous	$T_C = 25^\circ\text{C}$	-20	A
		Continuous (Note 1a)	$T_A = 25^\circ\text{C}$	-11.5	
		Pulsed		-32	
P_D	Power Dissipation		$T_C = 25^\circ\text{C}$	41	W
	Power Dissipation (Note 1a)		$T_A = 25^\circ\text{C}$	2.3	
T_J, T_{STG}	Operating and Storage Junction Temperature Range			-55 to + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	

- $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 53°C/W when mounted on a 1 in² pad of 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

- Pulse Test: Pulse Width < 300 μs , Duty cycle < 2.0%.
- The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

FDMC6679AZ

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
--------	-----------	-----------------	-----	-----	-----	------

OFF CHARACTERISTICS

BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu\text{A}$, $V_{GS} = 0 \text{ V}$	-30			V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C		29		mV°C
I_{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}$, $V_{GS} = 0 \text{ V}$		-1		μA
		$V_{DS} = -24 \text{ V}$, $V_{GS} = 0 \text{ V}$, $T_J = 125^\circ\text{C}$		-100		
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}$, $V_{DS} = 0 \text{ V}$		± 10		μA

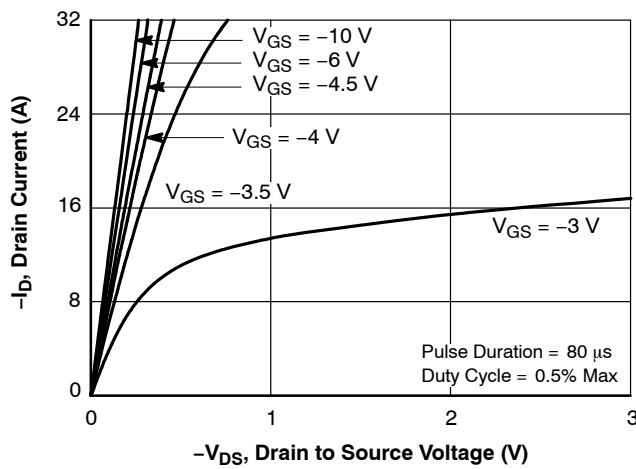
ON CHARACTERISTICS

$V_{GS(\text{th})}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = -250 \mu\text{A}$	-1.0	-1.8	-3	V
$\frac{\Delta V_{GS(\text{th})}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C		-7		mV°C
$r_{DS(\text{on})}$	Static Drain to Source On Resistance	$V_{GS} = -10 \text{ V}$, $I_D = -11.5 \text{ A}$		8.6	10	$\text{m}\Omega$
		$V_{GS} = -4.5 \text{ V}$, $I_D = -8.5 \text{ A}$		12	18	
		$V_{GS} = -10 \text{ V}$, $I_D = -11.5 \text{ A}$, $T_J = 125^\circ\text{C}$		12	15	
g_{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}$, $I_D = -11.5 \text{ A}$		46		S

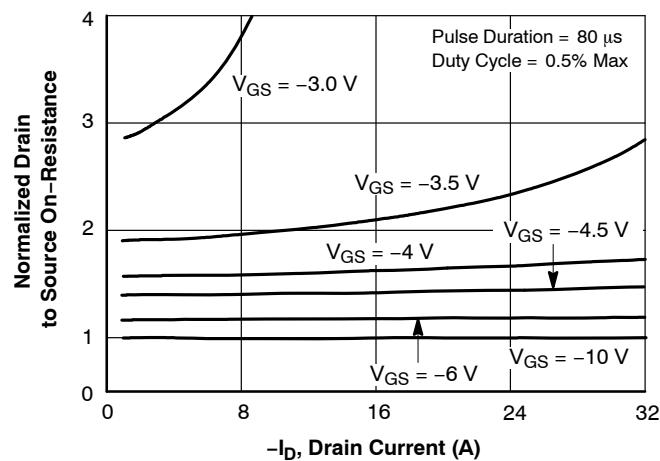
DYNAMIC CHARACTERISTICS

C_{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$		2985	3970	pF
C_{oss}	Output Capacitance			570	755	pF
C_{rss}	Reverse Transfer Capacitance			500	750	pF

