\ Safety Precautions

Important Notes on exporting this product or equipment containing this product;

If the end-user or application of this product is related to military affairs or weapons, its export may be controlled by "Foreign Exchange and Foreign Trade Control Law" of Japan where export license will be required before product can be exported from Japan.
This product is designed and manufactured for use in General Purpose Industrial Equipment and it is not intended to be used in equipment or system that may cause personal injury or death.
All servicing such as installation, wiring, operation, maintenance and etc., should be performed by qualified personnel only Tighten mounting screws with an adequate torque by taking into consideration strength of the screws and the characteristics of material to which the product will be mounted. Over tightening can damage the screw and/or material; under tightening can result in loosening.
Install safety equipment to prevent serious accidents or loss that is expected in case of failure of this product.
Consult us before using this product under such special conditions and environments as nuclear energy control, aerospace, transportation, medical equipment, various safety equipments or equipments which require a lesser air contamination We have been making the best effort to ensure the highest quality of our products, however, some applications with exceptionally large external noise disturbance and static electricity, or failure in input power, wiring and components may result in unexpected action. It is highly recommended that you make a fail-safe design and secure the safety in the operative range. If the motor shaft is not electrically grounded, it may cause an electrolytic corrosion to the bearing, depending on the condition of the machine and its mounting environment, and may result in the bearing noise. Checking and verification by customer is required.
Failure of this product depending on its content may generate smoke of about one cigarette. Take this into consideration when the application of the machine is clean room related
Please be careful when using the product in an environment with high concentrations of sulfur or sulfuric gases, as sulfuration Please be careful when using the product in an environment with high concen
can lead to disconnection from the chip resistor or a poor contact connection. Do not input a supply voltage which significantly exceeds the rated range to the power supply of this
this caution may lead to damage of the internal parts, causing smoke and/or fire and other troubles.
The user is responsible for matching between machine and components in terms of configuration, dimensions, life expectancy, characteristics, when installing the machine or changing specification of the machine. The user is also responsible for complying with applicable laws and regulations.
Manufacturer's warranty will be invalid if the product has been used outside its stated specifications
Component parts are subject to minor change to improve performance.
Read and observe the instruction manual to ensure correct use of the product.

Repair Consult to the dealer from whom you have purchased this product for details of repair work.
 When the product is incorporated to the machine you have purchased, consult to the machine manufacturer or its dealer.
 URL Electric data of this product (Instruction Manual, CAD data) can be download from the following web site
 industrial.panasonic.com/ac/e/

Contact to :

Panasonic Industry Co., Ltd., Industrial Device Business Division 1-1 Morofuku 7-chome, Daito, Osaka 574-0044, Japan ©Panasonic Industry Co., Ltd. 2022 The contents of this catalog apply to the products as of April 2022

Servo motor that brings out potential of

Two-degree-of-freedom control system
All-in-one type
$A 5 \coprod_{\text {series }}$
Rated output: $\mathbf{5 0} \mathbf{W}$ to $\mathbf{1 5 . 0} \mathbf{~ k W}$ - 20 bit incremental encoder,
17 bit absolute/ incremental 17 bit absolute/ incremental encoder
All-in-one-- All-in-one: Speed, Position, Torque ${ }^{1}$, Fuli-Closed control type

All-in-one type
$\mathrm{A} 5_{\text {series }}$
Rated output: $\mathbf{5 0} \mathbf{W}$ to $\mathbf{1 5 . 0} \mathbf{~ k W}$ - 20 bit incremental encoder, 17 bit absolute/ incremental encoder
All-in-one - All-in-one: Speed, Position, Torque, Full-closed control type
Two-degree-of-freedom control system Position control type A5IIE
Rated output: $\mathbf{5 0} \mathbf{W}$ to $\mathbf{5 . 0} \mathbf{~ k W}$ - 20 bit incremental encoder - Position control (pulse train commands)

Position control type

A5E semese
Rated output: $\mathbf{5 0} \mathbf{W}$ to $\mathbf{5 . 0} \mathbf{~ k W}$ 20 bit incremental encoder Position control (pulse train commands)

Slim design and position control type

4 series

Rated output: 50 W to $\mathbf{4 0 0} \mathbf{~ W}$ - Ultra-small design and pulse train command type only
Real-time auto gain tuning
DIN-rail mountable (using mounting Kit)

Quicker, Wiser and Friendlier
 A5 II series

Two-degree-of-freedom control system All-in-one type - Full-closed control and torque control are not
applicable to 2 DOF control system. A5 $\mathrm{I}_{\text {series }}$

Ball screw setiting time	Belt device setitling time
0 ms	4 ms

on our test environment.

Realizes quick and accurate movement. Fast response \& High-precision positioning

Adopted New Algorithm
"Two-degree-of-freedom control" (2DOF) to improve productivity and machining accuracy. In the conventional model, because we could not adjust separately feedforward control and feedback controls, in other words even if we only adjust "Approach" o feedforward, it had connection with "Settling" of

2DOF control system.
feedback control, mutual adjustment was required. In 2DOF adopted A5II series, feedforward and feedback controls are adjusted separately, meaning "Approach" reaction to the given command, and the Settling" can be adjusted separately
Realized low vibration and reduction of settling tim Realizes tact speed of the electronic component mounting metal processing machines, allows for smooth operation or smooth operation digh speed industrial robots.
Waveform of PANATERM
(the case of the ball screw: $0 \mathrm{~ms} /$ waveform measured settling time)

Easy and quick adjusting time. 5 times faster* than conventional

Greatly improved "operability",
easy-to-use software "PANATERM"
We have upgraded setup support software PANATERM, We have upgraded setup support software PANATERM often required during start-up of the machine for
adjustment motor and driver. Improved to more
easy-understandable screen

Equipped with "Fit Gain" function to realize speedy setup.
Newly developed feature "Fit Gain" maximizes the characteristics of A5II series. And adaptive notch filter function can reduce the vibration that occurs when the rigidity of the device is low, you can set and adjust automatically the best variety of gain.

\qquad

Realized 2.3 kHz frequency response to improve productivity
Comparison* 1.15 times faster than conventional
Realized 2.3 kHz response makes possible
high-speed operation and improves productivity.

Smart

2.0 kHz Frequency Response

A5 A.5E
Example application Semiconductor production equipment, packaging, etc.

2.0 kHz

Achieves the industry's leading frequency response of 2.0 kHz .
Operation speed up by new developed LSI and high responsible control. By the industry's leading speed and positioning response, a highly advanced system can be positioning response, a highly advanced system can b realize an extremely lower vibration

20 bits/revolution, 1.04 million pulses (At ineremenial type) A5II A5 A5IIE A5E
Example application Machine tools, textile machinery, etc.

Ensures smoother operation and reduced vibration at stopping.
Ensures accurate positioning in a short time.
New proprietary signal processing technology achieves
1.04 million pulses with a 20 -bit incremental encoder.

Low Cogging Torque

Example application Semiconductor production equipment, textile machinery, etc.

For the industry's most stable speed and lowest cogging
We've achieved the industry's lowest cogging by minimizing the pulse width by a new design incorporating a 10 -pole rotor for the motor and a magnetic field parsing technique. Positioning and stability are greatly improved by the minimal torque variation. This results to improved speed stability and positioning of motor rotation.

The Input/Output Pulse 4 Mpps

Vibration reduced to only $1 / 8$

Example application Semiconductor production equipment, machine tools, etc.
\square

Accommodates the industry's leading positioning resolution commands (with pulse train commands). The command input and feedback output operate at the high speed of 4 Mpps. Accommodates high-resolution and speed of 4 Mpps . Accommodates high-resolution and high-speed operation, including standard full closed operation. (Provided with A5II, A5 only.)

Highly Functional Real-time Auto-Gain Tuning A5II A5 A5IIE A5E
Example application Semiconductor production equipment, food processing machinery, etc.
Auto tuning

High-performance real-time auto-gain tuning featuring simple setup. After installation, tuning will be completed automatically after several operations. When the response is adjusted, simple tuning is supported with a change of one When the response is adjusted, simple tung is suppored wha change of one parameutes to optimum adjustment The built-in auto vibration suppression function reduces equipment damage. Appropriate function reduces equipment damage. Appropria vertical axis machines and high friction machines with belts.
This makes it possible to perform simple optima adjustments simply by selecting the mode and stiffness.

	---1
B.	
	atwow
	.
	\because

Manual/Auto Notch Filters

A5II A5 A5IIE A5E
example application Semiconductor production equipment, food processing machinery, etc.

Equipped with auto-setting notch filters for greater convenience.

Now there is no need to measure troublesome
vibration frequencies. Our notch filters automatically
detect vibration and provide simple auto-setting.
These notch filters greatly reduce noise and vibration caused by equipment resonance and respond quickly
during operation. The A5II, A5 series features an industry-largest total of four notch filters with setup frequencies of 50 Hz to 5000 Hz . This approach enables depth adjustment within this frequency range. (Two of the filters share the auto set-up.)

$((\vec{\square}\rangle))$
Damping filter

Manua/Auto Damping Filter
Chip mounters, food processing machinery, robots,
Example application $\begin{aligned} & \text { Chip mounters, food processing } \\ & \text { general production machinery, etc. }\end{aligned}$
A5II A5 A5IIE A5E

Equipped with a damping filter featuring simplified Without Damping Filter With Damping Filter automatic setup
The setup software features automatic setup of the damping filter. This filter removes the natural vibration frequency component from the command input, greatly reducing vibration of the axis when stopping. The number of filters has been increased to four from the conventional two filters (two for simultaneous use). The adaptive frequency has also been significantly expanded from 1 Hz to 200 Hz .

Motion Simulation

A5II A5 A5IIE A5E
Example application General production machinery, etc.
Simulation
Equipped with a simplified machine simulation function.
The setup software uses frequency response data acquired from the actual machine. In addition, it features a machine simulation function for performing simulated operation. This allows you to easily confirm the effects of gain and various filters without adjusting the actual equipment.

Light

New Structure/ Innovative Core/ Innovative Encoder A5II A5 A5IIE A5E

Example application Robots, chip mounters, general production machinery, etc.

New structure

 Featuring significantly reduced weight and a more compact motor ompact motors and large motors. The new design used for the cors ucceeded in compact. The addition f an innovative compact encoder has contributed to a 10% to 25% $(1 \mathrm{~kg}$ to 6 kg) reduction in motor wight in the 1 kW and larger clas in compared with conventional motors.

Complies with European Safety Standards. A5II A5

Example application Semiconductor and LCD production equipment, etc.

4

Sato

Compliance with EU safety standards.
Features non-software-based independent redundant circuitry for motor power isolation. independent redundant circuitry for motor power isolation. This obviates the need for magnetic contactors to isolate
the required motor in order to accommodate low-voltage machinery commands.
The final safety compliance must be applied as machine.)

Low noise
Example application Semiconductor and LCD production equipment, etc.

Complies with the European EMC Directive
By incorporating the latest circuit technology, A5II, A5 series
achieves a further noise reduction of 3 dB compared with the
conventional A4 series, which also features noise suppression.
(The A4 series also conforms to the EMC Directive)

IP67 Enclosure Rating
A5II A5 A5IIE A5E
Example application Machine tools, robots, printing machines, etc

P67 enclosure rating for increased environmental resistance Our improved motor seals and direct-mount connectors in the motor power supply and encoder input-output areas contribute to this unit's |P67 enclosure rating.

Adoption of direct-mount
connector

IP 67 - Protection against - Protection against temporary immersion
in water in water

- Protection against du Protected against
dust penetration when in full contact

Motors of MSMD and MHMD series and 0.9 kW or higher standard stock items have IP65 rating.

- Motors of IP67 have smaller encoder connector that requires *able compatible with IP67 motor. *IP67 motor is build to order items.

Features

5

Las!

PANATERM Set-up Support Software
A5II A5 A5IIE A.5E
The PANATERM Set-up Support Software, with many added features.
The PANATERM assists users in setting parameters, monitoring control conditions, setup support, and analyzing mechanical operation data on the PC screen, when installed in commercially available personal computer, and connected to the MINAS A5 Family through the USB interface.

- Localized in 4 languages

Choose either English, Japanese, Chinese, or Korean-language display

Setup Wizard

This wizard supports fundamental settings in each control mode step by step, includeing reading of default setting. In on-line condition, input data related to each step can be monitored in real time.

Fit gain
This function automatically searches the This function automatically searches the best suitable stifnness setting and mod and position range and seting target

The fit gain function for setting two-degree-of-freedom control. 1) Select the adjustment method
2) Load measurement
3) Adjust gain to meet your needs by confirming results. (for A5II, A5IE)

Service Life Prediction
The service life prediction function considers the internal temperature for main components such as the fan and condenser. If the rated value is exceeded, an alarm is displayed. This approach prevents unexpected suspension of peration and allows for planning of systemized maintenance.

Note: The life span prediction value should be considered as a guide only.

Encoder Temperature Monitor

The Encoder Temperature Monitor is a new function capable of real-time measurement of the interior temperature of the encoder, something that has been difficult to achieve in the
past. It is valuable for monitoring the motor and
malfunction (provided with 20-bit encoder only)
Other New Function
The software offers a wide range of convenient features including motor and driver data such features including motor and driver data such load factor, voltage, and driver temperature,
Moreover, the logging function records the interface history. As well, a non-rotating contributing factor display function.

Frequency characteristics measurement function
Can check frequency response characteristics of the mechanism and motor. Since resonance frequency of the mechanism is measurable, it is effective for start-up time reduction.

Added New screen for gain adjustment equipped with stiffness oscillation auto-reduction function

Trial run
This function supports positioning with the Z-phase search and software limit

Significant increase of measuring objects Multi-functional waveform graphic

<CAUTION>
This software is applicable only to A5II, A5, A5IE, A5E series.
To apply this software to conventional product (A, AII, E or A4 series), consult our distributors.

Hardware configuration		
Personal computer	CPU	Pentium III 512MHz or more
	Memory	256MB or more (512MB recommended)
	Hard disk capacity	Vacancy of 512 MB or more recommended
	os	Windows ${ }^{\circledR}$ XP SP3 (32-bit Ver.), Windows ${ }^{\circledR}$ VISTA SP1 (32-bit Ver.) Windows ${ }^{\oplus} 7$ (32-bit Ver., 64-bit Ver.) [English, Japanese, Chinese or Korean version]
	Serial communication port	USB port
Display	Resolution	1024×768 pix or more (desirably 1024×768)

[^0] http://industrial.panasonic.com/ww/products/motors-compressors/fa-motors

Other Functions

Command Control Mode A5II A5

Command control mode is available for Position, Speed (including eight internal velocities) and Torque. Using parameter settings, you can set up one optional command control mode or two command control modes by switching
According to suitable application utility, proper optional command control mode can be chosen.

Full-closed Control

\qquad
AB-phase linear scale (for general all-purpose products) or serial scale (for products with Panasonic's exclusive format) scales can be used (P.14).

SEMI F47

A5II A5 A5IIE A5E
Includes a function in compliance with the SEMI F47 standard for voltage sag immunity under no load or light load
deal for the semiconductor and LCD industries. Notes:

1) Excluding the single-phase $100-\mathrm{V}$ type
2) Please verify the actual compliance with your
machine checking the F47 standard for voltage sag immunity.

Inrush Current
 Preventive Function

A5II A5 ASIIE A5E
This driver is equipped with a rush current preventive esistor to prevent the circuit breaker from shutting off the power supply as a result of inrush current occurring at power-on.

Regenerative Energy A5II A5 A5IIE A5L Discharge

A regenerative resistor is used to discharge
regenerative energy, which is the energy generated when stopping a load with a large moment of inertia or when using this unit in vertical operation. This energy is returned to the driver from the motor. Frame A, B, G and frame H model drivers do not contain a regenerative resistor. Optional regenerative resisters are recommended.
Frame C to frame F model drivers contain one regenerative resistor; however, adding an optiona regenerative resistor provides additional regeneration capability.

6000-rpm capability

The MSME motor (under 750 W) can accommodate a maximum speed of $6000 \mathrm{r} / \mathrm{min}$.

[Comparison of new and conventional 200 W]

Gear head
Gear heads for $6000 \mathrm{r} / \mathrm{min}$ and $5000 \mathrm{r} / \mathrm{min}$ motors are available. Set $5000 \mathrm{r} / \mathrm{min}$ gear head only to 5000 $\mathrm{r} / \mathrm{min}$ motor, and set $6000 \mathrm{r} / \mathrm{min}$ gear head only to
$6000 \mathrm{r} / \mathrm{min}$ motor.
When customers prepare a gear head,
use it as follows:
MSME $\rightarrow 6000 \mathrm{r} / \mathrm{min}$
$\left.\begin{array}{l}\text { MSMD } \\ \text { MHMD }\end{array}\right] \rightarrow 5000 \mathrm{r} / \mathrm{min}$

Dynamic Braking A5II A5 A5IIE A5E

With parameter settings, you can select dynamic braking, which shorts servomotor windings U, V and W at Servo-OFF, during positive direction/ negative direction, and during power shutdown and tripping of the circuit breaker for over travel inhibition.

* The dynamic brake circuit of H -frame is external The desired action sequence can be set up to accommodate your machine requirements.

Parameter Initialization ASII A5 A5IIE A5E
Using the front panel or by connecting a PC, you can estore the parameters to the factory settings.

Disturbance Observer A5II A5 A5IIE A5E

By using a disturbance observer to add an estimated isturbance torque value to the torque canceling command, this function diminishes the impact of the disturbance torque, reduces vibration, and offsets any speed decline.

Disturbance observer function not in effect

Torque Feed Forward A5II A5 A5IIE A5E

The Torque Feed Forward function performs a comparison with feedback and calculates the amount of torque to add to the necessary torque command in the command for actuation

Compensation

A5II A5 A5IIE A5E
This function reduces the effect of machine-related friction and improves responsiveness. Two kinds of friction compensation can be set up: unbalanced load compensation, which compensates with a constant perational offset torque; and kinetic friction, which changes direction in response to the direction of movement.

3-Step Gain
A 3-step gain switch is available in addition to the normal gain switch.
This chooses appropriate gain tunings at both stopping and running.
The 3-step gain switch gives you choices of 3 different tunings for normal running, stopping for faster
positioning and at stopping.
The right gaining tunings achieve lower vibration and quicker positioning time of your application.

Inertia Ratio Conversion A5II A5 A5IIE A5E

You can adjust right inertia ratio by Inertia Ratio
Conversion input(J-SEL)
When you have significant load inertia changes, it can adjust unbalanced speed and position gain turning combination
It ends up quicker response of your system.

Input/Output

Signal Assignment
A5II A5 A5TIE ASE
ou can use the parameters to arbitrarily allocate the universal 10 inputs and 6 outputs. (Inputs can be selected as either A contacts or B contacts). The Panaterm setup software provides an exclusive screen for a more simplified setup.

Torque Limiter Switching A5II A5 A5IIE ASE

You can use the I/Os to set up torque limits. These can be used for applications such as simplified pressure, tension control, and sensor-less homing

Applicable international safety standards

A5II A5 A5IIE A5E

		Driver	Motor
EC Directives	EMC Directives	EN55011 EN61000-6-2 IEC61800-3	-
	Low-Voltage Directives	EN61800-5-1	$\begin{aligned} & \hline \text { EN60034-1 } \\ & \text { EN60034-5 } \end{aligned}$
	Machinery Directives Functional safety ${ }^{*}$	ISO13849-1(PL d) (Cat. 3) EN61508(SIL2) EN62061(SILCL2) EN61800-5-2(STO) IEC61326-3-1	-
UL Standards		UL508C (E164620)	UL1004-1, UL1004-6 (E327868)
CSA Standards		C22.2 No. 14	C22.2 No. 100
Radio Waves Act (South Korea) (KC) ${ }^{2}$		KN11 KN61000-4-2, 3, 4, 5, 6, 8, 11	-

IEC : International Electrotechnical Commission Pursuant to the directive 2004/108/EC, article 9(2)

EMC • Electromagnetic Com
EMC : Electromagnetic Compatibiity
CSA : Canadian Standards Association
Panasonic Testing Centre
Panasonic Service Europe, a division of
Panasonic Marketing Europe GmbH
Winsbergring 15,22525 Hamburg, F.R. Germany

- When export this product, follow statutory provisions of the destination country.
*1 A5IIE and A5E series doesn't correspond to the functional safety standard.
*2 Information related to the Korea Radio Law
This servo driver is a Class A commercial broadcasting radio wave generator not designed for home use.
The user and dealer should be aware of this fact.
A급 기기 (업무용 방송통신기자재)
이 기기는 업무용(A 급) 전자파적합기기로서 판매자
또는 사용자는 이 점을 주의하시기 바라며, 가정외의
지역에서 사용하는 것을 목적으로 합니다.
(대상기종 : Servo Driver)
This product is not an object of China Compulsory Certification (CCC).

Applicable External Scales

Applicable External Scale	Manufacturer	Model No.	Resolution [$\mu \mathrm{s}$]	Maximum Speed $(\mathrm{m} / \mathrm{s})^{3}$
Parallel Type (AB-phase)	General	-	Maximum speed after $4 \times$ multiplication: 4 Mpps	
Serial Type (Incremental)	Magnescale Co., Ltd.	SR75	0.01 to 1	3.3
		SR85	0.01 to 1	3.3
		SL700-PL101RP/RHP	0.1	10
		SL710-PL101RP/RHP	0.1	10
		BF1	0.001/0.01	0.4/1.8
	Nidec Sankyo Corporation	PSLH	0.1	6
Serial Type (Absolute)	DR. JOHANNES HEIDENHAIN GmbH	LIC2197P/LIC2199P	0.05/0.1	10
		LIC4193P/LIC4195P LIC4197P/LIC4199P	$\begin{gathered} 0.001 \\ 10.005 \\ 10.01 \end{gathered}$	10
	Fagor Automation S.Coop.	SVAP	0.05	2.5
		SAP	0.05	2.5
		GAP	0.05	2.5
		LAP	0.1	2
	Magnescale Co., Ltd.	SR77	0.01 to 1	3.3
		SR87	0.01 to 1	3.3
	Mitutoyo Corporation	AT573A	0.05	2.5
		ST778A(L)	0.1	5
	Renishaw plc	RESOLUTE	0.001	0.4
			0.05	20
			0.1	40

3 The maximum speed is a characteristic of the driver. It is limited by the configuration of the machine and the system.

Motor Line-up

(*) Except for output shaft, and connector. (*2) IP67 motor is also available. (*3) Only IP67 motor is avilable.