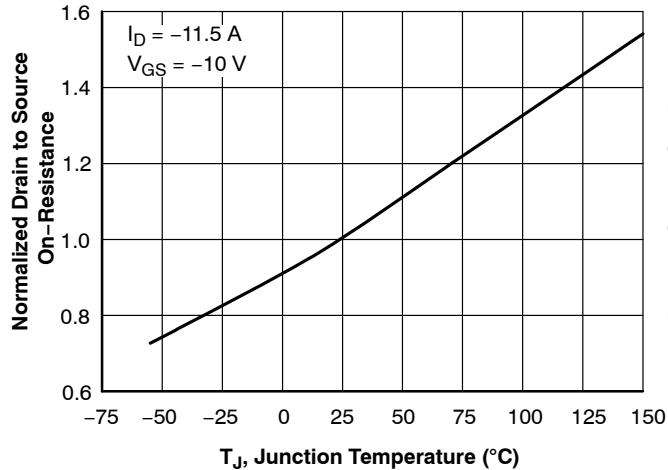
SWITCHING CHARACTERISTICS

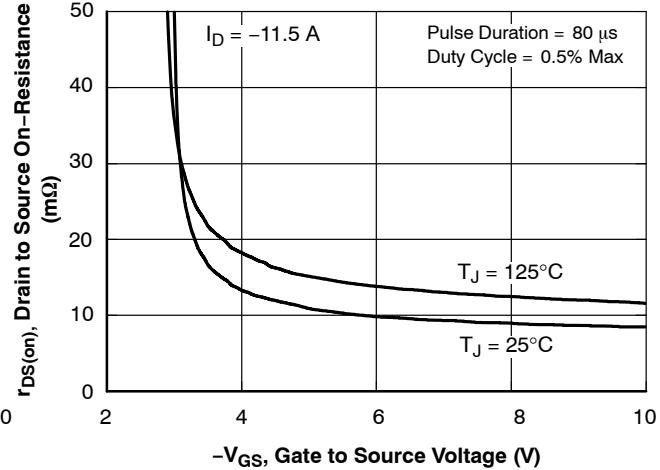

$t_{d(\text{on})}$	Turn-On Delay Time	$V_{DD} = -15 \text{ V}$, $I_D = -11.5 \text{ A}$, $V_{GS} = -10 \text{ V}$, $R_{\text{GEN}} = 6 \Omega$		12	21	ns
t_r	Rise Time			14	25	ns
$t_{d(\text{off})}$	Turn-Off Delay Time			63	100	ns
t_f	Fall Time			46	73	ns
Q_g	Total Gate Charge	$V_{GS} = 0 \text{ V}$ to -10 V , $V_{DD} = -15 \text{ V}$, $I_D = -11.5 \text{ A}$		65	91	nC
		$V_{GS} = 0 \text{ V}$ to -5 V , $V_{DD} = -15 \text{ V}$, $I_D = -11.5 \text{ A}$		37	52	nC
Q_{gs}	Gate to Source Charge	$V_{DD} = -15 \text{ V}$, $I_D = -11.5 \text{ A}$		8.7		nC
Q_{gd}	Gate to Drain "Miller" Charge			17		nC

DRAIN-SOURCE DIODE CHARACTERISTICS


V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}$, $I_S = -11.5 \text{ A}$ (Note 2)		0.83	1.30	V
		$V_{GS} = 0 \text{ V}$, $I_S = -1.6 \text{ A}$ (Note 2)		0.71	1.20	
t_{rr}	Reverse Recovery Time	$I_F = -11.5 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$		31	49	ns
				16	28	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise noted)


Figure 1. On Region Characteristics

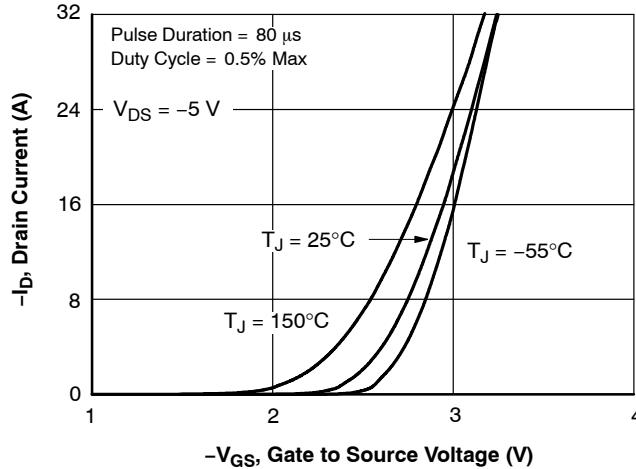

Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage


Figure 3. Normalized On Resistance vs. Junction Temperature

Figure 4. On-Resistance vs. Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise noted) (continued)

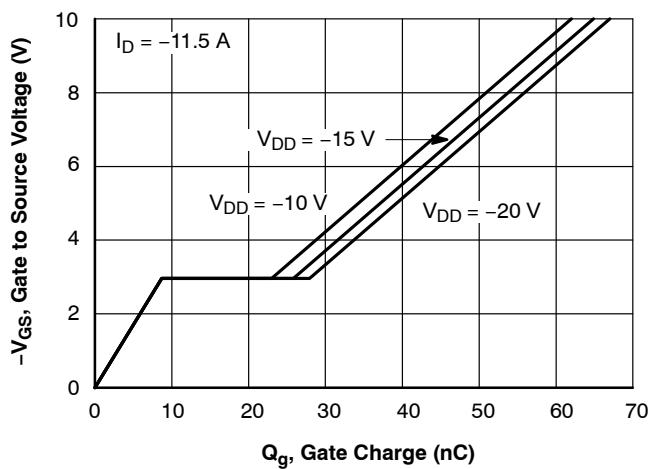


Figure 7. Gate Charge Characteristics

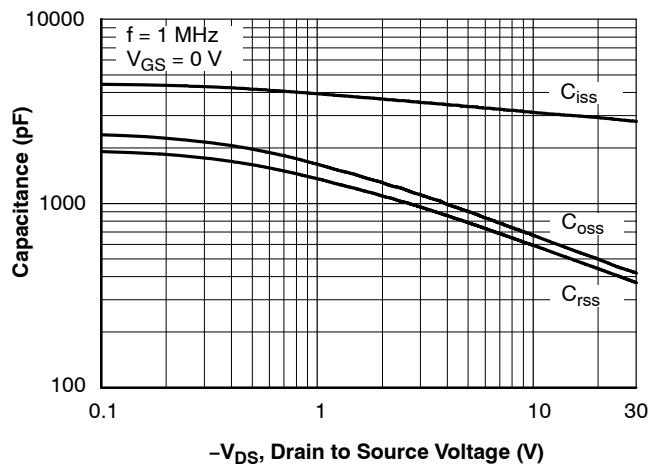


Figure 8. Capacitance vs. Drain to Source Voltage

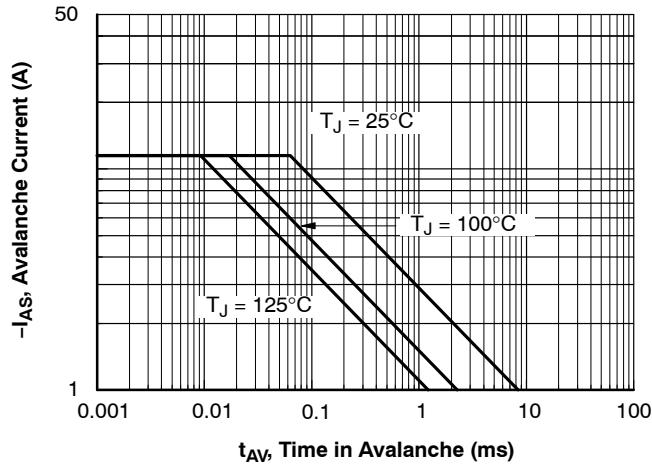


Figure 9. Unclamped Inductive Switching Capability

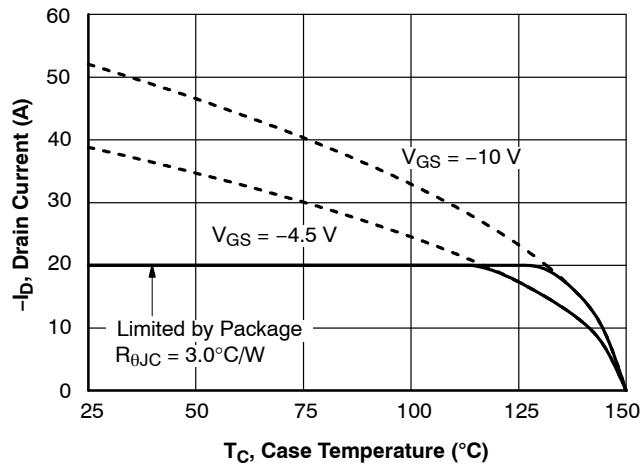