* See the P .21 to P .28 , driver and motor combination

Servo Motor
$\begin{array}{lllllllllllll}M & S & M & E & 5 & \text { A } & \text { Z } & \text { G } & 1 & S & * & *\end{array}$

$$
\text { MSME(750 W [400 v], } 1.0 \mathrm{~kW} \text { to } 15.0 \mathrm{~kW} \text {), }
$$

MDME, MFME, MGME, MHME

Design orde
Symbol

| C | IP65 motor |
| :---: | :--- | :--- |
| 1 | IP67 motor (MSMD, MHMD: IP65) |

Motor with reduction gear

M S M E O 1 1 1 G 31 N

G	Incremental	20 -bit	1048576	5
S	Absolute	17 -bit	131072	7

Servo Drive

[Connector type (100/200 V: A-frame to E-frame)]

[Connector type (400 V: D, E-frame)]

<Note>
<Note>
Initial setup of rotational direction: positive $=\mathrm{CCW}$ and negative $=\mathrm{CW}$. Pay an extra attention.

Diver ${ }^{\text {And }}$	\pm	${ }_{\text {Vollage }}^{\substack{\text { a }}}$	${ }_{\substack{\text { Rated } \\ \text { output }}}$			$\left\|\begin{array}{c}\text { Noise } \\ \text { Sine } \\ \text { file ofsase } \\ \text { 3.phase }\end{array}\right\|$		Ferite core							
MADH	MSME		$\left.\begin{array}{\|c} 50 \mathrm{w} \text { to } \\ 100 \mathrm{w} \end{array} \right\rvert\,$		10A	ovop4170	ovop4190	Dvopi460	(20A	$\begin{aligned} & 0.75 \mathrm{~mm}^{2 /} \\ & \text { AWG18 } \\ & 600 \text { VAC } \\ & \text { or more } \end{aligned}$					
мadk	MHMD		50w to	${ }_{\text {a }}^{\text {appora }}$		DVOP4170	$\frac{\text { Dvopatiso }}{\text { Dvopop } 1450}$								
\% ${ }^{\text {¢ }}$	Msme	Single iov	200 W			DVop4170	DVop4400								
MBOK	MsMD	$\begin{aligned} & \text { singel } \\ & \left.\begin{array}{l} \text { singole } \\ \text { apoce } \end{array} \right\rvert\, \end{aligned}$	400 W			$\begin{aligned} & \text { DVOP4170 } \\ & \text { DVOPM20042 } \end{aligned}$	$\frac{\text { DVPP4 } 190}{\text { DVOP4 } 1450}$								
MCDH	MSME	Singe	400 W				Dvop4190								
мсок	MHM	$\begin{aligned} & \text { Singele } \\ & \substack{\text { Singase } \\ \text { 2020 }} \end{aligned}$	750 W		15A	DVopn									
MDDH	M MME		1.0 kw	$\underset{\substack{\text { appox } \\ \text { aphek }}}{\text { a }}$		DVoptr20	$\frac{\text { DVopatiso }}{\text { DVOPP } 1450}$								
	MGME		0.9 kW		20 A										
	MSME		1.0 kW												
			1.5 kW												
	MDME	${ }^{\text {3/Phase, }}$	50w	${ }_{\text {and }}^{\text {apopa }}$	10A	$\begin{gathered} \text { FN258L-16-07 } \\ \binom{\text { Recommended }}{\text { component }} \end{gathered}$	Dvopm2050		${ }_{(3 \mathrm{P}+12)}^{20 \mathrm{~A}}$						
	MDME		600 W	coin											
	MSME		${ }^{750 \mathrm{~W}}$	${ }_{\text {a }}^{\text {a }}$											
	(${ }_{0}^{1.0 \mathrm{~kW}}$											$\begin{gathered} \text { AWG14 } \\ 600 \mathrm{~V} \text { VAC } \\ \text { or more } \end{gathered}$	
	MDME		1.5 kW	$\underset{\substack{\text { aporax } \\ 232 \mathrm{~K}}}{ }$											
	M-ME														
MEDH	M MME	${ }_{\text {coser }}^{\substack{\text {-phase, } \\ \text { 200V }}}$	2.0 kw	${ }_{\substack{\text { aporox } \\ 3,3 \mathrm{~K} \times \mathrm{A}}}^{\text {and }}$	30 A	DVopm20043	DVop 1450								
	M M ME		2.5 kW	${ }_{\text {ander }}^{\text {aporax }}$				(Pacommenoed				600 VAC			
	MSME				15 A		DVopm20050		$\begin{gathered} \left.\begin{array}{c} 30 A \\ (3 P+12) \end{array}\right) \end{gathered}$						
	M M M ME		2.0 kW			$\begin{gathered} \text { FN258L-16-07 } \\ \binom{\text { Recommended }}{\text { component }} \end{gathered}$		Dvop 1460				${ }^{\text {AWGOZOC}}$ 100 VAC			
	MFME		2.5 kW	$\underbrace{}_{\substack{\text { apora } \\ 3.8 \mathrm{k} / \mathrm{A}}}$											
$\begin{aligned} & M=D H \\ & M=D K \end{aligned}$	MGME	${ }^{\text {3/Phase, }} 20$	2.0 kW		50 A	DV0P3410	DV0P1450			$3.5 \mathrm{~mm}^{2 /}$ AWG12600 VAC or more					
	M M M		3.0 kW						${ }^{\text {(3P+1a) }}$						
	M MME		4.0 kW						$\begin{gathered} 100 \mathrm{~A} \\ (3 \mathrm{P}+1 \mathrm{a}) \end{gathered}$		$\underline{45}$		¢5 ${ }^{\text {a }}$		
	me		4.5 kW								$\substack{\text { Teminal } \\ \text { block }}$		Teeminal		
	MDME			${ }_{\text {appox }}$											
	MSME		5.0 kW												
	MGME		2.0 kW		30 A	$\begin{gathered} \text { FN258L-30-07 } \\ \binom{\text { Recommended }}{\text { component }} \end{gathered}$	Dvopm2050	DVOP1460	$\begin{gathered} 60 \mathrm{~A} \\ (3 \mathrm{P}+1 \mathrm{a}) \end{gathered}$						
	俍		3.0 kW	${ }_{4}^{\text {appor }}$											
	MHME										(0)		P		
	MSME		4.0 kw	${ }_{\text {a }}^{\text {andopox }}$							l_{64}		\square_{632}		
	M mm E		4.5 kw								$\underset{\substack{\text { Teminal } \\ \text { block }}}{ }$		Tersinal		
	MGME												M3		
	MDME MHME		5.0 kW	7.5 kVA											
${ }_{\text {MG }}^{\text {Ma }}$	MDME	${ }_{\text {a }}^{\text {3-phase, }}$	7.5 kW		${ }^{60} \mathrm{~A}$	$\begin{gathered} \text { FS5559-60-34 } \\ \binom{\text { Recommended }}{\text { component }} \end{gathered}$	DVop 1450	$\begin{gathered} \text { DVOP1460 } \\ \text { RJ8095 } \\ \text { Recommended } \end{gathered}$	$\underset{\substack{100 \\(3 P+12)}}{ }$	$\begin{aligned} & 5.3 \mathrm{~mm}^{2} / \\ & \text { AWG10 } \\ & 600 \text { VAC } \\ & \text { or more } \end{aligned}$		$\begin{aligned} & 0.75 \mathrm{~mm}^{2} / \\ & \text { AWG18 } \\ & \text { 600 VAC } \\ & \text { or more } \end{aligned}$		$\begin{aligned} & 13.3 \mathrm{~mm} \mathrm{~mm}^{\text {AWGO }} \\ & \text { 6ovac } \\ & \text { or more } \end{aligned}$	
	MGME		6.0 kW												
	MHME		7.5 kW										L		
	MDME	${ }^{\text {3.phase, }} 400 \mathrm{~V}$	7.5 kW	${ }_{\text {and }}^{\text {apporax }}$	30 A		Dvopmposo						$\underline{45}$		
	MGME		6.0 k									AWG18 100 VAC	block bloc		
	MHME		7.5 kW	$\xrightarrow{\text { apporax }}$											
$\begin{aligned} & \text { мнНн } \\ & \text { мнок } \end{aligned}$	MOME	${ }^{3}$	11 kw	$\underset{\substack{\text { appore } \\ 17 \mathrm{~K}}}{ }$	100 A		DVOP 1450		${ }_{\substack{150 \mathrm{~A} \\(3 P+1 a)}}$	$13.3 \mathrm{~mm} \mathrm{~m}^{2}$AWO 60600 ACO 600 VaC or mor					
			15 kN		125 A	(facommenaine						AWG18 600 VAC		$21.1 \mathrm{~mm} \mathrm{~m}^{2}$ AWG4 000	
														or more	
			11 kw	${ }_{\text {apor }}^{\text {aporax }}$	50 A		DVopm20050		$\xrightarrow{100 \mathrm{~A}}$ (3P+12)						
												AWG18 100 VAC		$\frac{\text { or more }}{21.1 m^{2}}$	
			15 kw	${ }_{\substack{\text { and } \\ \text { 20porax }}}$	60 A									$\begin{aligned} & \text { AWG4 } \\ & 600 \text { VAC } \end{aligned}$	

1 Select peripheral devices for single/3phase common specification according to the power source.
*2 For the external dynamic brake resistor, use the magnetic contactor with the same rating as that for the main circuit.
*3 For the ground screw, use the same crimp terminal as that for the main circuit terminal block.
4 The diameter of the ground cable and the external dynamic brake resistor cable must be equal to, or larger than that of the motor cable.
The motor cable is a shield cable, which conforms to the EC Directives and UL Standards. (G, H-frame only)
5 Use these products to suit an international standard.

- Related page

Noise filterP. 250 "Composition of Peripheral Devices" Surge absorber................P. 253 "Composition of Peripheral Devices" Ferrite coreP. 254 "Composition of Peripheral Devices"
Motor/brake connectorP.186, P. 187 "Specifications of Motor connector"

- About circuit breaker and magnetic contacto

To comply to EC Directives, install a circuit break er between the power and the noise filter without fail, and the circuit breaker should conform to IEC Standards and UL recognized (Listed and (4l) marked).
Suitable for use on a circuit capable of delivering not more than 5000 Arms symmetrical amperes, below the maximum input voltage of the product.
If the short-circuit current of the power supply exceeds this value, install a current limit device (current lim-
iting fuse, current limiting circuit breaker, transformer, etc.) to limit the short-circuit current.
<Remarks>

- Select a circuit breaker and noise filter which match to the capacity of power supply (including a load condition).
- Terminal block and protective earth terminals
- Use a copper conductor cables with temperature rating of $75^{\circ} \mathrm{C}$ or higher.
- Use the attached exclusive connector for A-frame to E-frame, and maintain the peeled off length of 8 mm to 9 mm .
Fastening torque list (Terminal block screw/Terminal cover fastening screw)

	Driver	Terminal block screw		Terminal cover fastening screw	
Frame	Terminal name	$\begin{gathered} \text { Nominal } \\ \text { size } \end{gathered}$	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)	$\begin{gathered} \text { Nominal } \\ \text { size } \end{gathered}$	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)
F(200 V)	L1, L2, L3, L1C, L2C, B1, B2, B3, NC, U, V, W	M5	1.0 to 1.7	M3	0.19 to 0.21
F(400 V)	$24 \mathrm{~V}, 0 \mathrm{~V}$	M3	0.4 to 0.6		
	L1, L2, L3, B1, B2, B3, NC, U, V, W	M4	0.7 to 1.0		
G	L1C, L2C, 24V, OV, DB1, DB2, DB3, DB4, NC	M5	1.0 to 1.7		
	L1, L2, L3, B1, B2, NC, U, V, W	M5	2.0 to 2.4	M3	0.3 to 0.5
H	L1C, L2C, 24V, 0V, DB1, DB2	M4	0.7 to 1.0	M5	2.0 to 2.5
	L1, L2, L3, B1, B2, NC, U, V, W	M6	2.2 to 2.5		

Fastening torque list (Ground terminal screw/Connector to host controller [X4])

Driver frame	Ground screw		Connector to host controller (X4)	
	Nominal size	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)	Nominal size	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$)
A to E	M4	0.7 to 0.8	M2.6	0.2 ± 0.05
G	M5	1.4 to 1.6		
H	M6	2.4 to 2.6		

[^1] may generate heat (smoking, firing).
<Remarks>

- To check for looseness, conduct periodic inspection of fastening torque once a year.

Title			Part No.	Page
Interface Cable			DV0P4360	97
Interface Conversion Cable			DV0P4120	
			DV0P4121	
			DV0P4130	
			DV0P4131	
			DV0P4132	
Connector Kit for Power Supply Input Connection	A-rame Single row to to frame tope Double row		DVOPM20032	200
			DVOPM20033	
	E-frame (200 V)		DVOPM2004	
			DVOPM20051	
			DVOPM20052	
Connector Kit for Control Power Supply Input Connection	D-frame and E-frame (400 V)		DVOPM20053	201
Connector Kit for Motor Connection	A-frame to D-frame		DVOPM20034	
	E-frame (20)	(200 V)	DVOPM20046	
	D-frame (400 V)		DVOPM20054	
Connector Kit for Regenerative Resistor			DVOPM20045	
	D-frame (400 V)		DVOPM20055	
Connector Kit for Motor/Encoder Connection			DV0P4310	
			DV0P4320	
			DVOP4330	
			DV0P4340	
Connector Kit	RS485, RS232		DVOPM20102	19
	Satery		DVOPM20103	
			DV0P4350	
	External Scale		DVOPM20026	19
	Encoder		DVOPM20010	
	Analog Monitor Signal		DVOPM20031	
Battery For Absolute Encoder			DV0P2990	
Battery Box Note) 8			DV0P4430	
Mounting Bracket	D-frame		DVOPM20030	208
Encoder Cable	without Battery Box		MFECA0*0ESD	189
	with Battery Box Note) 8		MFECAO*OESE	190
Motor Cable	without Brake		MFMCA***ECD	191
			MFMCD0*2ECD	19
			MFMCE0**2ECD	
			MFMCF0**2ECD	
			MFMCAO*3ECT	93
			MFMCDO*3ECT	193
	with Brake		MFMCA0*2FCD	
			MFMCE0**2FCD	
			MFMCA0**3FC	195
External Regenerative Resistor	$50 \Omega 25 \mathrm{~W}$		DV0P4280	210
	$100 \Omega 25$ W		DV0P4281	
	$25 \Omega 50 \mathrm{~W}$		DV0P4282	
	$50 \Omega 50 \mathrm{~W}$		DV0P4283	
	$30 \Omega 100 \mathrm{~W}$		DV0P4284	
	$20 \Omega 130 \mathrm{~W}$		DV0P4285	
	$120 \Omega 80 \mathrm{~W}$		DVOPM20048	
	$80 \Omega 190 \mathrm{~W}$		DVOPM20049	
Reactor	DVOP22O DVOP223 DVOP227	$\begin{aligned} & \text { O, DVOP221, } \\ & \text { 3, DVOP24, } \\ & \text { 7, DVOP228, } \end{aligned}$	DVOP222, DVOP225, DVOPM20047	209
Noise Filter	DVOP4170, DVOPM20042 DVOP4220, DVOPM20043			250
	DVOP3410			251
Surge Absorber	Single pha		DV0P4190	253
	3 -phase (200 V)		DVOP1450	
	3 -phase ((400 V)	DVOPM20050	
Ferrite core			DVOP1460	254

A5 Family

Note) 1 Rotary encoder specifications: \square Motor specification: * (refer to P. 16
Note) $2 \diamond$: Drivers series K: A5II series $\quad H: A 5$ series
Note) $3 \diamond$: Drivers series K : A5IIE series $H \cdot A 5 E$ series
Note) 4 Because A5IIE, A5E series drivers (dedicated for position control) do not support the 17-bit absolute specification,
only 20 -bit incremental type can be used in combination.
Note) 5 Cable length: ** (03: $3 \mathrm{~m}, 05: 5 \mathrm{~m}, 10: 10 \mathrm{~m}, 20: 20 \mathrm{~m}$), (Example. 3 m : MFECAOOOOEAM
Note) 6 Recommend to get the connector kit of options.
Note) 7 Reactor should be prepared by the user.
Ote) 8 Other combinations exist, and refer to P. 210 for details.
Note) 9 Please note that a battery is not supplied together with 17 -bit absolute encoder cable (with battery box).
Please buy the battery part number "DVOP2990" separately.

- Options (IP67 motor)

A5II, A5 series $\binom{$ Speed, Position, Torque, }{ Full-Closed type }

1 Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew. *2 Not applicable to 2DOF control system.

Driver Specifications A5IIE，A5E series（Position control type）

		Control inpu		（1）Deviation counter clear（2）Command pulse inhibitation （3）Electric gear（4）Damping control switching etc．
		Control out		Positioning complete（In－position）etc．
			Max．command pulse frequency	Exclusive interface for Photo－coupler： 500 kpps Exclusive interface for line driver ： 4 Mpps
	끌	Pulse	Input pulse signal format	Differential input （（1）Positive and Negative direction，（2）A and B－phase，（3）Command and direction）
	雨		Electronic gear（Division／ Multiplication of command pulse）	1／1000 times to 1000 times
			Smoothing filter	Primary delay filter or FIR type filter is adaptable to the command input
$\stackrel{\text { ㄱ․ }}{ }$		Instantaneo	us Speed Observer	Available
		Damping C	ontrol	Available
		2DOF settin		Only available at A5IE Series
		Auto tuning		The load inertia is identified in real time by the driving state of the motor operating according to the command given by the controlling device and set up support software＂PANATERM＂． The gain is set automatically in accordance with the rigidity setting．
		Division of	ncoder feedback pulse	Set up of any value is enabled（encoder pulses count is the max．）．
	$\begin{aligned} & \text { 3⿹丁口㇒ } \\ & 0 \end{aligned}$	Protective	Hard error	Over－voltage，under－voltage，over－speed，over－load， over－heat，over－current and encoder error etc．
		function	Soft error	Excess position deviation，command pulse division error，EEPROM error etc．
		Traceability	of alarm data	The alarm data history can be referred to．

In Case of Single phase, A-frame to D-frame, 100 V / 200 V type

- In Case of MSME

Note.1)

In Case of 3-phase, A-frame to D-frame, 200 V type

* Refer to P.186, P.187, Specifications of Motor connector.

In Case of 3-phase, E-frame, 200 V type

Note.1)

In Case of 3-phase, G-frame, 200 V type

Note.1) About regenerative resistor

 Note.2) About dynamic brake resistor

 <common for G \& H frame> $\xrightarrow{\text { resiso }}$
Note.4) Magneitic contactor MC2 must be the same rating as the contactor MC1 in the main circul.
Note.4) Servo may be turned on in the external sequence if the contact deposits: to protect the system, provide the auxiliary contac Note.5) Provide an external protective device (e.g. thermal fuse) to monitor the temperature of the external dynamic brake resistor.
Note.6) Reactor should be prepared by the customer. Note.6) Reactor should be prepared by the customer.

* Refer to P.186, P.187, Specifications of Motor connector

A5 Family
Wiring Diagram
Wiring to Connector, XA, XB, XC, XD and Terminal Block

In Case of 3-phase, G-frame, 400 V type

Note.1) About regenerative resistor

In Case of 3-phase, F-frame, 400 V type

Note.1) About regenerative resistor

Noctict.2) About dynamic of brake resistor

H.tame
ction.

Note.3) Shielding the circuit is recommended for the purpose of noise reduction.
Note.4) Magnetic contactor MC2 must be the same rating as the contactor MC1 in the main circuit.
Note.4) Magnetic contactor MC2 must be he same rating as the contactor MCD in the main circuit. Note.6) Provide an external protective device (e.g. thermal fuse) to monitor the temperature of the external dynamic brake resistor. Note.7) Reactor should be prepared by the customer.

* Refer to P.186, P. 187, Specifications of Motor connector.

Connecting the host controller can configure a safety circuit that controls the safety functions. When not constructing the safety circuit, use the supplied safety bypass plug.

Outline Description of Safe Torque Off (STO)

The safe torque off (STO) function is a safety function that shuts the motor current and turns off motor output torque by forcibly turning off the driving signal of the servo driver internal power transistor. For this purpose the STO uses safety input signal and hardware (circuit).
When STO function operates, the servo driver turns off the servo ready output signal (S-RDY) and enters safety state.
This is an alarm condition and the 7 -seg LED on the front panel displays the error code number.

Safety Precautions

When using the STO function, be sure to perform equipment risk assessment to ensure that the system conforms to the safety requirements.
Even while the STO function is working, the following potential safety hazards exist. Check safety in risk assessment.

- The motor may move when external force (e.g. gravity force on vertical axis) is exerted on it. Provide an external brake, etc., as necessary to secure the motor. Note that the purpose of motor with brake is holding and it cannot be used for braking application
When parameter Pr5. 10 Sequence at alarm is set to free run (disable dynamic brake), the motor is free run state and requires longer stop distance even if no external force is applied. Make sure that this does not cause any problem.
When power transistor, etc., becomes defective, the motor will move to the extent equivalent of 180 electrical angle (max.). Make sure that this does not cause any problem.
The STO turns off the current to the motor but does not turn off power to the servo driver and does not isolate it. When starting maintenance service on the servo driver, turn off the driver by using a differen disconnecting device.
- External device monitor (EDM) output signal is not a safety signal. Do not use it for an application othe than failure monitoring.
Dynamic brake and external brake release signal output are not related to safety function. When designing the system, make sure that the failure of external brake release during STO condition does not result in danger condition.
- When using STO function, connect equipment conforming to the safety standards.