Figure 10. Maximum Continuous Drain Current vs Case Temperature

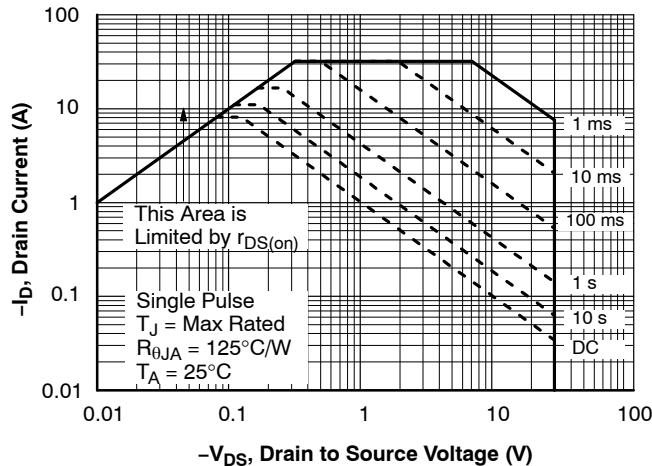


Figure 11. Forward Bias Safe Operating Area

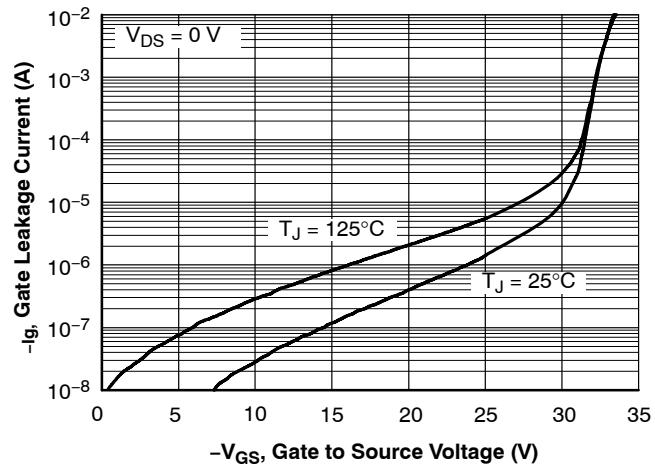


Figure 12. Igss vs. Vgss

FDMC6679AZ

TYPICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise noted) (continued)