A5 Family

Control Circuit Diagram Wiring to the Connector, X4

Wiring Example of Position Control Mode

Wiring Example of Velocity Control Mode (Excluding A5IE, A5E series)

Wiring Example of Torque Control Mode (Excluding A5IE, A5E series)

Wiring Example of Full-closed Control Mode (Excluding A5IE, A5E series)

Control Circuit Diagram Wiring to the Connector, X5 (Excluding asie ase series)

Applicable External Scale

The manufacturers applicable external scales for this product are as follows.
-DR. JOHANNES HEIDENHAIN GmbH

- Fagor Automation S.Coop.
- Magnescale Co., Ltd.
- Mitutoyo Corporation
- Nidec Sankyo Corporation
- Renishaw plc
* For the details of the external scale product, contact each company.

Wiring Diagram of X5

<A-phase/B-phase>

<Serial>

Wiring to the Connector, X6
A5 Family

In Case of 20-bit Incremental Encoder

MSME 50 W to $750 \mathrm{~W}(\mathbf{2 0 0} \mathrm{~V})$

[Connector pin assignment] Refer to P.186, P. 187 "Specifications of Motor connector"

A5 Family
Control Circuit Diagram Wiring to the Connector, X6

In Case of 17-bit Absolute Encoder (A5IE, A5E series does not correspond.)

MSME 50 W to $750 \mathrm{~W}(200 \mathrm{~V})$

[Connector pin assignment] Refer to P. 186, P. 187 "Specifications of Motor connector"

A-frame

B-frame

C-frame

D-frame (200 V)

D-frame (400 V)

E-frame (200 V)

F-frame ($200 \mathrm{~V} / 400 \mathrm{~V}$)

G-frame ($200 \mathrm{~V} / 400 \mathrm{~V}$) *A5IE, A5E series is out of the lineup.

H-frame (200 V/400 V)

* For connectors used to connect to the driver, ret
because both frames use the same connectors.

Mass: 21.0 kg

A5 Family

Specifications			
		AC100 V	
Motor model	IP65	MSMD5AZG1 \square	MSMD5AZS1 \square
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MAD \triangle T1105	
	No. A5IE, A5E series	MAD \triangle T1105E	-
	Frame symbol	A-frame	
Power supply capacity (kVA)		0.4	
Rated output (W)		50	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		0.16	
Momentary Max. peak torque (N.m)		0.48	
Rated current (A(rms))		1.1	
Max. current (A) $(0-\mathrm{p})$)		4.7	
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2	
	(min) Note) 1 DVOP4280	No limit Note)2	
Rated rotational speed (r/min)		3000	
Max. rotational speed (r/min)		5000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	0.025	
	kg.m²) With brake	0.027	
Recommended moment of inertia ratio of the load and the rotor Note) 3		30 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn		1048576	131072

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Do not use this for braking the motor in motion. | |
| :--- | :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 0.29 or more |

Engaging time (ms)	35 or less
Releasing time (ms) Note)	20 or less
Exciting current $(\mathrm{DC})(\mathrm{A})$	0.3
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

" 1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply volage.>)

Dimensions

<Without Brake>
Mass: 0.32 kg

* For the dimensions with brake, refer to the right page
finertia ratio if high speed response operation is required.

Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

Brake specifications (For details, reter to P.183) This brake will be released when it is energized.

Static friction torque (N.m)	0.29 or more
Engaging time (ms)	35 or less
Releasing time (ms) Note) 4	20 or less
Exciting current (DC) (A)	0.3
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

*1 Motor specifications: \square

* 2 The product that the end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
<With Brake>
<|P65>

(a) Encoder connector (b) Brake connector (c) Motor connector
$\left[\begin{array}{l}1 \\ 1 \\ \text { Use hexagon socket head } \\ \text { screww for installation. }\end{array}\right]$

<Key way, center tap shafb

* For the dimensions without brake, refer to the left page.
[Unit: mm] <Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subiect to change without notice Contact us or a deale for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 0.29 or more |

Engaging time (ms)	35 or less
Releasing time (ms) Note)	20 or less
Exciting current $(\mathrm{DC})(\mathrm{A})$	0.3
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

${ }^{*} 1$ Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC100 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

Dimensions

<Without Brake>
Mass: 0.47 kg
<|P65>

* For the dimensions with brake, refer to the right page. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	0.29 or more
Engaging time (ms)	35 or less
Releasing time (ms) Note)	20 or less
Exciting current $(\mathrm{DC})(\mathrm{A})$	0.3
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

, 1 Motor specifications: \square
2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the series. For more infor
please refer to P. 16 .

Torque characteristics (at AC200 V of power voltage)

Dimensions

<With Brake>
Mass: 0.68 kg

<|P65>

$$
\begin{aligned}
& \text { (a) Encoder connector } \\
& \text { (b) Brake connector } \\
& \text { (c) Motor connector }
\end{aligned}
$$

$\left[\begin{array}{l}1 \\ 1 \\ \text { sse hexagoon socket head } \\ \text { screw ior instalation. }\end{array}\right]$

<Key way, center tap shaft>

For the dimensions without brake, refer to the left page.
[Unit: mm] <Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183) $\left.\begin{array}{l}\text { This brake will be released when it is energized. } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right)$ | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

Luring assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P. 42.
*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P 16
$3 \diamond$ in number of applicable driver represents the \diamond in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC100 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
<Without Brake>

Specifications

- Brake specifications (For details, refer to P.183) (This brake will be released when it is energized.

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 1.27 or more |
| :--- | :--- | Engaging time (ms)

1.27	
	50

\square 0.36 Releasing voltage (DC) (V)
(v) 1 or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square
" 2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
series. For more inflormation about the part number
please refer to P. 16 . series. For more infor
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<With Brake>

<1P65>

<Key way, center tap shaft>

For the dimensions without brake, refer to the left page. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 1.27 or more |
| :--- | :--- |

Engaging time (ms)	50 or less
Releasing time (ms) Note)	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.
*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16
${ }^{*} 3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC100 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

Dimensions
<Without Brake>

$$
\begin{aligned}
& \text { (a) Encoder connector } \\
& \text { (b) Motor connector }
\end{aligned}
$$

<Key way, center tap shaft

For the dimensions with brake, refer to the right page. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

Brake specifications (For details, refer to P. 183) (This brake will be released when it is energized.

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 1.27 or more |
| :--- | :--- | Engaging time (ms)

C 50 Releasing time (ms) Notele 50 or less g time (ms) Note 15 or les Exciting current (DC) (A)
\square 0.36 Releasing voltage (DC) (V)
(v) or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During	Radial load P-direction (N)	245
operation	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square
" 2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P. 16 . series. For more infor
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

* For the dimensions without brake, refer to the left page.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
200 V MSMD 750 W [Low inertia, Small capacity]

Specifications

Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Notes 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents th series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

Figures in [] represent the dimensions without brake
[Unit: mm
Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC100 V	
Motor model		IP65		MHMD021G1 \square	MHMD021S1 \square
	IP67			-	-
Applicable driver *2	Model No.	A5II, A5	5 series	MBD $>$ T2110	
		A5IE, A	A5E series	MBD \triangle T2110E	-
	Frame symbol			B-frame	
Power supply capacity			(kVA)	0.5	
Rated output			(W)	200	
Rated torque		倍	($\mathrm{N} \cdot \mathrm{m}$)	0.64	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	1.91	
Rated current			(A(rms))	2.5	
Max. current			(A(o-p))	10.6	
Regenerative brake frequency (times/min) Note)		Without	ut option	No limit Note)2	
		DVOP	P4283	No lim	it Note)2
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	5000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	ut brake	0.42	
		With b	brake		45
Recommended moment of inertia ratio of the load and the rotor Note)3				30 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$
	Resolution per single turn			1048576	131072

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 1.27 or more |
| :--- | :--- |

Engaging time (ms)	50 or less
Releasing time (ms) Note)	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

For details of Note 1 to Note 5, refer to P. 182, P. 183 Dimensions of Driver, refer to P. 42.
*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC100 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.
- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square
" 2 The product that the end of driver model
designation has " E " is "Position control type
Detail of model designation, refer to P. 16 .

* $3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

For the dimensions without brake, refer to the left page.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
Motor model			AC100 V	
		IP65	MHMD041G1 \square	MHMD041S1 \square
	IP67		-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Model } \\ \text { No. } \\ \hline \end{array}$	A5II, A5 seres	MCD \diamond T3120	
		A5IE, A5E series	MCD \triangle T3120E	-
	Frame symbol		C-frame	
Power supply capacity (kVA)			0.9	
Rated output (W)			400	
Rated torque (N.m)			1.3	
Momentary Max. peak torque (N.m)			3.8	
Rated current		(A(rms))	4.6	
Max. current		(A(0-p))	19.5	
Regenerative brake frequency (imes/min) Note)!		Without option	No limit Note)2	
		DVOP4282	No lim	Nooe)2
Rated rotational speed		d (r/min)	3000	
Max. rotational speed		(r/min)	5000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	0.67	
		With brake		. 70
Recommended moment of inertia ratio of the load and the rotor Note)3			30 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC100 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 1.27 or more |
| :--- | :--- |

Engaging time (ms)	50 or less
Releasing time (ms) Note)	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

* 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the \diamond in number of applicable driver represents the
series. For more information about the part number
prease refer to P. 16.

Dimensions
<IP65>

Mass: 1.4 kg
<Without Brake>

(a) Encoder connector (b) Motor connector

<D-cut shaft $>$

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.

(Do not use this for braking the motor in motion. $|$| Static friction torque (N.m) | 1.27 or more |
| :--- | :---: |
| Engaging time (ms) | 50 or less |
| Releasing time (ms) Note)4 | 15 or less |
| Exciting current (DC) (A) | 0.36 |
| Releasing voltage (DC) (V) | 1 or more |
| Exciting voltage (DC) (V) | 24 ± 1.2 |

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square
*2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16.

* $3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
prease refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<With Brake>
<1P65>
(a) Encoder connector (b) Brake connector $\left[\begin{array}{c}14 \text { Use hexagog socket head } \\ \text { screw } \text { or instalalation. }\end{array}\right]$

<Key way, center tap shaft

[Unit: mm <Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Roduce 1 Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
200 V MHMD 750 W [High inertia, Small capacity]

Specifications

			AC200 V	
Motor model	IP65		MHMD082G1 \square	MHMD082S1 \square
	IP67		-	-
Applicable driver	Model No.	A5II, A5	MCD $>$ T3520	
		A5IE, A	MCD \triangle T3520E	-
	Frame symbol		C-frame	
Power supply capacity				
Rated output				
Rated torque				
Momentary Max. peak torque				
Rated current				
Max. current				
Regenerative brake frequency (times/min) Note) 1		Without	No limit Note)2	
		DVOP	No lim	Note)2
Rated rotational speed		d	3000	
Max. rotational speed			4500	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	1.51	
		With b	1.61	
Recommended moment of inertia			20 times or less	
Rotary encoder specifications			$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

- Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque (N•m)	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Notes 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (
	Thrust load B-direction (N)	
During operation	Radial load P-direction (N)	
	Thrust load A, B-direction (N)	
- For details of Note 1 to Note 5, refer to P.182, P. - Dimensions of Driver, refer to P. 43. *1 Motor specifications: *2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P.16.		
*3 \diamond in number of applicable driver represents the series. For more information about the part number please refer to P.16.		

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<|P65>
Mass: Without brake/ 2.5 k

(a) Encoder connector (b) Brake connector
$\left[\begin{array}{l}1 \text { Use hexagon socket head } \\ \text { screw for instalation. }\end{array}\right]$

<Key way, center tap shaft

[Unit: mm

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

${ }^{1}$	

Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 0.29 or more |

Engaging time (ms)	35 or less
Releasing time (ms) Notel4	20 or less
Exciting current (DC) (A)	0.3
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

1 Motor specifications: \square
*2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
\diamond in number of applicable driver represents the series. For morere inficormation about the part number,
please refer to P.16.

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>

Motor cables for opposite to output shaft cannot be used with 50 W motor.

Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
Motor model			AC200 V	
		IP65	-	-
	IP67		MSME5AZG1 \square	MSME5AZS1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Mode No.\qquad	A5II, A5 seres	MAD \diamond T1505	
		A5IE, A5E series	MAD \triangle T1505E	-
		Frame symbol	A-frame	
Power supply capacity (kVA)			0.5	
Rated output (W)			50	
Rated torque (N.m)			0.16	
Momentary Max. peak torque (N.m)			0.48	
Rated current		(A(rms))	1.1	
Max. current		(A(0-p))	4.7	
Regenerative brake frequency (times/min) Note)1		Without option	No limit Note)2	
		DVOP4280	No limit Note)2	
Rated rotation	nal speed	d (r/min)	3000	
Max. rotational speed (r/min)			6000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	0.025	
		With brake		027
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$			30 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

- Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	0.29 or more
Engaging time (ms)	35 or less
Releasing time (ms) Note)	20 or less
Exciting current (DC) (A)	0.3
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
During operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

*1 Motor specifications: \square
2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16.
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to series. For more intor
please refer to P. 16 .
Torque characteristics (at AC200V of power voltage)

Dimensions <ln Case of With Brake, Cable direction to output shaft.>

- Motor cables for opposite to output shaft cannot be used with 50 W motor

Specifications					
				AC100 V	
Motor model		IP65		-	-
	IP67			MSME011G1 \square	MSME011S1 \square
Applicable driver *2	Model No.	A5II, A5	5 series	MAD $>$ T1107	
		A5IE, A	A5E series	MAD \triangle T1107E	-
	Frame symbol			A-frame	
Power supply capacity			(kVA)	0.4	
Rated output			(W)	100	
Rated torque		位	($\mathrm{N} \cdot \mathrm{m}$)	0.32	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	0.95	
Rated current			(A(rms))	1.6	
Max. current			(A(o-p))	6.9	
Regenerative brake frequency (times/min) Note)		Without	ut option	No limit Note)2	
		DVOP	P4280	No lim	it Note)2
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	6000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	ut brake	0.051	
		With b	brake		. 54
Recommended moment of inertia ratio of the load and the rotor Note)3				30 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	${ }^{17 \text {-bit }}$ Absolute
Resolution per single turn				1048576	131072

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>
Motor cables for opposite to output shaft cannot be used with 100 W motor.

Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized. (Do not use this for braking the motor in motion.
Static friction torque (N.m) 0.29 or more Engaging time (ms) 35 or less Releasing time (ms) Note)4 20 or less Exciting current (DC) (A) 0.3 Releasing voltage (DC) (V) 1 or more Exciting voltage (DC) (V) 24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	147
	Thrust load A-direction (N)	88
	Thrust load B-direction (N)	117.6
Luring operation	Radial load P-direction (N)	68.6
	Thrust load A, B-direction (N)	58.8

1 Motor specifications: \square

* 2 The product that the end of driver model
designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the
series. For more information about the part number
please refer to please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions <ln Case of With Brake, Cable direction to output shaft.>
Motor cables for opposite to output shaft cannot be used with 100 W motor

[Unit: mm]

Reduce the moment of inertia ratio if high speed response operation is required.
Aead the shat us a dealen notice. Contact

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	6
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

For details of Note 1 to Note 5, refer to P.182, P.183. Dimensions of Driver, refer to P. 42.
*1 Motor specifications: \square
*2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to 16 .
$3 \diamond$ in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16. please refer to P. 16 .

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>

Specifications					
				AC100 V	
Motor model		IP65		-	-
	IP67			MSME041G1 \square	MSME041S1 \square
Applicable driver *2	ModelNo.	A5I, A5	series	MCD \diamond T3120	
		A5IE, A5	5E series	MCD \triangle T3120E	-
	Frame symbol			C-frame	
Power supply capacity (kVA)				0.9	
Rated output (W)				400	
Rated torque (N.m)				1.3	
Momentary Max. peak torque (N.m)				3.8	
Rated current (A(rms))				4.6	
Max. current (A) $(0-\mathrm{p})$)				19.5	
Regenerative brake frequency (times/min) Note) 1		Without	option	No limit Note)2	
		DVOP4	4282	No lim	it Note)2
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	6000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	t brake	0.26	
		With b	brake		28
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				30 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{aligned} & \text { 17-bit } \\ & \text { Absolute } \end{aligned}$
Resolution per single turn				1048576	131072

Torque characteristics (at AC100 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98
- For details of Note 1 to Note 5 refer to P.182, P.183		

For details of Note 1 to Note 5, refer to P.182, P. 183.
Dimensions of Driver, refer to P. 43.
1 Motor specifications: \square
The product that the end of driver model designation has "E" is "Position control type"
\diamond in number of applicable driver represents the
series. For more information about the part number

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Engaging time (ms)	50 or less
Releasing time (ms) Note) 4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage (DC) (V)	1 or more

 " Deraiting curve
\qquad
ambient temperature [C ' C]

Dimensions <ln Case of Without Brake, Cable direction to output shaft.>
Mass: 1.2 kg

<1P67>
(a) Encoder connector
(b) Motor connector
$\left[\begin{array}{c}\left.\text { } \begin{array}{c}1 \\ 1 \\ \text { Use herexagon socket head } \\ \text { screw oro instalation. }\end{array}\right]\end{array}\right.$
 Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

For the dimensions with brake, refer to the right pag
[Unit: mm]
<Cautions>
Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice . Contact us or a dealer for the latest information

Specifications				
			AC200 V	
Motor model		IP65	-	-
	IP67		MSME042G1 \square	MSME042S1 \square
Applicable driver	$\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$Fra	A5II, A5 series	MBD $>$ T2510	
		A5IE, A5E series	MBD \triangle T2510E	-
		Frame symbol	B-frame	
Power supply capacity (kVA)			0.9	
Rated output (W)			400	
Rated torque (N.m)			1.3	
Momentary Max. peak torque (N.m)			3.8	
Rated current		($\mathrm{A}(\mathrm{rms})$)	2.4	
Max. current		(A(0-p))	10.2	
Regenerative brake frequency (times/min) Note) 1		Without option	No limit Note)2	
		DVOP4283	No limit Note)2	
Rated rotational speed (r/min)			3000	
Max. rotational speed (r/min)			6000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	0.26	
		With brake	0.28	
Recommended moment of inertia ratio of the load and the rotor Note)3			30 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage. $>$)

- Brake specifications (For details, refer to P. 183)
This brake will be released when it is energized. (Do not use this for braking the motor in motion.
Static friction torque (N.m) 1.27 or more Engaging time (ms) 50 or less Releasing time (ms) Note)4 15 or less Exciting current (DC) (A) 0.36 Releasing voltage (DC) (V) 1 or more Exciting voltage (DC) (V) 24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

*1 Motor specifications: \square

* 2 The product that the end of driver model
designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the
series. For more information about the part numbe

$$
\begin{aligned}
& \text { series. For more information about the part number } \\
& \text { olease refer to P. } 16 \text {. } \\
& \text { line represents the torque at } 10 \% \text { less supply voltage. })
\end{aligned}
$$

Dimensions <ln Case of With Brake, Cable direction to output shaft.>
Mass: 1.6 kg

$\left[\begin{array}{c}1 \\ 1 \\ \text { Use hexagon socket head } \\ \text { screw tor instalalation. }\end{array}\right]$

<Key way, center tap shaft>

* For the dimensions without brake, refer to the left page

[Unit: mm]
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 2.45 or more |

Engaging time (ms)	70 or less
Releasing time (ms) Noete4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage (DC) (V)	1 or more
Exciting voltage (DC) (V)	24 ± 1.2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.

* 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the
serin number of morere inficormation about the part number,
please refer to P.16.
Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions <ln Case of With Brake, Cable direction to output shaft.>

<IP67>
a) Encoder connector (b) Motor connector
$\left[\begin{array}{c}1 \text { Use hexagon socket head } \\ \text { screw for installation. }\end{array}\right]$

* Figures in [] represent the dimensions without brake

[Unit: mm]

Cautions>

 Reduce the moment of inertia ratio if high speed response operation is required.Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
" 2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)

(a) Encoder connector
(b) Motor/Brake connector

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications												
		AC200 V										
Motor model	IP65	MSME152GC \square	MSME152SC \square									
	IP67	MSME152G1 \square	MSME152S1 \square									
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \text { Model } & \text { A5II, A5 series } \\ \hline \text { No. } & \text { A5IIE, A5E series } \\ \hline \end{array}$	MDD ¢ 5540										
		MDD $\$ T5540E & - \hline & & \multicolumn{2}{\|r	}{D-frame} \hline \multicolumn{2}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{2.3} \hline \multicolumn{2}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{1500} \hline \multicolumn{2}{\|l	}{Rated torque ($\mathrm{N} \cdot \mathrm{m}$)}	4.77	
		14.3										
Rated current (A(rms))		8.2										
Max. current (A) $(0-\mathrm{p})$)		35										
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2										
	(min) Note) 1 DVOP4284	No limit Note)2										
Rated rotational speed (r/min)		3000										
Max. rotational speed (r/min)		5000										
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	2.84										
	kg.m²) With brake	3.17										
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less										
Rotary encoder speciications Note)5		$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute									
Resolution per single turn		1048576	131072									

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.81 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183 Dimensions of Driver, refer to P.43.
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
3 in number of applicable driver represents the series. For more information about the part number,
please refer to P.16.

Specifications

- Brake specifications (For details, refer to P (This brake will be released when it is energized.) Do not use this for braking the motor in motion.	
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	7.8 or more
Engaging time (ms)	50 or le
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	0.81 ± 10 \%
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents th \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.137.) Mass: Without brake $/ 5.3 \mathrm{~kg}$
With brake $/ 6.3 \mathrm{~kg}$

Key way dimensions
(
(a) Encoder corrector

Caulons> Reduce the momentor
Dimensions in thertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
		AC200 V	
Motor model	IP65	MSME302GC \square	MSME302SC \square
	IP67	MSME302G1 \square	MSME302S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \begin{array}{l\|l\|} \hline \text { Model } & \text { A5II, A5 series } \\ \text { No. } & \text { A5IE, A5E series } \\ \hline \end{array} \end{array}$		
		MFD $>$ TA390	
		F-frame	
Power supply capacity (kVA)		4.5	
Rated output (W)		3000	
Rated torque (N.m)		9.55	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)		28.6	
Rated current (A)(ms))		18.1	
Max. current (A(o-p))		77	
Regenerative brake frequency (times/min) Note)!	brake Without option	No limit Note)2	
	Emin) Note)11 DVOP4285×2	No limit Note)2	
Rated rotation	nal speed (r/min)	3000	
Max. rotational speed (r/min)		5000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	ertia Without brake	6.50	
	kg.m²) With brake		. 85
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn		1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

(For IP67 motor, refer to P.137.) Mass: Without brake/ 8.3 kg
With brake $/ 9.4 \mathrm{~kg}$ Key way dimensions
(
(b) Motor/Brake connector
*Figures in [] represent the dimensions with brake.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all usecautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications:
2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.) Mass: Without brake/ 11.0 kg
With brake/ 12.6 kg

Key way dimensions

M3 through
$\overbrace{}^{8-89}$
[Unit: mm
(b) Motor/Brake connecto

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
		AC200 V	
Motor model	IP65	MSME502GC \square	MSME502SC \square
	IP67	MSME502G1 \square	MSME502S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MFD TB3 $^{\text {a }}$	
	No. A5IE, A5E series	MFD $>$ TB3A2E	-
	Frame symbol	F-frame	
Power supply capacity (kVA)		7.5	
Rated output (W)		5000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		15.9	
Momentary Max. peak torque (N.m)		47.7	
Rated current (A(rms))		24.0	
Max. current (A) $(0-\mathrm{p})$)		102	
Regenerative brake frequency (times/min) Note),	brake Without option	357	
	Emin) Note)11 DVOP4285×2	No limit Note)2	
Rated rotational speed \quad (r/min)		3000	
		4500	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Pria Without brake	17.4	
	kg.m²) With brake		. 6
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
	Resolution per single turn	1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply volage.)

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } Do not use this for braking the motor in motion.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Notes 4	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During	Radial load P-direction (N)	784
operation	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type"
Detail of model designation, refer to 16 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P. 16 .

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 14.0 kg
With brake/ 16.0 kg Key way dimensions

(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all usecautions and remarks before using the products.

200 V MDME 1.0 kW [Middle inertia, Middle capacity]

Specifications					
				AC200 V	
Motor model		IP65		MDME102GC \square	MDME102SC \square
	IP67			MDME102G1 \square	MDME102S1 \square
Applicable driver *2	ModelNo.	A5II, A5	series	MDD \diamond T3530	
		A5IE, A	5E series	MDD \triangle T3530E	-
	Frame symbol			D-frame	
Power supply capacity (kVA)				1.8	
Rated output (W)				1000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)				4.77	
Momentary Max. peak torque (N.m)				14.3	
Rated current (A(rms))				5.7	
Max. current (A(o-p))				24	
Regenerative brake frequency (times/min) Note)		Withou	option	No limit Note)2	
		DVOP4284		No limit Note)2	
Rated rotational speed		d	(r/min)	2000	
Max. rotational speed			(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	t brake	4.60	
		With	brake		90
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				10 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the
in number of applicable driver represents the
series. For more information about the part number
please refer to P. 16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake $/ 5.2 \mathrm{~kg}$
With brake/ 6.7 kg Key way dimensions

(b) Motor/Brake connector

Reduce the moment of ineritia ratio if high speed response operation is required. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 13.7 or more | Engaging time (ms)

\square 100 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V) \qquad 50 or less Exciting voltage (DC) (V) \qquad 2 or more

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the serin number of applicable driver represents the information about the part number,
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(For IP67 motor, refer to P. 138.)

<IP65>
 Mass: Without brake/ 6.7 kg
With brake/ 8.2 kg Key way dimensions

(b) Moor/Brak connect

Cautions> Reduce the moment of inertia ratio if high speed rent the dimensions with brake.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

Ex, 24 ± 2.4

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 8.0 kg
With brake $/ 9.5 \mathrm{~kg}$ Key way dimensions
(b) MotorlBrake connector

A5 Family

Motor Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 16.2 or more |
| :--- | :--- | Engaging time (ms)

\square 110 or less Releasing time (ms) Notes) Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) 50 or less 24+2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
\diamond in number of applicable driver represents the series. For more information about the part number,
please refer to P.16. please refer to P. 16

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized. Do not use this for braking the motor in motion.
Static friction torque (N.m) 24.5 or more Engaging time (ms) 80 or less Releasing time (ms) Note)4 25 or less Exciting current (DC) (A) $1.3 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P. 183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents th
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

[Unit: mm
(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake
[Unit: mm
Dimensions
(For IP67 motor, refer to P. 139.)

Mass: Without brake/ 11.0 kg
With brake/ 12.6 kg

Key way dimensions

Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

A5 Family
Motor Specifications

Specifications				
			AC200 V	
Motor model		IP65	MDME502GC \square	MDME502SC \square
	IP67		MDME502G1 \square	MDME502S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model No.	A5II, A5 seres	MFD \triangle TB3A2	
		A5IE, A5E series	MFD \triangle TB3A2E	-
	Frame symbol		F-frame	
Power supply capacity (kVA)			7.5	
Rated output (W)			5000	
Rated torque (N.m)			23.9	
Momentary Max. peak torque (N.m)			71.6	
Rated current		(A(rms))	25.9	
Max. current		(A(0-p))	110	
Regenerative brake frequency (imes/min) Note)!		Without option	120	
		DVOP4285×2	No limit Note)2	
Rated rotational speed		d (r/min)	2000	
Max. rotational speed		(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	48.0	
		With brake		. 3
Recommended moment of inertia ratio of the load and the rotor Note)3			10 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notel) Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less
(v) . 3 ± 10 \% 24 2.4

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
3 in number of applicable driver represents the series. For more information about the part number please refer to P.16.

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector

Cautions> Reduce the moment of inertia ratio if high speed rent the dimensions with brake.
Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer tor the latest information.

200 V MDME 7.5 kW [Middle inertia, Middle capacity]

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that "he end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents th \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications					
Motor model				AC200 V	
		IP65		-	-
	IP67			MDMEC12G1 \square	MDMEC12S1 \square
Applicable driver *2	$\begin{array}{ll} \text { Model } & \text { A5II, A5 series } \\ & \text { A5IIE, A5E series } \\ \hline & \text { Frame symbor } \end{array}$			MHD $>$ TC3B4	
				-	-
				H-frame	
Power supply capacity			(kVA)		7
Rated output			(W)		000
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)		. 0
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)		75
Rated current			(A(rms))		. 2
Max. current			(A(0-p))		, 3
Regenerative brake frequency (times/min) Note)		Without option		No limit Note)2	
		DVOP4	285x6	No limit Note)2	
Rated rotational speed		d	(r/min)	1500	
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	t brake	212	
		With	brake		20
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque (N-m)	100 or more
Engaging time (ms)	300 or less
Releasing time (ms) Note) 4	140 or less
Exciting current (DC) (A)	$1.08 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	4508
	Thrust load A-direction (N)	1470
	Thrust load B-direction (N)	1764
During operation	Radial load P-direction (N)	2254
	Thrust load A, B-direction (N)	686

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P. 47.
*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(a) Encoder connector (b) Motor conneclor
(c) Brake connector (only with brake)

* Figures in [] represent the dimensions with brake
[Unit: mm]
<Cautions> Reduce the moment of ineritia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the la
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

200 V MDME 15.0 kW [Middle inertia, Middle capacity]

- Brake specifications (For details, refer to P. 183)

(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

Static friction torque (N.m)	100 or more
Engaging time (ms)	300 or less
Releasing time (ms) Note)	140 or less
Exciting current (DC) (A)	$1.08 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	4508
	Thrust load A-direction (N)	1470
	Thrust load B-direction (N)	1764
During operation	Radial load P-direction (N)	2254
	Thrust load A, B-direction (N)	686

*1 Motor specifications: \square

* 2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents th in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Specifications					
				AC200 V	
$\underset{* 1}{ }$ Motor model		IP65		-	-
	IP67			MDMEC52G1 \square	MDMEC52S1 \square
Applicable driver *2	$\begin{array}{\|l\|} \hline \text { Model } \\ \text { No. } \\ \hline \end{array}$	A5II, A5	series	MHD \triangle TC3B4	
		A5IE, A	5E series	-	-
		Frame symbol		H-frame	
Power supply capacity			(kVA)		2
Rated output			(W)		000
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)		. 5
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)		24
Rated current			(A(rms))		. 1
Max. current (A) $(0-\mathrm{p})$)					36
Regenerative brake frequency (times/min) Note)		Without option		No limit Note)2	
		DVOP4	285×6	No limit Note)2	
Rated rotation	nal speed	d	(r/min)	1500	
Max. rotational speed (r/min)				2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	t brake	302	
		With	brake		11
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector (b) Motor/ connector
(c) Brake connector (only with brake)

* Figures in [] represent the dimensions with brake.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC200 V	
Motor model		IP65		-	-
	IP67			MFME152G1 \square	MFME152S1 \square
Applicable driver *2	ModelNo.	A5II, A5	series	MDD \diamond T5540	
		A5IE, A5	5E series	MDD \triangle T5540E	-
	Frame symbol			D-frame	
Power supply capacity			(kVA)	2.3	
Rated output			(W)	1500	
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)	7.16	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	21.5	
Rated current			(A(rms))	7.5	
Max. current			(A(o-p))	32	
Regenerative brake frequency (times/min) Note) ${ }^{1}$		Without	option	100	
		DVOP4	4284	No limit Note)2	
Rated rotational speed			(r/min)	2000	
Max. rotational speed			(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without	t brake	18.2	
		With b	brake		3.5
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183) This brake wir be released when it is energized. motor in motion.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	7.8 or more
Engaging time (ms)	80 or less
Releasing time (ms) Notes 4	35 or less
Exciting current (DC) (A)	$0.83 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
Mass: Without brake/ 9.5 kg
With brake/ 12.5 kg

Key way dimensions

(b) Motor/Brake connector

A5 Family
Motor Specifications

Specifications					
		AC2	00 V		
Motor model	IP65	-	-		
	IP67	MFME452G1 \square	MFME452S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \begin{array}{l} \text { Model } \end{array} & \text { A5II, A5 series } \\ \hline \text { No. } & \text { A5IIE, A5E series } \\ \hline \end{array}$	{MFD $\$ TB3A2} \hline & & MFD $>$ TB3A2E		-	
		F-frame			
	Power supply capacity (kVA)		6.8		
Rated output (W)		4500			
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		21.5			
Momentary Max. peak torque (N.m)		54.9			
Rated current (A(rms))		24.7			
Max. current (A(o-p))		105			
Regenerative brake frequency (times/min) Note),	brake Without option	67			
	Emin) Note)11 DVOP4285×2				
	nal speed (r/min)	2000			
Max. rotational speed (r/min)		3000			
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	Without brake	63.1			
	kg.m²) With brake	70.9			
Recommended moment of inertia ratio of the load and the rotor Note)3		10 times or less			
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$		
Resolution per single turn		1048576	131072		

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	31.4 or more
Engaging time (ms)	150 or less
Releasing time (ms) Notes 4	100 or less
Exciting current (DC) (A)	$0.75 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1862
	Thrust load A-direction (N)	686
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	294

*1 Motor specifications: \square
2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to P . 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Dimensions
Mass: Without brake/ 18.2 kg
With brake $/ 23.1 \mathrm{~kg}$

Key way dimensions

55-1	M3 through
	$\infty \rightarrow 10 \mathrm{~h} 9$
\%-4-7	\pm
	¢

(b) Motor/Brake connecto
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC200 V	
Motor model		IP65		MGME092GC \square	MGME092SC \square
	IP67			MGME092G1 \square	MGME092S1 \square
Applicable driver *2	Model No.	A5II, A5	series	MDD ¢ 5 5540	
		A5IE, A	5E series	MDD ¢T5540E	-
	Frame symbol			D-frame	
Power supply capacity (kVA)				1.8	
Rated output (W)				900	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)				8.59	
Momentary Max. peak torque (N.m)				19.3	
Rated current (A(rms))				7.6	
Max. current (A(o-p))				24	
Regenerative brake frequency (times/min) Note)		Withou	option	No limit Note)2	
		DVOP4284		No limit Note)2	
Rated rotational speed		d	(r/min)	1000	
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	t brake	6.70	
		With	brake		99
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				10 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	686
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that "E" end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.) Mass: Without brake/ 6.7 k
With brake $/ 8.2 \mathrm{k}$

Key way dimensions

(b) Motor/Brake connector

Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications					
		AC200 V			
Motor model	IP65	MGME202GC \square	MGME202SC \square		
	IP67	MGME202G1 \square	MGME202S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	{MFD $\$ TA390} \hline & No. A5IE, A5E series & MFD \triangle TA390E		-	
	Frame symbol	F-frame			
	Power supply capacity (kVA)		3.8		
Rated output (W)		2000			
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		19.1			
Momentary Max. peak torque (N.m)		47.7			
Rated current (A(rms))		17.0			
Max. current (A) $(0-\mathrm{p})$)		60			
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2			
	Emin) Note)11 DVOP4285×2	No limit Note)2			
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		1000			
		2000			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	30.3			
	kg.m²) With brake	35.6			
Recommended moment of inertia ratio of the load and the rotor Note)3		10 times or less			
Rotary encoder speciications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute		
	Resolution per single turn	1048576	131072		

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less | Releasing voltage (DC) (V) | $1.3 \pm 10 \%$ |
| :--- | :--- |
| Ex | 20% | | Exciting voltage (DC) (V) | 24 ± 2.4 |
| :--- | :--- | :--- |

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
3 in number of applicable driver represents the series. .or more information about the part number
please refer to P.16. please refer to P. 16

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.139.) Mass: Without brake/ 14.0 kg
With brake/ 17.5 kg

Key way dimensions

[Unit: mm
(a) Encoder connector

Cautions> Reduce the moment of ${ }^{*}$ Figures in [] represent the dimensions with brake.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC200 V	
Motor model		IP65		MGME302GC \square	MGME302SC \square
	IP67			MGME302G1 \square	MGME302S1 \square
Applicable driver *2	Model No.	A5II, A5	5 series	MFD \triangle TB3A2	
		A5IE, A	A5E series	MFD \triangle TB3A2E	-
	Frame symbol			F-frame	
Power supply capacity (kVA)				4.5	
Rated output (W)				3000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)				28.7	
Momentary Max. peak torque (N.m)				71.7	
Rated current (A(rms))				22.6	
Max. current (A(o-p))				80	
Regenerative brake frequency (times/min) Note)		Withou	t option	No limit Note)2	
		DVOP4	4285x2	No limi	it Note) ${ }^{2}$
Rated rotational speed		d	(r/min)	1000	
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	t brake	48.4	
		With	brake		3.7
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.

(Do not use this for braking the motor in motion. $|$| Static friction torque (N.m) | 58.8 or more |
| :--- | :---: |
| Engaging time (ms) | 150 or less |
| Releasing time (ms) Note)4 | 50 or less |
| Exciting current (DC) (A) | $1.4 \pm 10 \%$ |
| Releasing voltage (DC) (V) | 2 or more |
| Exciting voltage (DC) (V) | 24 ± 2.4 |

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During	Radial load P-direction (N)	1470
operation	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that the end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } Do not use this for braking the motor in motion.

Static friction torque (N-m)	58.8 or more
Engaging time (ms)	150 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$1.4 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

For details of Note 1 to Note 5 , refer to P.182, P. 183 Dimensions of Driver, refer to P.45.
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P.16. please refer to P. 16 .

Torque characteristics (at AC200 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

Dimensions

(a) Encoder connector

* Figures in [] represent the dimensions with brake
$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array} \text {. }\end{array}$ Dimensions are subject to change without notice. Contact us or a dealer tor the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

200 V MGME 6.0 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1764
	Thrust load A, B-direction (N)	588

*1 Motor specifications: \square

* 2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
		AC200 V	
Motor model	IP65	MHME102GC \square	MHME102SC \square
	IP67	MHME102G1 \square	MHME102S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MDD ¢ 3530	
	No. A5IE, A5E series	MDD \triangle T3530E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		1.8	
Rated output (W)		1000	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		4.77	
Momentary Max. peak torque (N.m)		14.3	
Rated current (A(rms))		5.7	
Max. current (A) $(0-\mathrm{p})$)		24	
Regenerative brake frequency (times/min) Note),	brake Without option	83	
	(min) Note) 1 DVOP4284	No limit Note)2	
Rated rotational speed (r/min)		2000	
		3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Pria Without brake	24.7	
	kg.m²) With brake		. 0
Recommended moment of inertia ratio of the load and the rotor Note)3		5 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
	Resolution per single turn	1048576	131072

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.)

Dimensions

(For IP67 motor, refer to P.140.)
 Mass: Without brake/ 6.7 kg
With brake/ 8.1 kg Key way dimensions

(b) Motor/Brake connector

Specifications

- Brake specifications (For details, refer to P. 183
This brake will be released when it is energized. Do not use this for braking the motor in motion.
Static friction torque (N.m) 13.7 or more Engaging time (ms) 100 or less Releasing time (ms) Notel) 50 or less Exciting current (DC) (A) $0.79 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square

* 2 The product that the end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)
 Mass: Without brake/ 8.6 kg
With brake/ 10.1 kg

Key way dimensions

(b) Motor/Brake connecio

* Figures in [] represent the dimensions with brake

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Motor Specifications

Specifications						
			AC200 V			
Motor model		IP65	MHME202GC \square	MHME202SC \square		
	IP67		MHME202G1 \square	MHME202S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model No.	A5II, A5 seres	{MED $\$ T7364} \hline & & A5IE, A5E series & MED \triangle T7364E		-	
		Frame symbol		E-frame		
	Power supply capacity (kVA)			3.3		
Rated output (W)			2000			
Rated torque (N.m)			9.55			
Momentary Max. peak torque (N.m)			28.6			
Rated current		(A(rms))	11.1			
Max. current		(A(o-p))	47			
Regenerative brake frequency (imes/min) Note)!		Without option	45			
		DVOP4285		12		
Rated rotational speed		d (r/min)	2000			
Max. rotational speed		(r/min)	3000			
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	57.8			
		With brake		. 6		
Recommended moment of inertia ratio of the load and the rotor Note)3			5 times or less			
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$		
Resolution per single turn			1048576	131072		

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notes Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less Exciting voltage (DC) (V)
\square .3 $\mathbf{1 0}$ \% 24 ± 2.4
Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
$3 \diamond$ in number of applicable driver represents the series. .or more information about the part number,
please refer to P.16.

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

ambient temperature ${ }^{\circ} \mathrm{C}$ C
(For IP67 motor, refer to P.140.) Mass: Without brake/ 12.2 kg
With brake/ 15.5 kg Key way dimensions

[Unit: mm
(a) Encoder connector

Cautions> * Figures in [] represent the dimensions with brake.
Dimence the moment of inertia ratio if high speed response operation is requirect to change without notice. Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Brake specifications (For details, refer to P. 183
(This brake will be released when it it energized. Do not use this for braking the motor in motion.
Static friction torque (N.m) 24.5 or more Engaging time (ms) 80 or less Releasing time (ms) Notel) 25 or less Exciting current (DC) (A) $1.3 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
Luring operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

*1 Motor specifications:
2 The product that "he end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(For IP67 motor, refer to P.140.)

(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake
$\begin{array}{lll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio if tigh speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array}$ Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
			AC200 V	
Motor model		IP65	MHME402GC \square	MHME402SC \square
	IP67		MHME402G1 \square	MHME402S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	ModelNo.	A5II, A5 seres	MFD \triangle TB3A2	
		A5IE, A5E series	MFD \triangle TB3A2E	-
	Frame symbol		F-frame	
Power supply capacity (kVA)			6.0	
Rated output (W)			4000	
Rated torque (N.m)			19.1	
Momentary Max. peak torque (N.m)			57.3	
Rated current		(A(rms))	21.0	
Max. current		(A(o-p))	89	
Regenerative brake frequency (imes/min) Note)!		Without option	17	
		DVOP4285×2	125	
Rated rotational speed		d (r/min)	2000	
Max. rotational speed		(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	112	
		With brake		14
Recommended moment of inertia ratio of the load and the rotor Note)3			5 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less | Releasing volage (D) (V) | $1.3 \pm 10 \%$ |
| :--- | :--- | | Exciting voltage (DC) (V) | 24 ± 2.4 |
| :--- | :--- | :--- |

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
3 in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

- Brake specifications (For details, refer to P. 183
(This brake will be released when it it energized. Do not use this for braking the motor in motion.
Static friction torque (N.m) 24.5 or more Engaging time (ms) 80 or less Releasing time (ms) Notel) 25 or less Exciting current (DC) (A) $1.3 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that "he end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part numbe
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)

(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake.

Dimensions are subject to change without notice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications																																								
Motor model				AC200 V																																				
		IP65		-	-																																			
	IP67			MHME752G1 \square	MHME752S1 \square																																			
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$	A5II, A5	5 series	MGD $\$ TC3B4} \hline & & A5IIE, A & A5E series & - & - \hline & \multicolumn{3}{\|r	}{Frame symbol} & \multicolumn{2}{	r	}{G-frame} \hline \multicolumn{4}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{11} \hline \multicolumn{4}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{7500} \hline \multicolumn{4}{\|l	}{Rated torque (N.m)} & \multicolumn{2}{	r	}{47.8} \hline \multicolumn{4}{\|l	}{Momentary Max. peak torque (N.m)} & \multicolumn{2}{	r	}{119} \hline \multicolumn{2}{\|l	}{Rated current} & & (A(rms)) & \multicolumn{2}{	r	}{44.0} \hline \multicolumn{2}{\|l	}{Max. current} & & (A(0-p)) & \multicolumn{2}{	r	}{165} \hline \multicolumn{2}{\|l	}{\multirow[t]{2}{*}{Regenerative brake frequency (times/min) Note),}} & Without & ut option & \multicolumn{2}{	r	}{No limit Note)2} \hline & & DVOP4 & 4285x4 & No lim & Note)2 \hline \multicolumn{2}{\|l	}{Rated rotational speed} & d & (r/min) & \multicolumn{2}{	r	}{1500} \hline \multicolumn{2}{\|l	}{Max. rotational speed} & & (r/min) & \multicolumn{2}{	r	}{3000} \hline \multicolumn{2}{\|l	}{\multirow[t]{2}{*}{Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)}		Withou	ut brake	273	
		With	brake		79																																			
	Recommended moment of inertia ratio of the load and the rotor Note) 3				5 times or less																																			
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute																																			
Resolution per single turn				1048576	131072																																			

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 58.8 or more | Engaging time (ms) \qquad 50 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)

(V) 50 or les Exciting voltage (DC) (V) $1.41 \pm 10 \%$
2 or more

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

- Brake specifications (For details, refer to P. 183)

(This brake will be released when it is energized.
Do not use this for braking the motor in motion.

Static friction torque (N.m)	2.5 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.70 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

,1 Motor specifications: \square
*2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)
 Mass: Without brake/ 3.1 kg
With brake/ 4.1 kg

Key way dimensions
Cise
(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high speed response eration is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications												
		AC400 V										
Motor model	IP65	MSME104GC \square	MSME104SC \square									
	IP67	MSME104G1 \square	MSME104S1 \square									
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MDD ¢ 3420										
	No. A5IE, A5E series	MDD $\$ T3420E & - \hline & Frame symbol & \multicolumn{2}{\|r	}{D-frame} \hline \multicolumn{2}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{1.8} \hline \multicolumn{2}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{1000} \hline \multicolumn{2}{\|l	}{Rated torque ($\mathrm{N} \cdot \mathrm{m}$)}	3.18	
	Momentary Max. peak torque (N.m)		9.55									
Rated current (A(rms))		3.3										
Max. current (A) $(0-\mathrm{p})$)		14										
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2										
	Emin) Note)11 DVOPM20048	No limit Note)2										
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		3000										
		5000										
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	2.03										
	kg.m²) With brake	2.35										
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less										
Rotary encoder speciications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \end{gathered}$ Absolute									
	Resolution per single turn	1048576	131072									

- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Do not use this for braking the motor in motion. | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.81 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
3 in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.137.)

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake
[Unit: mm

400 V MSME 1.5 kW [Low inertia, Middle capacity]

Specifications					
Motor model		AC400 V			
	IP65	MSME154GC \square	MSME154SC \square		
	IP67	MSME154G1 \square	MSME154S1 \square		
Applicable driver *2	Model A5II, A5 series	{MDD $\$ T 3420} \hline & No. A5IE, A5E series & MDD \triangle T 3420 E		-	
	Frame symbol	D-frame			
	Power supply capacity (kVA)		2.3		
Rated output (W)		1500			
Rated torque (N.m)		4.77			
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)		14.3			
Rated current (A)(rms))		4.2			
Max. current (A) $(0-\mathrm{p})$)		18			
Regenerative brake frequency (times/min) Note)	Without option	No limit Note)2			
	min) Note) 11 DVOPM20048	No limit Note)2			
Rated rotational speed (r/min)	al speed (r/min)	3000			
Max. rotational speed (r/min)		5000			
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	Without brake	2.84			
	kg.m²) With brake	3.17			
Recommended moment of inertia ratio of the load and the rotor Note) 3		15 times or less			
Rotary encoder specifications Note)5		$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute		
Resolution per single turn		1048576	131072		

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

,1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents th \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.137.) Mass: Without brake $/ 4.4 \mathrm{~kg}$
With brake $/ 5.4 \mathrm{~kg}$

Key way dimensions
(
(a) Encoder connector
th brak
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications				
		AC400 V		
Motor model	IP65	MSME204GC \square	MSME204SC \square	
	IP67	MSME204G1 \square	MSME204S1 \square	
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \begin{array}{l\|l\|} \hline \text { Model } & \text { A5II, A5 series } \\ \text { No. } & \text { A5IE, A5E series } \\ \hline \end{array} \end{array}$	{MED $\$ T4430} \hline & & MED \triangle T4430E		-
		E-frame		
		3.3		
Rated output (W)		2000		
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		6.37		
Momentary Max. peak torque (N.m)		19.1		
Rated current (A(rms))		5.7		
Max. current (A) $(0-\mathrm{p})$)		24		
Regenerative brake frequency (times/min) Note),	brake Without option	No limit Note)2		
	Emin) Note)11 DVOPM20049	No limit Note)2		
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		3000		
		5000		
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	3.68		
	kg.m²) With brake	4.01		
Recommended moment of inertia ratio of the load and the rotor Note) 3		15 times or less		
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$	
	Resolution per single turn	1048576	131072	

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.81 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P. 45 .
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
3 in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For morere information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Specifications					
				AC400 V	
Motor model		IP65		MSME304GC \square	MSME304SC \square
	IP67			MSME304G1 \square	MSME304S1 \square
Applicable driver *2	Model No.	A5II, A5		MFD \triangle T5440	
		A5IE, A	5E series	MFD \triangle T5440E	-
	Frame symbol			F-frame	
Power supply capacity (kVA)				4.5	
Rated output (W)				3000	
Rated torque (N.m)				9.55	
Momentary Max. peak torque (N.m)				28.6	
Rated current (A(rms))				9.2	
Max. current (A(o-p))				39	
Regenerative brake frequency (times/min) Note)		Without	option	No limit Note)2	
		DVOPM2	20049×2	No lim	Note) ${ }^{2}$
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	5000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)			t brake	6.50	
		With	brake		. 5
Recommended moment of inertia ratio of the load and the rotor Note) 3				15 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. ${ }^{\text {183) }}$	
$\left.\begin{array}{l}\text { This brake will be released when it is energized.) } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right)$	
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	11.8 or more
Engaging time (ms)	80 or less
Releasing time (ms) Notel 4	15 or less
Exciting current (DC) (A)	0.81土10\%
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24さ2

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

,1 Motor specifications: \square
2 The product that "he end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions
(For IP67 motor, refer to P.137.) Mass: Without brake $/ 8.3 \mathrm{~kg}$
With brake $/ 9.4 \mathrm{~kg}$

Key way dimensions

Encoder connector
Figures in [] e enese
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications

Specifications					
		AC400 V			
Motor model	IP65	MSME404GC \square	MSME404SC \square		
	IP67	MSME404G1 \square	MSME404S1 \square		
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	{MFD $\$ TA464} \hline & No. A5IE, A5E series & MFD \triangle TA464E		-	
	Frame symbol	F-frame			
	Power supply capacity (kVA)		6.8		
Rated output (W)		4000			
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		12.7			
Momentary Max. peak torque (N.m)		38.2			
Rated current (A(rms))		9.9			
Max. current (A(o-p))		42			
Regenerative brake frequency (times/min) Note)	brake Without option	No limit Note)2			
	smin) Notel 1 DVOPM20049×2	No limit Note)2			
Rated rotational speed $(\mathrm{r} / \mathrm{min})$ Max. rotational speed $(\mathrm{r} / \mathrm{min})$		3000			
		4500			
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	ertia Without brake	12.9			
	kg.m²) With brake		. 2		
Recommended moment of inertia ratio of the load and the rotor Note)3		15 times or less			
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$		
	Resolution per single turn	1048576	131072		

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } tor in motion.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Notes 4	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

Dimensions
(For IP67 motor, refer to P.137.)

Mass: Without brake/ 11.0 kg
With brake/ 12.6 kg

Key way dimensions

UUnit: mm
(a) Encoder connector
(b) Motor/Brake connector
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer tor the latest information.

Specifications

- Brake specifications (For details, refer to P.183) (This brake will be released when it is energized.

Static friction torque (N-m)	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

*1 Motor specifications: \square
2 The product that the end of driver model
designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 14.0 kg
With brake/ 16.0 kg

Key way dimensions

M3 through年
[Unit: mm]
(a) Encoder connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Specifications

			AC400 V	
Motor model		IP65	MDME044GC \square	MDME044SC \square
		IP67	MDME044G1 \square	MDME044S1 \square
Applicable driver *	Model	A5II, A5 series	MDD \diamond T2407	
	No.	A5IE, A5E series	MDD \triangle T2407E	-
	Frame symbol		D-frame	
Power supply capacity (kVA)			0.9	
Rated output (W)			400	
Rated torque (N.m)			1.91	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)			5.73	
Rated current		(A(rms))	1.2	
Max. current		(A(o-p))	4.9	
Regenerative brake frequency (times/min) Note)		Without option	No limit Note)2	
		DVOPM20048	No limit Note)	
Rated rotational speed		(r/min)	2000	
Max. rotational speed		(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	1.61	
		With brake		93
Recommended moment of inertia ratio of the load and the rotor Note) 3			10 times or less	
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn			1048576	131072

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 2.5 or more |

Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.70 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

Luring assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
Δ in number of applicable driver represents the series. For more information about the part number,
please refer to P.16. please refer to P.16.

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Dimensions
(For IP67 motor, refer to P.138.)
 Mass: Without brake/ 3.1 kg
With brake $/ 4.1 \mathrm{~kg}$

Key way dimensions
(2)
(a) Encoder connector
(b) Motor/Brake connector

Specifications

- Brake specifications (For details, refer to P. 183

This brake will be released when it is energized.
Do not use this for braking the motor in motion.

Static friction torque (N.m)	2.5 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note)4	15 or less
Exciting current (DC) (A)	$0.70 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square

* 2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 3.5 kg
With brake/ 4.5 kg

Key way dimensions
Cise
(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | Engaging time (ms) \qquad 30 or less Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V)

(V) $0.59 \pm 10 \%$ Exciting voltage (DC) (V) \qquad 24 ± 2.4
Permissible load (For details, refer to P. 183)

Luring assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16. please refer to P. 16 .

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(For IP67 motor, refer to P.138.)

<IP65>
 Mass: Without brake/ 5.2 kg
With brake/ 6.7 kg Key way dimensions
\qquad
(b) Motor/Brake connector

Cautions> Reduce the moment of inertia ratio if high speresent the dimensions with brake.
[Unit: mm]

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
 Dimensions aris ect to change without notice. Contact us or a dealer for the latest information

 Read the Instruction Manual carefully and understand all precautions and remarks before using the products.| Specifications | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | AC400 V | |
| Motor model | IP65 | | | MDME154GC \square | MDME154SC \square |
| | IP67 | | | MDME154G1 \square | MDME154S1 \square |
| Applicable driver *2 | $\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$ | A5II, A5 | 5 series | | |
| | | A5IE, A5 | 5E series | MDD \triangle T 3420 E | - |
| | | Frame symbol | | D-frame | |
| Power supply capacity | | | (kVA) | | . 3 |
| Rated output | | | (W) | | 00 |
| Rated torque | | | ($\mathrm{N} \cdot \mathrm{m}$) | | 16 |
| Momentary Max. peak torque | | | ($\mathrm{N} \cdot \mathrm{m}$) | | 1.5 |
| Rated current | | | (A(rms)) | | . 7 |
| Max. current | | | (A(o-p)) | | 2 |
| Regenerative brake frequency (times/min) Note) | | Without option | | No limit Note)2 | |
| | | DVOPM | 20048 | No limit Note)2 | |
| Rated rotational speed | | | (r/min) | 2000 | |
| Max. rotational speed | | | (r/min) | 3000 | |
| Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ | | Without | t brake | 6.70 | |
| | | With b | brake | | 99 |
| Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$ | | | | 10 times or less | |
| Rotary encoder specifications | | | Note) 5 | $\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$ | 17-bit Absolute |
| | Resolution per single turn | | | 1048576 | 131072 |

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.138.) Mass: Without brake/ 6.7 kg
With brake 8.2 kg Key way dimensions
(b) Motor/Brake connecior

Figures in [] represent the dimensions with brak
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 13.7 or more | Engaging time (ms)

 00 or less Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) 50 or les Exciting voltage (DC) (V)$0.79 \pm 10 \%$
24さ2.4

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During	Radial load P-direction (N)	490
operation	Thrust load A, B-direction (N)	196
- For details of Note 1 to Note 5, refer to P.182, P.183.		

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
Δ in number of applicable driver represents the series. For more information about the part number
please refer to P. 16. please refer to P. 16

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Dimensions
(For IP67 motor, refer to P. 138.)

<IP65> Mass: Without brake/ 8.0 kg
With brake 9.5 kg Key way dimensions

(b) Motor/Brake connector

- Brake specifications (For details, refer to P. 183

This brake will be released when it is energized.)
To not use this for braking the motor in motion.

Static friction torque (N.m)	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)
 With brake/ 12.6 k

Key way dimensions

(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high spee ponse operation is required.
Dimensions are subiect to change without notice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family

Specifications

			AC400 V																
Motor model		IP65	MDME404GC \square	MDME404SC \square															
		IP67	MDME404G1 \square	MDME404S1 \square															
Applicable driver *	Model	A5II, A5 series	MFD $\$ TA464} \hline & No. & A5IE, A5E series & MFD \TA464E & - \hline & \multicolumn{2}{\|r	}{Frame symbol} & \multicolumn{2}{	r	}{F-frame} \hline \multicolumn{3}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{6.8} \hline \multicolumn{3}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{4000} \hline \multicolumn{3}{\|l	}{Rated torque (N.m)} & \multicolumn{2}{	r	}{19.1} \hline \multicolumn{3}{\|l	}{Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)		57.3	
	Rated current		(A(rms))	10.6															
	Max. current		(A(o-p))	45															
Regenerative brake frequency (times/min) Note)		Without option	No limit Note)2																
		DVOPM20049×2	No limit Note)																
Rated rotational speed		(r/min)	2000																
Max. rotational speed		(r/min)	3000																
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	37.6																
		With brake		. 9															
Recommended moment of inertia ratio of the load and the rotor Note) 3			10 times or less																
Rotary encoder specifications Note)5			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute															
Resolution per single turn			1048576	131072															

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less | Releasing volage (DC) (V) | $1.3 \pm 10 \%$ |
| :--- | :--- |
| Ex | 2024 | | Exciting voltage (DC) (V) | 24 ± 2.4 |
| :--- | :--- | :--- |

Permissible load (For details, refer to P. 183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
\diamond in number of applicable driver represents the series. For more information about the part number,
please refer to P.16. please refer to P. 16 .

Torque characteristics (at AC400 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector
(b) Motor/Brake connector

Deduce the moment of inertia ratio if high speed response operation is required. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MDME 5.0 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

Specifications

- Brake specifications (For details, refer to P. 183
(This brake will be released when it it energized. Do not use this for braking the motor in motion.
Static friction torque (N.m) 24.5 or more Engaging time (ms) 80 or less Releasing time (ms) Notel) 25 or less Exciting current (DC) (A) $1.3 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

*1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
\checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

(a) Encoder connector

* Figures in [] represent the dimensions with brake.
$\begin{array}{lll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio if figh speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the latest information. }\end{array}$ Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
Motor model				AC400 V	
		IP65		-	-
	IP67			MDME754G1 \square	MDME754S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \begin{array}{l} \text { Model } \\ \text { No. } \end{array} & \text { A5II, A5 series } \\ \hline \text { A5IE, A5E series } \\ \hline \text { Frame symbol } \end{array}$			MGD $>$ TB4A2	
				-	-
				G-frame	
Power supply capacity			(kVA)		1
Rated output			(W)		00
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)		. 8
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)		9
Rated current			A(rms))		2
Max. current			(A(o-p))		3
Regenerative brake frequency (times/min) Note)		Without	option	No limit Note)2	
		DVOPM2	20049×	No limit Note)2	
Rated rotational speed		d	(r/min)	1500	
Max. rotational speed			(r/min)	3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Withou	brake	101	
		With	brake		07
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications				$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
	Resolution per single turn			1048576	131072

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 58.8 or more |
| :--- | :--- | Engaging time (ms)

\square 50 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) $.4 \pm 10 \%$ 24 22.4

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P. 16 .

Dimensions

(a) Encoder connector (b) Motor/ connecior
(c) Brake connector (only with brake)
*igures in [] represent the dimensions with brake.
 <Cautions> Reduce the moment of inertia ratio if high speed response operation is required.

Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC400 V	
Motor model		IP65		-	-
	IP67			MDMEC14G1 \square	MDMEC14S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Model } \\ \text { No. } \end{array} \\ & \hline \mathrm{Fr} \end{aligned}$	A5II, A5	series	MHD \triangle TB4A2	
		A5IE, A5	E series	-	-
		Frame symbol		H-frame	
Power supply capacity (kVA)				17	
Rated output (W)				11000	
Rated torque (N.m)				70	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)				175	
Rated current		(A(rms))	27.1	
Max. current			(A(o-p))	101	
Regenerative brake frequency (times/min) Note) 1		Without	option	No limit Note)2	
		DVOPM2	20049x	No limit Note)2	
Rated rotational speed		d	(r/min)	1500	
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	brake	212	
		With b	brake		20
Recommended moment of inertia ratio of the load and the rotor Note) 3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \text { 17-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn				1048576	131072

\section*{- Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.
 | Static friction torque (N-m) | 100 or more |
| :--- | :---: |
| Engaging time (ms) | 300 or less |
| Releasing time (ms) Note)4 | 140 or less |
| Exciting current (DC) (A) | $1.08 \pm 10 \%$ |
| Releasing voltage (DC) (V) | 2 or more |
| Exciting voltage (DC) (V) | 24 ± 2.4 |}

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	4508
	Thrust load A-direction (N)	1470
	Thrust load B-direction (N)	1764
During operation	Radial load P-direction (N)	2254
	Thrust load A, B-direction (N)	686

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(c) Brake connector (b) Motor/ connector
(c) Brake connector (only with brake)

* Figures in [] represent the dimensions with brake
[Unit: mm] <Cautions> Reduce the moment of inertia ratio if high speed response operation is required.

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- Brake specifications (For details, refer to P. 183) This brake wifit be released when it is energized. or in motion.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	100 or more
Engaging time (ms)	300 or less
Releasing time (ms) Notes 4	140 or less
Exciting current (DC) (A)	$1.08 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-directio	450
	Thrust load A-directio	
	Thrust load B-direction (N)	
During operation	Radial load P-direction (N)	
	Thrust load A, B-direction (N)	686
- For details of Note 1 to Note 5, refer to P.182, P. 183. - Dimensions of Driver, refer to P. 47 . *1 Motor specifications:		
* 2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P. 16		
*3 \diamond in number of applicable driver represents the series. For more information about the part number please refer to P.16.		

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector (b) Motor/ connector
(c) Brake
(c) Brake connector (only with brake)

* Figures in [] represent the dimensions with brake.
<Cautions> Reduce the moment of ineritia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the la
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MFME 1.5 kW $\begin{aligned} & \text { Middle inertia, Middle capacity } \\ & \text { Flat type }\end{aligned}$
A5 Family
Motor Specifications

- Brake specifications (For details, refer to P. 183)

(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

Static friction torque (N.m)	7.8 or more
Engaging time (ms)	80 or less
Releasing time (ms) Note)	35 or less
Exciting current (DC) (A)	$0.83 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications				
		AC400 V		
Motor model	IP65	-	-	
	IP67	MFME254G1 \square	MFME254S1 \square	
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \begin{array}{l} \text { Model } \end{array} & \text { A5II, A5 series } \\ \hline \text { No. } & \text { A5IIE, A5E series } \\ \hline \end{array}$	{MED $\$ T4430} \hline & & MED \triangle T4430E		-
		E-frame		
		3.9		
Rated output (W)		2500		
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		11.9		
Momentary Max. peak torque (N.m)		30.4		
Rated current (A(rms))		6.7		
Max. current (A(o-p))		29		
Regenerative brake frequency (times/min) Note)!	brake Without option	75		
	Emin) Note)11 DVOPM20049	No limit Note)2		
Rated rotational speed (r/min)	nal speed (r/min)	2000		
Max. rotational speed (r/min)				
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	Without brake	35.8		
	kg.m²) With brake	45.2		
Recommended moment of inertia ratio of the load and the rotor Note) 3		10 times or less		
Rotary encoder specifications Note)5		$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$	
Resolution per single turn		1048576	131072	

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	21.6 or more
Engaging time (ms)	150 or less
Releasing time (ms) Notes 4	100 or less
Exciting current (DC) (A)	$0.75 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1862
	Thrust load A-direction (N)	686
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	294

*1 Motor specifications: \square
2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to P . 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Mass: Without brake/ 13.1 kg
With brake/ 17.2 kg Key way dimensions
(20)
(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake.

400 V MFME 4.5 kW $\begin{aligned} & \text { Middle inertia, Middle capacity } \\ & \text { Flat type }\end{aligned}$
A5 Family
Motor Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion. $)$
Static friction torque (N.m) 31.4 or more Engaging time (ms) 150 or less Releasing time (ms) Note) 100 or less Exciting current (DC) (A) $0.75 \pm 10 \%$ Releasing voltage (DC) (V) 2 or more Exciting voltage (DC) (V) 24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1862
	Thrust load A-direction (N)	686
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	294

*1 Motor specifications: \square
2 The product that "he end of driver model designation has " E " is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents th \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
<IP67>
(a) Encoder connector
<Cautions> Reduce the moment of inertia ratio if high s
Dimensions are subiect to change with spet Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MGE 0.9 kW [Middle inertia, Middle capacity]

Specifications					
Motor model				AC400 V	
		IP65		MGME094GC \square	MGME094SC \square
	IP67			MGME094G1 \square	MGME094S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l} \text { Model } & \text { A5II, A5 series } \\ \text { No. } & \text { A5IE, A5E series } \\ \hline \text { Frame symbol } \end{array}$			MDD \diamond T3420	
				MDD $<$ T3420E	-
				D-frame	
Power supply capacity			(kVA)		8
Rated output			(W)	900	
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)	8.59	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	19.3	
Rated current			(A(rms))	3.8	
Max. current			(A(o-p))	12	
Regenerative brake frequency (times/min) Note) 1		Without	at option	No limit Note)2	
		DVOPN	M20048	No limit Note)2	
Rated rotational speed		d	(r/min)	1000	
Max. rotational speed			(r/min)	2000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Withou	ut brake	6.70	
		With	brake		. 99
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 13.7 or more | Engaging time (ms)

\square 00 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) 50 or less Exciting voltage (DC) (V)
Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	686
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
2 The product that the end of driver model designation has " E " i " "Position control type"
Detail of model designation, refer to P . 6 .
\checkmark in number of applicable driver represents the series. For more information about the part number,
please refer to P.16. please refer to P. 16 .

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply volage.)

Dimensions
(For IP67 motor, refer to P. 139.)
 Mass: Without brake/ 6.7 kg
With brake/ 8.2 kg Key way dimensions

(b) Motor/Brake connector
<Cautions> Reduce the moment of inertia ratio if high speed rent the dimensions with brake.
[Unit: mm]

$$
\text { <Cautions> Reduce the moment of inertia ratio if high speed response operation is required. } \begin{aligned}
& \text { Dimensions are subiect to chancoe without notice. Contact us or a dealer for the }
\end{aligned}
$$

Diment ind thect to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MGME 2.0 kW [Middle inertia, Middle capacity]
A5 Family
Motor Specifications

Specifications

- Brake specifications (For details, refer to P. 183)
(This brake will be released when it is energized.)
Do not use this for braking the motor in motion.
- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.139.)

<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MGME 3.0 kW [Middle inertia, Middle capacity]

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 58.8 or more | Engaging time (ms)

\square 150 or less Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(V) $1.4 \pm 10 \%$ Exciting voltage (DC) (V) \qquad 24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.16.
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Dimensions
(For IP67 motor, refer to P.139.)

(b) Motor/Brake connector

- Brake specifications (For details, refer to P (This brake will be released when it is energized. Do not use this for braking the motor in motion.	
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	58.8 or mor
Engaging time (ms)	150 or less
Releasing time (ms) Note)4	50 or le
Exciting current (DC) (A)	1.4 ± 10 \%
Releasing voltage (DC) (V)	2 or mo
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number
please refer to P.16.

Specifications					
Motor model				AC400 V	
		IP65		-	-
	IP67			MGME454G1 \square	MGME454S1 \square
Applicable driver *2	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Modele } \\ \text { No. } \end{array} \\ \hline \mathrm{Fr} \end{array}$	A5II, A5	series	MFD \triangle TA464	
		A5IE, A5	5 E series	MFD \triangle TA464E	-
		Frame symbol		F-frame	
Power supply capacity (kVA)				7.5	
Rated output (W)				4500	
Rated torque (N.m)				43.0	
Momentary Max. peak torque (N.m)				107	
Rated current			(A(rms))	14.8	
Max. current			(A(o-p))	55	
Regenerative brake frequency (times/min) Note)		Without	option	No limit Note)2	
		DVOPM2	20049×2	No limit Note)2	
Rated rotation	al speed	d	(r/min)	1000	
Max. rotational speed $\quad(\mathrm{r} / \mathrm{min})$				2000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without brake		79.1	
		With b	brake	84.4	
Recommended moment of inertia ratio of the load and the rotor Note)3				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

* Figures in [] represent the dimensions with brake.

<Cautions>	$\begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the }\end{array}$

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

A5 Family
Motor Specifications
400 V MGME 6.0 kW [Middle inertia, Middle capacity]

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } Do not use this for braking the motor in motion.

Static friction torque (N-m)	58.8 or more
Engaging time (ms)	150 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$1.4 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1764
	Thrust load A, B-direction (N)	588

For details of Note 1 to Note 5 , refer to P.182, P. 183 Dimensions of Driver, refer to P.46.
1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the series. For more information about the parts number,
please refer to P.16.

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

Dimensions

(a) Encoder connector (b) Motor/ connector \quad * Figures in [] represent the dimensions with brake.
(c) Brake connector (only with brake) $\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subiect to change without notice. Contact us or a dealer for the latest information. }\end{array}\end{array}$ Dimensions are subject to change without notice. Contact us or a dealer tor the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

1 Motor specifications: \square
*2 The product that the end of driver model designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.) Mass: Without brake/ 6.7 kg
With brake $/ 8.1 \mathrm{~kg}$ Key way dimensions

(a) Ecoder con rector
<Cautions> Reduce the moment of inertia ratio if high speed reration is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications												
		AC400 V										
Motor model	IP65	MHME154GC \square	MHME154SC \square									
	IP67	MHME154G1 \square	MHME154S1 \square									
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II, A5 series	MDD ¢ 3420										
	No. A5IE, A5E series	MDD $\$ T3420E & - \hline & Frame symbol & \multicolumn{2}{\|r	}{D-frame} \hline \multicolumn{2}{\|l	}{Power supply capacity (kVA)} & \multicolumn{2}{	r	}{2.3} \hline \multicolumn{2}{\|l	}{Rated output (W)} & \multicolumn{2}{	r	}{1500} \hline \multicolumn{2}{\|l	}{Rated torque ($\mathrm{N} \cdot \mathrm{m}$)}	7.16	
	Momentary Max. peak torque (N.m)		21.5									
Rated current (A(rms))		4.7										
Max. current (A(o-p))		20										
Regenerative brake frequency (times/min) Note),	brake Without option	22										
	Smin) Note) 1 DVOPM20048		30									
	nal speed (r/min)	2000										
Max. rotational speed (r/min)		3000										
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	ertia Without brake	37.1										
	kg.m²) With brake		. 4									
Recommended moment of inertia ratio of the load and the rotor Note)3		5 times or less										
Rotary encoder specifications Note)5		$\begin{gathered} \hline 20 \text {-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$									
Resolution per single turn		1048576	131072									

Torque characteristics (at AC400 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } or in motion.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Notes 4	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

- 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

- Brake specifications (For details, refer to P.183)
(This brake will be released when it is energized.)
(Do not use this for braking the motor in motion.

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

*1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detaii of model designation, refer to P. 6 .
$3 \diamond$ in number of applicable driver represents the
in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

(For IP67 motor, refer to P.140.) Mass: Without brake/ 12.2 kg
With brake/ 15.5 k

Key way dimensions

[Unit: mm
(b) Motor/Brake connecto

<Cautions>	$\begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the }\end{array}$

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications					
				AC400 V	
Motor model	IP65			MHME304GC \square	MHME304SC \square
	IP67			MHME304G1 \square	MHME304S1 \square
Applicable driver *2	ModelNo.	A5II, A5	5 series	MFD \triangle T 5440	
		A5IIE, A	A5E series	MFD \triangle T5440E	-
	Frame symbol			F-frame	
Power supply capacity (kVA)				4.5	
Rated output (W)				3000	
Rated torque (N.m)				14.3	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)				43.0	
Rated current			(A(rms))	8.0	
Max. current			(A(0-p))	34	
Regenerative brake frequency (times/min) Note),		Without	ut option	19	
		DVOPM	20049×2	142	
Rated rotational speed		d	(r/min)	200	00
Max. rotational speed			(r/min)	3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Withou	ut brake	90.5	
		With	brake	92	. 1
Recommended moment of inertia ratio of the load and the rotor Note)3				5 times or less	
Rotary encoder specifications			Notele 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

Torque characteristics (at AC400 V of power voltage $<$ Doted line represents the torque at 10% less supply voltage.)

- Brake specifications (For details, refer to P. 183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notet Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less Exciting voltage (DC) (V)
(v) . 3 ± 10 \% 24さ2.4

Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

* 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number,
please refer to P. 16 .

Specifications

- Brake specifications (For details, refer to P. 183)

This brake will be released when it is energized.)
Do not use this for braking the motor in motion.

Static friction torque (N.m)	24.5 or more
Engaging time (ms)	80 or less
Releasing time (ms) Note)4	25 or less
Exciting current (DC) (A)	$1.3 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
Luring operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

,1 Motor specifications: \square
2 The product that "he end of driver model
designation has " E " is "Position control type"
Detail of model designation, refer to P.16
$3 \diamond$ in number of applicable driver represents the
\diamond in number of applicable driver represents the
series. For more information about the part number
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
(For IP67 motor, refer to P.140.)

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

Specifications			
Motor model ${ }_{* 1}$		AC400 V	
	IP65	MHME504GC \square	MHME504SC \square
	IP67	MHME504G1 \square	MHME504S1 \square
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	$\begin{array}{l\|l\|} \hline \text { Model } & \text { A5II, A5 series } \\ \hline \text { No. } & \text { A5IIE, A5E series } \\ \hline \end{array}$		
		MFD MFD ¢TA464E	
		F-frame	
Power supply capacity (kVA)		7.5	
Rated output (W)		5000	
Rated torque (N.m)		23.9	
Momentary Max. peak torque (N.m)		71.6	
Rated current (A)(ms))		13.0	
Max. current (A(o-p))		55	
Regenerative brake frequency (times/min) Note),	brake Without option	10	
	smin) Notel 1 DVOPM20049×2	76	
Rated rotational speed (r/min)	nal speed (r/min)	2000	
Max. rotational speed (r/min)		3000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	Without brake	162	
	kg.m²) With brake	164	
Recommended moment of inertia ratio of the load and the rotor Note)3		5 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} \text { 20-bit } \\ \text { Incremental } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \text {-bit } \\ \text { Absolute } \\ \hline \end{gathered}$
Resolution per single turn		1048576	131072

- Brake specifications (For details, refer to P. 183 $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | (Do not use this for braking the motor in motion. |
| :--- |
| Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) |
| 24.5 or more | Engaging time (ms) Releasing time (ms) Notel) Exciting current (DC) (A) Releasing voltage (DC) (V)

\square 30 or less | Releasing volage (DC) (V) | $1.3 \pm 10 \%$ |
| :--- | :--- | | Exciting voitage (DC) (V) | 24 ± 2.4 |
| :--- | :--- |

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343
- For		

* 1 Motor specifications: \square

2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P16.
$3 \diamond$ in number of applicable driver represents the series. For more information about the part number please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

三	

Dimensions
(For IP67 motor, refer to P.140.)

(a) Encoder connector
(b) Motor/Brake connector

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Dimensions are subject to change without notice. Contact us or a dealer for the latest information.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

400 V MHME 7.5 kW [High inertia, Middle capacity]

\section*{- Brake specifications (For details, refer to P. 183) $\left(\begin{array}{l}\text { This brake will be released when it is energized. } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$
 | Static friction torque (N-m) | 58.8 or more |
| :--- | :---: |
| Engaging time (ms) | 150 or less |
| Releasing time (ms) Note)4 | 50 or less |
| Exciting current (DC) (A) | $1.4 \pm 10 \%$ |
| Releasing voltage (DC) (V) | 2 or more |
| Exciting voltage (DC) (V) | 24 ± 2.4 |}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

*1 Motor specifications: \square
2 The product that the end of driver model designation has "E" is "Position control type"
Detail of model designation, refer to P. 16 .
$3 \diamond$ in number of applicable driver represents the \checkmark in number of applicable driver represents the
series. For more information about the part number,
please refer to P.16.

Torque characteristics (at AC400 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
 <Cautions> Reduce the moment of inertia ratio if high speed response operation is required.

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

- MSME084 $\square 1$ *

MSME10 $\square \square 1$ *

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake.

- MSME15 $\square \square$ 1*

Unit: mm]

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

MSME30 $\square \square$ 1*

[^2]Figures in [] represent the dimensions with brake

(a) Encoder connector (b) Motor/Brake connector * Figures in [] represent the dimensions with brake. If you find two figures in [] , left figure is for 200 V and
right figure is for 400 V . right figure is for 400 V .

- MSME20 $\square \square$ 1*
[Unit: mm]

(a) Encoder connector (b) Motor/Brake connector

Figures in [] represent the dimoricne connector Figures in [] represent the dimensions with brake.
If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

- MSME40 $\square \square 1 *$ [Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
- MDME064 $\square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.

MDME15 $\square \square 1$ *

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake. If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

- MDME044 $\square 1$ *
(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake

- MDME10 $\square \square$ * * Unit mm

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake. Figures in [] represent the dimensions with brake.
If you find two figures in [] ,left tigure is for 200 V and right figure is for 400 V .

MDME20 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector (b) Motor/Brake connector

Figures in [] represent the dimensions with brake. If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake.
- MDME50 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
- MGME20 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake.

- MDME40 $\square \square 1 *$

(a) Encoder connector
(b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
- MGME09 $\square \square 1 *$ [Unit: mm]

(a) Encoder connector (b) Motor/Brake connector Figures in [] represent the dimensions with brake. Ifigures in [] represent the dimensions with brake.
If you find two figures in [], left figure is for 200 V and right figure is for 400 V .
- MGME30 $\square \square 1$ *
[Unit: mm]

a) Encoder connector
(b) Motor/Brake connector

(a) Encoder connector (b) Motor/Brake connector
* Figures in [] represent the dimensions with brake.
If you find two figures in [], left figure is for 200 V and If you find two figures in [], left figure is for 200 V and right figure is for 400 V .

MHME20 $\square \square 1 *$

(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake.

MHME40 $\square \square 1$ *
[Unit: mm]

(a) Encoder connector

(b) Motor/Brake connector

Figures in [] represent the dimensions with brake
(a) Encoder connector (b) Motor/Brake connector * Figures in [] represent the dimensions with brake. If you find two figures in [], left figure is for 200 V and right figure is for 400 V

- MHME30 $\square \square 1$ * [Unit: mm]

a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake.
MHME50 $\square 1$ *
[Unit: mm]

(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brak

Motors with Gear Reducer Type and Specifications

Motor Types with Gear Reducer

Specifications of Motor with Gear Reducer

Items		Specifications
Gear reducer	Backlash	3 minutes or smaller (initial value) at output shaft of the reducer
	Composition of gear	Planetary gear
	Gear efficiency	65 \% to 85 \%
	Lubrication	Grease lubrication
	Rotational direction at output shaft	Same direction as the motor output shaft
	Mounting method	Flange mounting
	Permissible moment of inertia of the load (conversion to the motor shaft)	10 times or smaller than rotor moment of inertia of the motor
	Protective structure	IP44 (at gear reducer)
Environment	Ambient temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (free from condensation)
	Ambient humidity	85% RH (free from condensation) or less
	Vibration resistance	$49 \mathrm{~m} / \mathrm{s}^{2}$ or less (at motor frame)
	Impact resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ or less

Model Designation/

The Combination of the Driver and the Motor Motors with Gear Reducer
-For combination of e lements of model number, refer to Inder

The Combination of the Driver and the Motor with gear reducer

Motor output	100 V		200 V	
	Part No. of motor with gear reducer	Single phase, 100 V	Part No. of motor with gear reducer	Single/3-phase, 200 V
		Part No. of driver		Part No. of driver
100 W	MSME011 \qquad MSMD011 \square N	MADHT1107 MADKT1107	MSME012 \qquad MSMD012 \square	MADHT1505 MADKT1505
		MADHT1107E MADKT1107E		MADHT1505E MADKT1505E
200 W	$\begin{aligned} & \text { MSME021 } \square \square \square \mathbf{N} \\ & \text { MSMD021 } \square \square \square \mathbf{N} \\ & \text { MHMD021 } \square \square \square \mathbf{N} \end{aligned}$	MBDHT2110 MBDKT2110	$\begin{aligned} & \text { MSME022 } \square \square \square \mathbf{N} \\ & \text { MSMD022 } \square \square \square \mathbf{N} \\ & \text { MHMD022 } \square \square \square \mathbf{N} \end{aligned}$	MADHT1507 MADKT1507
		MBDHT2110E MBDKT2110E		MADHT1507E MADKT1507E
400 W	$\begin{aligned} & \text { MSME041 } \square \square \square \mathbf{N} \\ & \text { MSMD041 } \square \square \square \mathbf{N} \\ & \text { MHMD041 } \square \square \square \mathbf{N} \end{aligned}$	MCDHT3120 MCDKT3120	$\begin{aligned} & \text { MSME042 } \square \square \square \mathbf{N} \\ & \text { MSMD042 } \square \square \square \mathbf{N} \\ & \text { MHMD042 } \square \square \square \mathbf{N} \end{aligned}$	MBDHT2510 MBDKT2510
		MCDHT3120E MCDKT3120E		MBDHT2510E MBDKT2510E
750 W	-	-	$\begin{aligned} & \text { MSME082 } \square \square \square \mathbf{N} \\ & \text { MSMD082 } \square \square \square \mathbf{N} \\ & \text { MHMD082 } \square \square \square \mathbf{N} \end{aligned}$	MCDHT3520 MCDKT3520
				MCDHT3520E MCDKT3520E

* Motor specifications enter to $\square \square \square$ of the motor model number. Refer to "Model designation".

Table of Motor Specifications

	Model	Motor Outpu	${ }_{\text {Reduction }}^{\text {ratio }}$	utp	Ratedspeed	$\begin{aligned} & \text { Max. } \\ & \text { speed } \end{aligned}$	Rated torque	$\begin{gathered} \text { Peak } \\ \text { max. } \\ \text { torque } \end{gathered}$	$\begin{gathered} \text { Moment of inertia } \\ \text { (motor + reducer/ } \\ \text { converted } \\ \text { to motor shaft) } \end{gathered}$		Mass		Permissible	Perrissible
									w/o brake	w/ brake	w/o brak	w/ brake		
		(W)		(W)	(r/min)	(r/min)	($\mathrm{N} \cdot \mathrm{m}$)	($\mathrm{N} \cdot \mathrm{m}$)	$\mathrm{J} \times 10^{-4}$	$\left.{ }^{4} \mathrm{k} \cdot \mathrm{m}^{2}\right)$			(N)	(N)
	MSME01 $\square \square \square 1 \mathrm{C}$	100	1/5	75	600	1200	1.18	3.72	0.091	0.094	1.0	1.2	490	245
	MSME01 $\square \square \square \mathbf{~ 2 N ~}$		1/9	80	333	666	2.25	6.86	0.0853	0.0883	1.0	1.2	588	294
	MSME01 $\square \square \square$ 3N		1/15	80	200	400	3.72	11.4	0.086	0.089	1.15	1.35	784	92
	MSME01 $\square \square \square \mathbf{4 N}$		1/25	80	120	240	6.27	19.0	0.0885	0.0915	2.15	2.35	1670	833
	MSME02 $\square \square \square 1 \mathrm{~N}$	200	1/5	170	600	1200	2.65	8.04	0.258	0.278	1.5	1.92	490	245
	MSME02 $\square \square \square 2 \mathrm{~L}$		$1 / 9$	132	333	666	3.72	11.3	0.408	0.428	2.48	2.9	1180	588
	MSME02 $\square \square \square 3 \mathrm{~N}$		1/15	132	200	400	6.27	18.8	0.44	0.46	2.88	3.3	1470	735
	MSME02 $\square \square \square 4 \mathrm{~N}$		1/25	140	120	240	11.1	33.3	0.428	0.448	2.88	3.3	1670	833
	MSME04 $\square \square 1 \mathrm{l}$	400	1/5	340	600	1200	5.39	16.2	0.623	0.643	2.9	3.3	980	490
	MSME04 $\square \square \square 2 \mathrm{~L}$		$1 / 9$	332	333	666	9.51	28.5	0.528	0.548	2.9	3.3	1180	588
	MSME04 $\square \square \square$ 3N		1/15	332	200	400	15.8	47.5	0.56	0.58	3.3	3.7	1470	735
	MSME04 $\square \square \square$ 4N		1/25	332	120	240	26.4	79.2	0.56	0.58	4.4	4.8	2060	1030
	MSME082 $\square \square 1 \mathrm{~N}$	750	1/5	672	600	1200	10.7	32.1	1.583	1.683	4.4	5.2	980	490
	MSME082 $\square \square \mathbf{~ 2 N ~}$		1/9	635	333	666	18.2	54.7	1.52	1.62	5.7	6.5	1470	735
	MSME082 $\square \square 3 \mathrm{~N}$		1/15	635	200	400	30.4	91.2	1.57	1.67	6.1	6.9	1760	882
	MSME082 $\square \square 4 \mathrm{~N}$		1/25	635	120	240	50.7	152	1.52	1.62	6.1	6.9	2650	1320
	MSMD01 $\square \square \square 1 \mathrm{~N}$	100	1/5	75	600	1000	1.18	3.72	0.091	0.094	1.02	1.23	490	245
	MSMD01 $\square \square \square$ 2N		1/9	80	333	555	2.25	6.86	0.0853	0.0883	1.02	1.23	588	294
	MSMD01 $\square \square \square 3 \mathrm{~N}$		1/15	80	200	333	3.72	11.4	0.086	0.089	1.17	1.38	784	392
	MSMD01 $\square \square \square$ 4N		1/25	80	120	200	6.27	19.0	0.0885	0.0915	2.17	2.38	1670	833
	MSMD02 $\square \square \square 1 \mathrm{~N}$	200	1/5	170	600	1000	2.65	8.04	0.258	0.278	1.54	2.02	490	245
	MSMD02 $\square \square \square 2 \mathrm{~N}$		1/9	132	333	555	3.72	11.3	0.408	0.428	2.52	3	1180	588
	MSMD02 $\square \square \square 3 \mathrm{~N}$		1/15	132	200	333	6.27	18.8	0.44	0.46	2.92	3.4	1470	735
	MSMD02 $\square \square \square$ 4N		1/25	140	120	200	11.1	33.3	0.428	0.448	2.92	3.4	1670	833
	MSMD04 $\square \square \square 1 \mathrm{~N}$	400	1/5	340	600	1000	5.39	16.2	0.623	0.643	2.9	3.4	980	490
	MSMD04 $\square \square \square$ 2N		1/9	332	333	555	9.51	28.5	0.528	0.548	2.9	3.4	1180	588
	MSMD04 $\square \square \square$ 3N		1/15	332	200	333	15.8	47.5	0.56	0.58	3.3	3.8	1470	735
	MSMD04 $\square \square \square$ 4N		1/25	332	120	200	26.4	79.2	0.56	0.58	4.4	4.9	2060	1030
	MSMD082 $\square \square 1 \mathrm{~N}$	750	1/5	672	600	900	10.7	32.1	1.583	1.683	4.4	5.2	980	490
	MSMD082 $\square \square 2 \mathrm{~N}$		1/9	635	333	500	18.2	54.7	1.52	1.62	5.7	6.5	1470	735
	MSMD082 $\square \square 3 \mathrm{~N}$		1/15	635	200	300	30.4	91.2	1.57	1.67	6.1	6.9	1760	882
	MSMD082 $\square \square 4 \mathrm{~N}$		1/25	635	120	180	50.7	152	1.52	1.62	6.1	6.9	2650	1320
	MHMD02 $\square \square \square \mathbf{1 N}$	200	1/5	170	600	1000	2.65	8.04	0.538	0.568	1.68	2.12	490	245
	MHMDO2 $\square \square \square$ 2N		$1 / 9$	132	333	555	3.72	11.3	0.688	0.718	2.66	3.1	1180	588
	MHMDO2 $\square \square \square 3 \mathrm{~N}$		1/15	132	200	333	6.27	18.8	0.72	0.75	3.06	3.5	1470	735
	MHMDO2 $\square \square \square$ 4N		1/25	140	120	200	11.1	33.3	0.708	0.738	3.06	3.5	1670	833
	MHMD04 $\square \square \square 1 \mathrm{~N}$	400	1/5	340	600	1000	5.39	16.2	1.033	1.063	3.1	3.5	980	490
	MHMD04 $\square \square \square \mathbf{2 N}$		$1 / 9$	332	333	555	9.51	28.5	0.938	0.968	3.1	3.5	1180	588
	MHMD04 $\square \square \square 3 \mathrm{~N}$		1/15	332	200	333	15.8	47.5	0.97	1.0	3.5	3.9	1470	735
	MHMDO4 $\square \square \square 4 \mathrm{~N}$		1/25	332	120	200	26.4	79.2	0.97	1.0	4.6	5.0	2060	1030
	MHMD082 $\square \square 1 \mathrm{~N}$	750	1/5	672	600	900	10.7	32.	2.223	2.323	4.6	5.4	980	490
	MHMD082 $\square \square 2 \mathrm{~N}$		$1 / 9$	635	333	500	18.2	54.7	2.16	2.26	5.9	6.7	1470	735
	MHMD082 \square - 3 N		1/15	635	200	300	30.4	91.2	2.21	2.31	6.3	7.1	1760	882
	MHMD082 $\square \square$ 4N		1/25	635	120	180	50.7	152	2.16	2.26	6.3	7.1	2650	1320

*Motor specifications enter to $\square \square \square$ of the motor model number. Refer to "Model designation".

Torque Characteristics of Motor

MSME series (100 W to 750 W)

Supply voltage to driver	$\begin{array}{\|l\|} \hline \text { Reduction } \\ \hline \text { Motor ratio } \\ \text { output } \\ \hline \end{array}$	1/5	1/9	1/15	1/25
100 V	100 W				
	200 W				
	400 W	\qquad			
200 V	100 W				
	200 W				
	400 W				
	750 W				

Dotted line represents the torque at 10% less supply voltage.

MSMD series (100 W to 750 W)

Supply voltage to driver	$\begin{array}{\|l\|} \text { Reduction } \\ \hline \text { Motor ratio } \\ \text { output } \end{array}$	1/5	1/9	1/15	1/25
100 V	100 W				
	200 W				
	400 W				
200 V	100 W				
	200 W				
	400 W		\qquad		
	750 W				

MHMD series (200 W to 750 W)

Supply voltage to driver	$\begin{array}{\|l\|} \hline \text { Reduction } \\ \hline \begin{array}{l} \text { Motor ratio } \\ \text { output } \end{array} \\ \hline \end{array}$ output	1/5	1/9	1/15	1/25
100 V	200 W				
	400 W				
200 V	200 W				
	400 W				
	750 W				

[^3]
A5 Family

MSME series
MSMD series

Model	Motor output (W)	$\begin{gathered} \text { Reduction } \\ \text { ratio } \end{gathered}$	L	LL	LR	LQ	LC	LB	LA	s	LH	Lz	LW	(LG)	LE	Key way BxHxLK	T
	100	1/5	191.5	92	32	20	52	50	60	12	10	$\left\lvert\, \begin{gathered} \text { M5 } \\ \text { Depth } \\ 12 \end{gathered}\right.$	18	67.5	$4 \times 4 \times 16$		2.5
MSME01-U-IN			221.5	122													
MSME01 $\square \square \square 2 \mathrm{~N}$		1/9	191.5	92													
			221.5	122													
MSME01 $\square \square \square 3 \mathrm{~N}$		1/15	202	92										78			
MSME01- - Cow			232	122													
MSME01 $\square \square \square 4 \mathrm{~N}$		1/25	234	92	50	30	78	70	90	19	17	$\begin{gathered} \text { M6 } \\ \text { Depth } \\ 20 \end{gathered}$	26	92			3.5
			264	122												$6 \times 6 \times 22$	3.5
MSME02 $\square \square \square 1 \mathrm{~N}$	1/5		184	79.5	32	20	52	50	60	12	10	$\stackrel{\text { M5 }}{\text { Depth }}$	18	72.5		$4 \times 4 \times 16$	2.5
			220.5	116								Depth					
MSME02 $\square \square \square 2 \mathrm{~N}$	200	1/9	219	79.5	50	30	78	70	90	19	17	$\begin{gathered} \text { M6 } \\ \text { Depth } \\ 20 \end{gathered}$	26	89.5	3	$6 \times 6 \times 22$	3.5
			255.5	116													
MSME02 $\square \square$ 3N		1/15	229.5	79.5													
			266	116													
MSME02 $\square \square 4 \mathrm{~N}$		$1 / 25$	229.5	79.5										100			
			266	116													
MSME04 $\square \square \square 1 \mathrm{~N}$	400	1/5	238.5	99													
			275	135.5										89.5			
MSME04 $\square \square \square 2 \mathrm{~N}$		1/9	238.5	99													
			275	135.5													
MSME04 $\square \square$ [${ }^{\text {N }}$		1/15	249	99										100			
MSME04■-ロ3			285.5	135.5													
MSME04 $\square \square \square 4 \mathrm{~N}$		1/25	264	99	61	40	98	90	115	24	18	$\begin{gathered} \text { M8 } \\ \text { Depth } \\ 20 \end{gathered}$	35	104	5	$8 \times 7 \times 30$	4
			300.5	135.5													
MSME082 $\square \square 1 \mathrm{~N}$		1/5	255.7	112.2	50	30	78	70	90	19	17	$\begin{array}{\|c\|} \hline \text { M6 } \\ \text { Depth } \\ 20 \end{array}$	26	93.5	3	6x6×22	3.5
	750		291.7	148.2													
MSME082 $\square \square 2 \mathrm{~N}$		1/9	270.7	112.2	61	40	98	90	115	24	18	$\begin{gathered} \text { M8 } \\ \text { Depth } \\ 20 \end{gathered}$	35	97.5	5	$8 \times 7 \times 30$	4
			306.7	148.2													
MSME082 $\square \square 3 \mathrm{~N}$		1/15	283.2	112.2										110			
			319.2	148.2													
MSME082 $\square \square 4 \mathrm{~N}$		1/25	283.2	112.2													
			319.2	148.2													
Upper column: without brake Lower column: with brake																	

A5 Family
Motors with Gear Reducer Dimensions of Motor

MHMD series

The figure represents the dimensions without brake

Features

- Line-up IP65 motor: 200 W to 5.0 kW
- Max speed: 5000 r/min (MSMJ, MHMJ)
- Low inertia (MSME) to High inertia (MHME)
- 20-bit incremental encoder (1048576 pulse)
- 17-bit absolute encoder (131072 pulse).

[Please note]

Motors displayed at P. 151 to P. 181 are Special Order Product. Please contact us for more information.
Max. speed : $5000 \mathrm{r} / \mathrm{min}$
$\left.: 4500 \mathrm{r} / \mathrm{min}^{(750 ~ W}\right)$ Rated output: 200 W to 750 W Enclosure : IP65

$$
\begin{aligned}
& \text { Midde inertia } \\
& \text { peed : } 3000 \mathrm{r} \text { mir }
\end{aligned}
$$

Max. speed: $3000 \mathrm{r} / \mathrm{min}$ Aed speed: $2000 \mathrm{r} / \mathrm{min}$ Rated output: IP65 1.0 kW to 5.0 kW (from 4.0 kW Rated speed: $3000 \mathrm{r} / \mathrm{min}$ Enclosure : IP65

mgme
Low speed/ High torque type) High inertia Max. speed : $2000 \mathrm{r} / \mathrm{min}$ Rated speed: $1000 \mathrm{r} / \mathrm{min}$ Rated output: IP65 0.9 kW to 3.0 kW
Enclosure Enclosure : IP65

High inertia

Max. speed : $3000 \mathrm{r} / \mathrm{min}$ Rated output: IP65 1.0 kW to $5.0 \mathrm{~kW},{ }^{\text {Enclosure }}$: IP65 Enclosure : IP65

Special Order Product Motor Contents
$\begin{aligned} & \text { MSMJ (200 V) } \\ & 200 \text { W to } 750 \text { W.............. P. } 155 \end{aligned}$
$\begin{aligned} & \text { MSME (200 V) } \\ & 1.0 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW} \text {............ P. } 158 \end{aligned}$
$\begin{aligned} & \text { MDME (200 V) } \\ & 1.0 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW} \text {............ P. } 164 \end{aligned}$
MGME (200 V) 0.9 kW to 3.0 kW P. 170
MHMJ (200 V) 200 W to 750 W . P. 173
$\begin{aligned} & \text { MHME (200 V) } \\ & 1.0 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW} \text { P. } 176 \end{aligned}$

<Cautions> Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Servo Motor

MSME, MDME, MGME, MHME

Design order
Symbol Speciications
C \quad IP65 motor (MSME, MDME, MGME, MHME)

1	IP65 motor (MSMJ, MHMJ)

Servo Drive

Special Order Product 0.2 kW to 5.0 kW

A5 Family
Motor Specifications
Special Order Product
200 V MSMJ 200 W［Low inertia，Small capacity］

Specifications

－Brake specifications（For details，refer to P． 183 $\binom{$ This brake will be released when it is energized．}{ Do not use this for braking the motor in motion．}

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	1.27 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note） 4	15 or less
Exciting current（DC）（A）	0.36
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

－Permissible load（For details，refer to P．183）

During assembly	Radial load P－direction（N）	392
	Thrust load A－direction（N）	147
	Thrust load B－direction（N）	196
During operation	Radial load P－direction（N）	245
	Thrust load A，B－direction（N）	98

2 The product that the end of driver model designation has＂E＂is＂Position control type＂．
Detail of model designation，refer to P ． 152 Detail of model designation，refer to P． 152 ．

Torque characteristics（at AC200 \mathbf{V} of power voltage＜Dotted line represents the torque at 10% less supply voltage．＞）

Special Order Product

200 V MSMJ 400 W［Low inertia，Small capacity］

A5 Family

Motor Specifications

Specifications

load 24 ± 1.2

During assembly	Radial load P－direction（ N ）	392
	Thrust load A－direction（N）	147
	Thrust load B－direction（N）	196
During operation	Radial load P－direction（N）	
	Thrust load A，B－direction（N）	8
－For details of Note 1 to Note 5，refer to P．182， －Dimensions of Driver，refer to P． 42. ＊1 Motor specifications：\square ＊2 The product that the end of driver model designation has＂ E ＂is＂Position control type＂． Detail of model designation，refer to P． 152 ．		

product that the end of driver model designation has＂E＂is＂Position control type＂ Detail of model designation，refer to P． 152.

Permissible load（For details，refer to P．183）

Brake specifications（For details，refer to P．183） This brake will be released when it is energized．

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	1.27 or more

Engaging time（ms）
\square Releasing time（ms）Note Exciting Releasing voltage（DC）（V） or more

Torque characteristics（at AC200 V of power voltage＜Dotted line represents the torque at 10% less supply voltage．＞）

Figures in［ ］represent the dimensions without brake．

Reduce the moment of inertia ratio if high speed response operation is required．
Dimensions are subject to change without notice．Contact us or a dealer for the latest information． Dimensions are subject to change without notice．Contact us or a dealer for the latest information．
Read the Instruction Manual carefully and understand all precautions and remarks before using the products． Please avoid the motor，or equipment containing the motor to be distributed to Japan，or other regions through Japan．

Dimensions
Mass：Without brake／ 0.82 kg
With brake／ 1.3 kg

A5 Family
Motor Specifications
Special Order Product
200 V MSMJ 750 W [Low inertia, Small capacity]

Specifications

- Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized }{ Do not use this for braking the motor in motion }

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Note) 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

Luring assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147

2 The product that the end of driver model designation has " E " is "Position control type".
Detail of model designation, refer to $P 152$ Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
<IP65>
(a) Encoder connector
(b) Brake connector
$\left[\begin{array}{c}{\left[\begin{array}{c}\text { Use hexagon socket head } \\ \text { screw for instalalation. }\end{array}\right]}\end{array}\right.$

[Unit: mm]

Mass: Without brake/ 2.3 kg Without brakee 2.3 kg
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	7.8 or more

Engaging time (ms)

(A) 4 Releasing time (ms) Note Exciting current (DC) (A) Releasing voltage (DC) (V) 15 or less Exciting voltage (DC) (V)
— or more

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

Cautions> Aeduce the moment
Dimensions are subject to change without notice Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MSME 1.5 kW [Low inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } \begin{tabular}{|l|l|}
\hline Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) \& 7.8 or more

\hline

\hline Engaging time (ms) \& 50 or less

\hline Releasing time (ms) Note) \& 15 or less

\hline Exciting current $(\mathrm{DC})(\mathrm{A})$ \& $0.81 \pm 10 \%$

\hline Releasing voltage $(\mathrm{DC})(\mathrm{V})$ \& 2 or more

\hline Exciting voltage $(\mathrm{DC})(\mathrm{V})$ \& 24 ± 2.4

\hline
\end{tabular}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.
1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type",
Detail of model designation, refer to $P 152$ Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions
ClP65>
(a) Encoder connector
(b) Motor/Brake connector

* Figures in [] represent the dimensions with brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family

Motor Specifications

Specifications

				AC200 V	
Motor model		IP65		MSME202GC \square M	MSME202SC \square M
	IP67			-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	ModelNo.	A5II series		MEDKT7364	
		A5IE ser		MEDKT7364E	-
	Frame symbol			E-frame	
Power supply capacity			(kVA)	3.3	
Rated output			(W)	2000	
Rated torque			($\mathrm{N} \cdot \mathrm{m}$)	6.37	
Momentary Max. peak torque			($\mathrm{N} \cdot \mathrm{m}$)	19.1	
Rated current			(A(rms))	11.3	
Max. current			(A(o-p))	48	
Regenerative brake frequency (times/min) Note)!		Without	toption	No limit Note)2	
		DVOP	4285	No limit Note)2	
Rated rotational speed		d	(r/min)	3000	
Max. rotational speed			(r/min)	5000	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without	t brake	3.68	
		With b	brake		01
Recommended moment of inertia ratio of the load and the rotor Note) 3				15 times or less	
Rotary encoder specifications				$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.)

Static friction torque (N.m)	7.8 or more

Engaging time (ms)

\square Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
\square Exciting voltage (DC) (V)

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
h brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions Please avoid the manual carefully and understand all preca ons and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Specifications

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions

(b) Motor/Brake connecto

Figures in [] represent the dimensions with brake
$\begin{array}{ll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the l }\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product
200 V MSME 3.0 kW [Low inertia, Middle capacity]

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } | Static friction torque (N.m) | 11.8 or more |
| :--- | :--- |

Engaging time (ms)	80 or less
Releasing time (ms) Note)	15 or less
Exciting current $(\mathrm{DC})(\mathrm{A})$	$0.81 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152 .

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P. 183) This brake will be released when it is energized.

Static friction torque (N-m)	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

* 2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connecto

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MSME 5.0 kW [Low inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake wilt be released when it is energized. | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 16.2 or more |
| :--- | :--- | Engaging time (ms)

\square 10 or less Releasing time (ms) Note Exciting current (DC) (A) Releasing voltage (DC) (V)

(V) 50 or less | Releasing voltage (DC) (V) | 2 or more |
| :--- | :--- | - 24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connector

Figures in [] represent the dimensions with brake

<Cautions>	$\begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the }\end{array}$

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)	4.9 or more
Engaging time (ms)	80 or less
Releasing time (ms) Note)	70 or less
Exciting current (DC) (A)	$0.59 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connect

Figures in [] represent the dimensions with brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor, Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MDME 1.5 kW [Middle inertia, Middle capacity]

Specifications

		AC200 V	
Motor model	IP65	MDME152GC \square M	MDME152SC \square M
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II series	MDDKT5540	
	No. A5IIE series	MDDKT5540E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		2.3	
Rated output (W)		1500	
Rated torque (N.m)		7.16	
Momentary Max. peak torque (N.m)		21.5	
Rated current (A(rms))		9.4	
Max. current (A) $(0-\mathrm{p})$)		40	
Regenerative brake frequency (times/min) Note) 1	Without option	No limit Note)2	
	min) Note)1 DVOP4284	No limit Note)2	
Rated rotation	al speed (r/min)	2000	
Max. rotational speed (r/min)		3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Pria Without brake	6.70	
	kg.m²) With brake		. 99
Recommended moment of inertia ratio of the load and the rotor Note)3		10 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn		1048576	131072

Brake specifications (For details, refer to P.183) This brake wifl be released when it is energized.

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Notes)	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43. *1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

<|P65>

Mass: Without brake/ 6.7 kg Without brake/ 6.7 kg
With brake/ 8.2 kg Key way dimensions

(b) Motor/Brake connector

Cautions> Reduce the moment of *Figures in [] represent the dimensions with brake
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment contaiaing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MDME 2.0 kW [Middle inertia, Middle capacity]

Specifications

A5 Family

Motor Specifications

- Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque (N-m)	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
 Mass: Without brake/ 8.0 k
With brake $/ 9.5 \mathrm{k}$ Key way dimensions
\qquad
(b) Motor/Brake connecior
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor or equipment containing the motor to be distributed to dapan ore using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MDME 3.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	16.2 or more
Engaging time (ms)	110 or less
Releasing time (ms) Note) 4	50 or less
Exciting current (DC) (A)	$0.90 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 2.4

- Permissible load (For details, refer to P.183)
 For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.45. 1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connector

Mass: Without brake/ 11.0 kg With brake/ 12.6 kg Key way dimensions

<Cautions>

Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MDME 4.0 kW [Middle inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque (N-m)	24.5 or more
Engaging time (ms)	80 or less
Releasing time (ms) Note)	25 or less
Exciting current (DC) (A)	$1.3 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
Luring operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

The product that the end of driver model designation has " E " is "Position control type Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions Mass: Without brake/ 15.5 kg
With brake/ 18.7 k Key way dimensions

(b) Motor/Brake conne
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor or equipment containing the motor to be distributed to dap before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MDME 5.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) $\binom{$ This brake will be released when it is energized. }{ Do not use this for braking the motor in motion. } \begin{tabular}{|l|l|}
\hline Static friction torque (N.m) \& 24.5 or more

\hline

\hline Engaging time (ms) \& 80 or less

\hline Releasing time (ms) Note) \& 25 or less

\hline Exciting current $(\mathrm{DC})(\mathrm{A})$ \& $1.3 \pm 10 \%$

\hline Releasing voltage $(\mathrm{DC})(\mathrm{V})$ \& 2 or more

\hline Exciting voltage $(\mathrm{DC})(\mathrm{V})$ \& 24 ± 2.4

\hline
\end{tabular}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

Cautions> Reduce the moment of inertia ratio if high represent the dimensions with brake.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment contaiaing the motor to be distributed to Japan, or other regions through Japan.

A5 Family

Motor Specifications

Specifications

				AC200 V	
Motor model	IP65			MGME092GC \square M	MGME092SC \square M
	IP67			-	-
Applicable driver *2	$\begin{aligned} & \text { Model } \\ & \text { No. } \\ & \hline \text { Fra } \\ & \hline \end{aligned}$	A5II series		MDDKT5540	
		A5IE seris		MDDKT5540E	-
		Frame symbol		D-frame	
Power supply capacity (kVA)				1.8	
Rated output (W)				900	
Rated torque (N.m)				8.59	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)				19.3	
Rated current (A(rms))				7.6	
Max. current (A(o-p))				24	
Regenerative brake frequency (times/(min) Note) 1		Without option		No limit Note)2	
		DVOP4	4284	No limit Note)2	
Rated rotational speed (r/min)		d	(r/min)	1000	
Max. rotational speed (r/min)				2000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without brake		6.70	
		With b	brake	7.99	
Recommended moment of inertia ratio of the load and the rotor Note) ${ }^{3}$				10 times or less	
Rotary encoder specifications			Note) 5	$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn				1048576	131072

- Brake specifications (For details, refer to P. 183 This brake will be released when it is energized.

Static friction torque (N.m)	13.7 or more
Engaging time (ms)	100 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$0.79 \pm 10 \%$
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	686
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connect
$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the }\end{array}\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor,

A5 Family
Motor Specifications
Special Order Product
200 V MGME 2.0 kW [Middle inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized

Static friction torque (N-m)	24.5 or more
Engaging time (ms)	80 or less
Releasing time (ms) Notes 4	25 or less
Exciting current (DC) (A)	$1.3 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	1176
	Thrust load A, B-direction (N)	490

* 1 Motor specifications: \square

2 The product that the end of driver model designation has " E " is "Position control type". Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector

Cautions> * Figures in [] represent the dimensions with brake.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment contaiaing the motor to be distributed to Japan, or other regions through Japan.

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque (N-m)	58.8 or more
Engaging time (ms)	150 or less
Releasing time (ms) Note)	50 or less
Exciting current (DC) (A)	$1.4 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	2058
	Thrust load A-direction (N)	980
	Thrust load B-direction (N)	1176
During operation	Radial load P-direction (N)	1470
	Thrust load A, B-direction (N)	490

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Mass: Without brake/ 20.0 kg
With brake/ 23.5 kg Key way dimensions

(b) Motor/Brake connecto
Figures in [] represent the dimensions with brake.

Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subiect to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHMJ 200 W [High inertia, Small capacity]

Specifications

Brake specifications (For details, reter to P.183) $\left(\begin{array}{l}\text { This brake will be released when it is energized } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	1.27 or more
Engaging time (ms)	50 or less
Releasing time (ms) Note) 4	15 or less
Exciting current (DC) (A)	0.36
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
 Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MHMJ 400 W [High inertia, Small capacity]

A5 Family

Motor Specifications

Specifications

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	392
	Thrust load A-direction (N)	147
	Thrust load B-direction (N)	196
During operation	Radial load P-direction (N)	245
	Thrust load A, B-direction (N)	98

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage $<$ Dotted line represents the torque at 10% less supply voltage. $>$)

Dimensions

<Cautions> Reduce the moment of inertia ratio high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest informatio Please avoid the motor or equipment containing the motor to be distributed to rks before using the products.

A5 Family
Motor Specifications

Special Order Product
200 V MHMJ 750 W [High inertia, Small capacity]

Specifications

Motor model	IP65	AC200 V	
		MHMJ082G1 \square	MHMJ082S1 \square
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II series	MCDKT3520	
	No. A5IIE series	MCDKT3520E	-
	Frame symbol	C-frame	
Power supply capacity (kVA)		1.3	
Rated output (W)		750	
Rated torque (N.m)		2.4	
Momentary Max. peak torque (N.m)		7.1	
Rated current (A(rms))		4.0	
Max. current (A) $(0-\mathrm{p})$)		17.0	
Regenerative brake frequency (times/min) Note)	Without option	No limit Note)2	
	Smin) Note) ${ }^{\text {a }}$ DVOP4283	No limit Note)2	
Rated rotational speed (r/min)	al speed (r/min)	3000	
Max. rotational speed (r/min)		4500	
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)	Without brake	1.51	
	kg.m²) With brake	1.61	
Recommended moment of inertia ratio of the load and the rotor Note)3		20 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn		1048576	131072

Brake specifications (For details, refer to P.183) $\left(\begin{array}{l}\text { This brake will be released when it is energized } \\ \text { Do not use this for braking the motor in motion. }\end{array}\right.$

Static friction torque $(\mathrm{N} \cdot \mathrm{m})$	2.45 or more
Engaging time (ms)	70 or less
Releasing time (ms) Note) 4	20 or less
Exciting current (DC) (A)	0.42
Releasing voltage $(\mathrm{DC})(\mathrm{V})$	1 or more
Exciting voltage $(\mathrm{DC})(\mathrm{V})$	24 ± 1.2

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	686
	Thrust load A-direction (N)	294
	Thrust load B-direction (N)	392
During operation	Radial load P-direction (N)	392
	Thrust load A, B-direction (N)	147

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43. 1 Motor specifications: \square
2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

Mass: Without brake 25 k
<IP65>

(a) Encoder connector (b) Brake connector (c) Motor connector

$\left[\begin{array}{c}1 \\ \text { Use hexagon socket head } \\ \text { screw for in instalation. }\end{array}\right]$

<Key way, center tap shaft>

* Figures in [] represent the dimensions without brake.

Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MHME 1.0 kW [High inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

			AC200 V	
Motor model	IP65		MHME102GC \square M	MHME102SC \square M
	IP67		-	-
Applicable driver *2	ModelNo.	A5I series	MDDKT3530	
		A5IE series	MDDKT3530E	-
	Frame symbol		D-frame	
Power supply capacity			1.8	
Rated output			1000	
Rated torque			4.77	
Momentary Max. peak torque			14.3	
Rated current			5.7	
Max. current			24	
Regenerative brake frequency (times/min) Note) 1		Without	83	
		DVOP4284	No limit Note)2	
Rated rotational speed			2000	
Max. rotational speed			3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		Without	24.7	
		With b		6.0
Recommended moment of inertia			5 times or less	
Rotary encoder specifications			$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per sing			1048576	131072

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

Static friction torque (N.m)	4.9 or more

Engaging time (ms)

\square 0 oress Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
\square $0.59 \pm 10 \%$ 24 2.4

Permissible load (For

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

2 The product that the end of driver model designation has " E " is "Position control type"
Detail of model designation, Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake.

Reduce the moment of inertia ratio if high speed response operation is required. Read the Instruction Mon thange whour nolice. Contact us or a dealer for hie lates in Please avoid the motor or curipment containing the motor to be distributed to lapan oro using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHME 1.5 kW [High inertia, Middle capacity]

Specifications

		AC200 V	
Motor model	IP65	MHME152GC \square M	MHME152SC \square M
	IP67	-	-
$\begin{aligned} & \text { Applicable } \\ & \text { driver } \end{aligned}$	Model A5II series	MDDKT5540	
	No. A5IIE series	MDDKT5540E	-
	Frame symbol	D-frame	
Power supply capacity (kVA)		2.3	
Rated output (W)		1500	
Rated torque (N.m)		7.16	
Momentary Max. peak torque (N-m)		21.5	
Rated current (A(rms))		9.4	
Max. current (A) $(0-\mathrm{p})$)		40	
Regenerative brake frequency (times/min) Note) 1	Without option	22	
	min) Note)1 DVOP4284	130	
Rated rotational speed (r/min)	al speed (r/min)	2000	
Max. rotational speed (r/min)		3000	
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without brake	37.1	
	$\left.\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ With brake	38.4	
Recommended moment of inertia ratio of the load and the rotor Note)3		5 times or less	
Rotary encoder specifications Note)5		$\begin{gathered} 20 \text {-bit } \\ \text { Incremental } \end{gathered}$	17-bit Absolute
Resolution per single turn		1048576	131072

Brake specifications (For details, refer to P.183) This brake will be released when it is energized | Static friction torque (N.m) | 13.7 or more |
| :--- | :--- | Engaging time (ms) Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V) Exciting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	980
	Thrust load A-direction (N)	588
	Thrust load B-direction (N)	686
During operation	Radial load P-direction (N)	490
	Thrust load A, B-direction (N)	196

For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.43.

* 1 Motor specifications: \square
he product that the end of driver model designation has " E " is "Position control type",
Detail of model designation, refer to $P 152$ Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connector

Mass: Without brake/ 8.6 kg
With brake/ 10.1 kg With brake/ 10.1 kg Key way dimensions

$\begin{array}{ll}\text { <Cautions> } & \begin{array}{l}\text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice. Contact us or a dealer for the lat }\end{array}\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.)

Static friction torque (N-m)	24.5 or more
Engaging time (ms)	80 or less
Releasing time (ms) Note)	25 or less
Exciting current (DC) (A)	$1.3 \pm 10 \%$
Releasing voltage (DC) (V)	2 or more
Exciting voltage (DC) (V)	24 ± 2.4

- Permissible load (For details, refer to P.183)

During assembly	Radia load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

1 Motor specifications: \square
The product that the end of driver model designation has " E " is "Position control type Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(b) Motor/Brake connecto

* Figures in [] represent the dimensions with brake.
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor or equipment containing the motor to be distributed to dapan before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHME 3.0 kW [High inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized \begin{tabular}{|l|l|}
\hline Static friction torque (N.m) \& 24.5 or more

\hline

\hline Engaging time (ms) \& 80 or less

\hline Releasing time (ms) Note) \& 25 or less

\hline Exciting current $(\mathrm{DC})(\mathrm{A})$ \& $1.3 \pm 10 \%$

\hline Releasing voltage $(\mathrm{DC})(\mathrm{V})$ \& 2 or more

\hline Exciting voltage $(\mathrm{DC})(\mathrm{V})$ \& 24 ± 2.4

\hline
\end{tabular}

- Permissible load (For details, refer to P.183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 \mathbf{V} of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connecto

Figures in [] represent the dimensions with brake
$\begin{array}{ll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice }\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information. Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Special Order Product

200 V MHME 4.0 kW [High inertia, Middle capacity]

A5 Family

Motor Specifications

Specifications

Brake specifications (For details, refer to P.183) This brake will be released when it is energized.

| Static friction torque $(\mathrm{N} \cdot \mathrm{m})$ | 24.5 or more |
| :--- | :--- | Engaging time (ms)

\square 80 or less Releasing time (ms) Note)4 Exciting current (DC) (A) Releasing voltage (DC) (V)
(v) 25 or less
\square 2 or more

- Permissible load (For details, refer to P. 183)

During assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

2 The product that the end of driver model designation has " E " is "Position control type" Detail of model designation, refer to P. 152 .

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions
Mass: Without brake/ 18.6 210.5[239.5] ${ }^{80}$ With brake/ 21.8 kg

<1P65>

Key way dimensions

(b) Motor/Brake connecto
rigures in [] represent the dimensions with brake.

* Figures in [] represent the dimensions with brake
<Cautions> Reduce the moment of inertia ratio if high speed response operation is required.
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Please avoid the motor, equirment containing the motor to be distributed to to Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

A5 Family
Motor Specifications

Special Order Product
200 V MHME 5.0 kW [High inertia, Middle capacity]

Specifications

Brake specifications (For details, refer to P. 183) This brake wift be released when it is energized. (Do not use this for braking the motor in motion.) | Static friction torque ($\mathrm{N} \cdot \mathrm{m}$) | 24.5 or more |
| :--- | :--- | Engaging time (ms) Releasing time (ms) Notel4 Exciting current (DC) (A) Releasing voltage (DC) (V) Exiting voltage (DC) (V)

- Permissible load (For details, refer to P.183)

Luring assembly	Radial load P-direction (N)	1666
	Thrust load A-direction (N)	784
	Thrust load B-direction (N)	980
During operation	Radial load P-direction (N)	784
	Thrust load A, B-direction (N)	343

- For details of Note 1 to Note 5, refer to P.182, P. 183. Dimensions of Driver, refer to P.45. * 1 Motor specifications: \square

2 The product that the end of driver model designation has " E " is "Position control type", Detail of model designation, refer to P. 152.

Torque characteristics (at AC200 V of power voltage <Dotted line represents the torque at 10% less supply voltage.>)

Dimensions

(a) Encoder connector
(b) Motor/Brake connector
$\begin{array}{ll}\text { <Cautions> } & \text { Reduce the moment of inertia ratio if high speed response operation is required. } \\ \text { Dimensions are subject to change without notice Contact us or a dele for the }\end{array}$
Dimensions are subject to change without notice. Contact us or a dealer for the latest information Read the Instruction Manual carefully and understand all precautions and remarks before using the products. Please avoid the motor, or equipment containing the motor to be distributed to Japan, or other regions through Japan.

Environmental Conditions

Item		Conditions
Ambient temperature ${ }^{* 1}$	$0{ }^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{CO}$ (free from freezing)	

*1 Ambient temperature to be measured at 5 cm away from the motor
*2 Permissible temperature for short duration such as transportation.
*3 These motors conform to the test conditions specified in EN standards (EN60529, EN60034-5). Do not use these motors in applica tion where water proof performance is required such as continuous wash-down operation.
5 Ais condition is applied when the connector mounting screw are tightened to the recommended tightening torque.
Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew

<Note>

Initial setup of rotational direction:
positive $=\mathrm{CCW}$ and negative $=\mathrm{CW}$.
Pay an extra attention
Positive direction
(CCW)
(CW)

Notes on [Motor specification] page

Note) 1. [At AC100 V of power voltage]
Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load.

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia.
-When the motor speed exceeds the rated speed, regenerative brake frequency is in inverse proportion to the square of (running speed/rated speed).
Power supply voltage is AC 115 V (at 100 V of the main voltage).
If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage/115) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer.

[At AC200 V of power voltage]

Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia
When the motor speed exceeds the rated speed, regenerative brake frequency is in invers proportion to the square of (running speed/rated speed).
- Power supply voltage is AC230 V (at 200 V of the main voltage).

If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage $/ 230$) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer.

A5 Family

At AC400 V of power voitage]

Regenerative brake frequency represents the frequency of the motor's stops from the rated speed with deceleration without load.

- If the load is connected, frequency will be defines as $1 /(m+1)$, where $m=l o a d$ moment of inertia rotor moment of inertia.
- When the motor speed exceeds the rated speed, regenerative brake frequency is in inverse proportion to the square of (running speed/rated speed).
Power supply voltage is AC460 V (at 400 V of the main voltage).
If the supply voltage fluctuates, frequency is in inverse proportion to the square of (Running supply voltage/460) relative to the value in the table.
When regeneration occurs continuously such cases as running speed frequently changes or vertical feeding, consult us or a dealer
Note) 2. If the effective torque is within the rated torque, there is no limit in generative brake
Note) 3. Consult us or a dealer if the load moment of inertia exceeds the specified value.
Note) 4. Releasing time values represent the ones with DC-cutoff using a varistor
Note) 5. The 17-bit absolute encoder can also be used as a 17 -bit incremental encoder.

Permissible Load at Output Shaft

The radial load is defined as a load applied to the output shaft in the right angle direction. This load is generated when the gear head is coupled to the machine using a chain, belt, etc., but not when the gear head is directly connected to the coupling. As shown in the right figure, the permissible value is determined based on the load applied to the L/2 position of the output shaft. The thrust load is defined as a load applied to the output shaft in the axial direction.
Because the radial load and thrust load significantly affect the life of the bearing, take care not to allow the load during operation to exceed the permissible radial load and thrust load shown in the table below.

Thrust load (A and B) direction

Built-in Holding Brake

In the applications where the motor drives the vertical axis, this brake would be used to hold and prevent the work (moving load) from falling by gravity while the power to the servo is shut off.

Use this built-in brake for "Holding" purpose only, that is to hold the stalling status.

Never use this for "Brake" purpose to stop the load in motion.

Output Timing of BRK-OFF Signa

- For the brake release timing at power-on, or braking timing at Servo-OFF/Servo-Alarm while the motor is in motion, refer to the Operating Instructions (Overall).
With the parameter, Pr4.38 (Setup of mechanical brake action while the motor is in motion), you can set up a time between when the motor enters to a free-run from energized status and when BRK-OFF signa turns off (brake will be engaged), when the Servo-OFF or alarm occurs while the motor is in motion. For details, download a copy of the instruction manual from our website.
<Note>

1. The lining sound of the brake (chattering and etc.) might be generated while running the motor with built-in brake, however this does not affect any functionality.
2. Magnetic flux might be generated through the motor shaft while the brake coil is energized (brake is open). Pay an extra attention when magnetic sensors are used nearby the motor.

- Specifications of Built-in Holding Brake

Motor series	Motor output	Static friction torque $\mathrm{N} \cdot \mathrm{m}$	$\begin{gathered} \text { Rotor } \\ \text { inertia } \\ \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \end{gathered}$	Engaging time ms	Releasing time ms	Exciting current DCA (at cool-off)		Permissible work (J) per one braking	Permissible total work $\times 10^{3} \mathrm{~J}$	Permissible angular acceleration $\mathrm{rad} / \mathrm{s}^{2}$
MSMD	$50 \mathrm{~W}, 100 \mathrm{~W}$	0.29 or more	0.002	35 or less	20 or less	0.3	$\underbrace{1 \mathrm{~V} \text { or more }}_{24 \pm 1.2}$	39.2	4.9	30000
	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36		137	44.1	
	750 W	2.45 or more	0.075	70 or less	20 or less	0.42		196	147	
MSME	$50 \mathrm{~W}, 100 \mathrm{~W}$	0.29 or more	0.002	35 or less	20 or less	0.3	$\underbrace{1 \mathrm{~V} \text { or more }}_{24 \pm 1.2}$	39.2	4.9	30000
	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36		137	44.1	
	$750 \mathrm{~W}(200 \mathrm{~V})$	2.45 or more	0.075	70 or less	20 or less	0.42		196	147	
	$750 \mathrm{~W}(400 \mathrm{~V}$)	2.5 or more	0.33	50 or less	$\begin{gathered} 15 \text { or less } \\ (100) \end{gathered}$	0.7	$\frac{2 \mathrm{~V} \text { or more }}{24 \pm 2.4}$	392	490	10000
	$\begin{gathered} 1.0 \mathrm{~kW}, 1.5 \mathrm{~kW}, \\ 2.0 \mathrm{~kW} \end{gathered}$	7.8 or more				0.81				
	3.0 kW	11.8 or more		80 or less						
	4.0 kW, 5.0 kW	16.2 or more	1.35	110 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.9		1470	2200	
MDME	$400 \mathrm{~W}(400 \mathrm{~V})$, $600 \mathrm{~W}(400 \mathrm{~V})$	2.5 or more	1.35	50 or less	15 or less	0.7	$\underbrace{2 \mathrm{~V} \text { or more }}_{24 \pm 2.4}$	392	490	10000
	1.0 kW	4.9 or more		80 or less	$\begin{gathered} 70 \text { or less } \\ (200) \end{gathered}$	0.59		588	780	
	$1.5 \mathrm{~kW}, 2.0 \mathrm{~kW}$	13.7 or more		100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79		1176	1500	
	3.0 kW	16.2 or more		110 or less		0.9		1470	2200	
	4.0 kW, 5.0 kW	24.5 or more	4.7	80 or less	$\begin{gathered} 25 \text { or less } \\ (200) \end{gathered}$	1.3		1372	2900	5440
	7.5 kW	58.8 or more		150 or less	50 or less	1.4				5000
	$11.0 \mathrm{~kW}, 15.0 \mathrm{~kW}$	100 or more	7.1	300 or less	140 or less	1.08		2000	4000	3000
MFME	1.5 kW	7.8 or more	4.7	80 or less	35 or less	0.83	$\frac{2 \mathrm{~V} \text { or more }}{24 \pm 2.4}$	1372	2900	10000
	2.5 kW	21.6 or more	8.75	150 or less	100 or less	0.75		1470	1500	
	4.5 kW	31.4 or more							2200	
MGME	0.9 kW	13.7 or more	1.35	100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79	$\frac{2 \mathrm{~V} \text { or more }}{24 \pm 2.4}$	1176	1500	10000
	2.0 kW	24.5 or more	4.7	80 or less	$25 \text { or less }$ (200)	1.3		1372	2900	5440
	3.0 kW	58.8 or more		150 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	1.4				
	$4.5 \mathrm{~kW}, 6.0 \mathrm{~kW}$				50 or less					5000
$\begin{aligned} & \text { MHMD } \\ & \text { MSMJ } \\ & \text { MHMJ } \end{aligned}$	$200 \mathrm{~W}, 400 \mathrm{~W}$	1.27 or more	0.018	50 or less	15 or less	0.36	$\underbrace{1 \mathrm{~V} \text { or more }}_{24 \pm 1.2}$	137	44.1	30000
	750 W	2.45 or more	0.075	70 or less	20 or less	0.42		196	147	
MHME	1.0 kW	4.9 or more	1.35	80 or less	70 or less (200)	0.59	$\underbrace{2 \mathrm{~V} \text { or more }}_{24 \pm 2.4}$	588	780	10000
	1.5 kW	13.7 or more		100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79		1176	1500	
	$2.0 \mathrm{~kW} \sim 5.0 \mathrm{~kW}$	24.5 or more	4.7	80 or less	$\begin{gathered} 25 \text { or less } \\ (200) \\ \hline \end{gathered}$	1.3		1372	2900	5440
	7.5 kW	58.8 or more		150 or le	50 or less	1.4				5000

- Releasing time values represent the ones with DC-cutoff using a varistor.

Values in () represent those measured by using a diode (V03C by Hitachi, Ltd.)

- Above values (except static friction torque, releasing voltage and excitation current) represent typical values. - Backlash of the built-in holding brake is kept $\pm 1^{\circ}$ or smaller at ex-factory point.
- Service life of the number of acceleration/deceleration with the above permissible angular acceleration is more than 10 million times. (Life end is defined as when the brake backlash drastically changes.)

Encoder Cable - For available optional items, please refer to P. 188 to P. 190.
Specifications of Motor connector

A5 Family

- When th

Connector: Made by Tyco Electronics (The figures below show connectors for the motor.)

- When the motors of <MSME (50 W to $750 \mathrm{~W}(200 \mathrm{~V})$)> are used, they are connected as shown below.
Connector: Made by Japan Aviation Electronics Industry, Ltd. (The figures below show connectors for the motor.)
* Do not remove the gasket supplied with the junction cable connector. Securely install the gasket in place. Otherwise the degree of protection of IP67 will not be guaranteed.

		20-bit Incremental		17-bit Absolute	
		PIN No.	Application	PIN No.	Application
		1	FG(SHIELD)	1	FG(SHIELD)
		2	-	2	BAT-
		3	EOV	3	EOV
		4	PS	4	PS
		5	-	5	BAT+
		6	E5V	6	E5V
		7	PS	7	PS

Tightening torque of the screw (M2) 0.19 $\mathrm{N} \cdot \mathrm{m}$ to $0.21 \mathrm{~N} \cdot \mathrm{~m}$ to avoid damage.

PIN No.	Application
1	U-phase
2	V-phase
3	W-phase
PE	Ground

Tightening torque of the screw (M2) $0.085 \mathrm{~N} \cdot \mathrm{~m}$ to $0.095 \mathrm{~N} \cdot \mathrm{~m}$ (screwed to plastic)
Be sure to use only the screw supplied with the connector, to avoid damage.

PIN No. Application

*	Brake	*lectromagnetic brake is
2	Brake	
a nonoolar device		

Brake a nonpolar device
Tightening torque of the screw (M2) $0.19 \mathrm{~N} \cdot \mathrm{~m}$ to $0.21 \mathrm{~N} \cdot \mathrm{~m}$ * Be sure to use only the screw supplied with the connector, to avoid damage.

- When the motors of <MSME ($750 \mathrm{~W}(400 \mathrm{~V}$), 1.0 kW to 5.0 kW), MDME, MGME, MHME> are used, they are connected as shown below.
Connector: Made by Japan Aviation Electronics Industry, Ltd. (The figures below show connectors for the motor.)

- Connector for encoder

IP65 motor Connector for encoder (Large type)	<Encoder connector for IP65 motor>				<Encoder connector for IP67 motor>			
	${ }^{\circ} \stackrel{\circ}{\circ}{ }^{\circ} \mathrm{B}$				∇			
	(
		${ }^{9}{ }^{\text {P }}$						
1 -								
\square	N/MS3102A20-29P				JN2AS10ML3-R			
	20-bit Incremental		17-bit Absolute		20-bit Incremental		17-bit Absolute	
	PIN No.	Application						
IP67 motor Connector for encoder (Small type)	A	NC	A	NC	1	EOV	1	EOV
	B	NC	B	NC	2	NC	2	NC
	C	NC	C	NC	3	PS	3	PS
	D	NC	D	NC	4	E5V	4	E5V
	E	NC	E	NC	5	NC	5	BAT-
	F	NC	F	NC	6	NC	6	BAT+
	G	EOV	G	EOV	7	PS	7	PS
	H	E5V	H	E5V	8	NC	8	NC
	J	FG(SHIELD)	J	FG(SHIELD)	9	FG(SHIELD)	9	FG(SHIELD)
	K	PS	K	PS	10	NC	10	NC
	L	PS	L	PS				
	M	NC	M	NC				
	N	NC	N	NC				
	P	NC	P	NC	<Remarks>			
	R	NC	R	NC				
	S	NC	S	BAT-				
	T	NC	T	BAT+	Do not connect anything to NC.			

- Connector for motor/brake

| Part No. | MFECAO** OEAM | Compatible
 motor output | MSMD 50 W to $750 \mathrm{~W