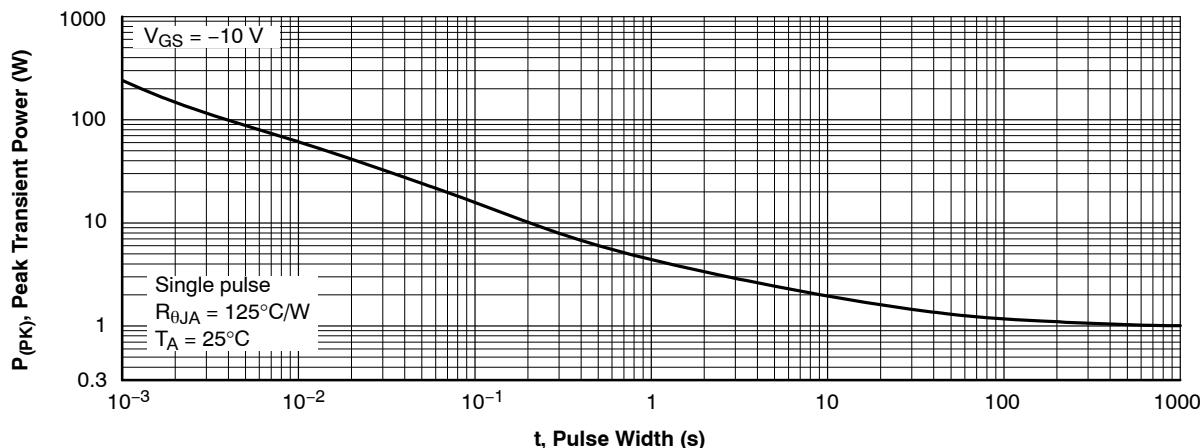
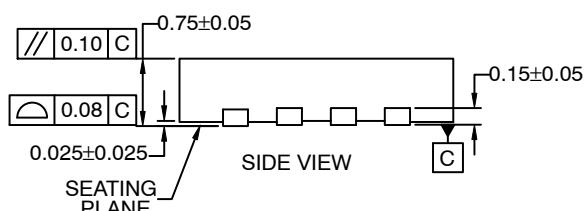
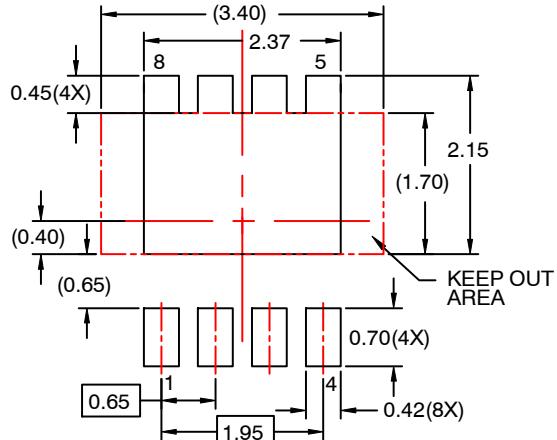
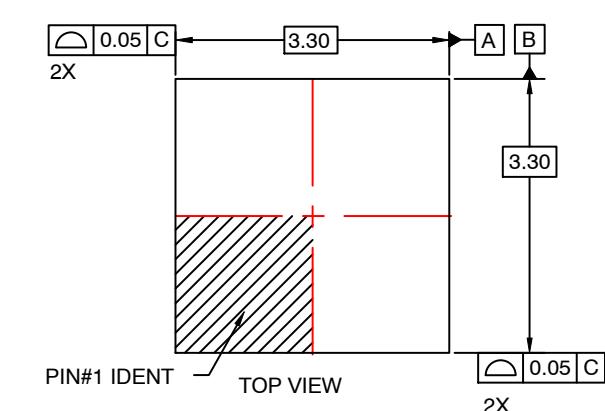


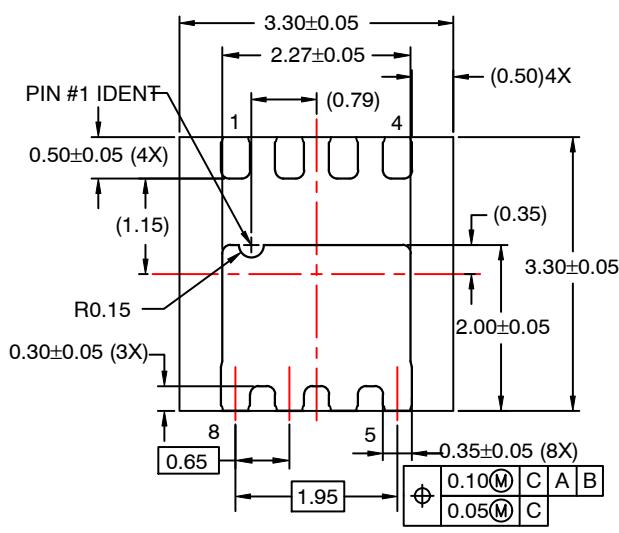
Figure 13. Single Pulse Maximum Power Dissipation

Figure 14. Junction-to-Ambient Transient Thermal Response Curve

ORDERING INFORMATION




Device	Device Marking	Package Type	Shipping [†]
FDMC6679AZ	FDMC6679AZ	WDFN8 3.3x3.3, 0.65P, Case 511DH (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

**WDFN8 3.3x3.3, 0.65P
CASE 511DH
ISSUE O**

DATE 31 JUL 2016

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTES:

- A. DOES NOT CONFORM TO JEDEC
REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER
ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS
EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13625G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P	PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative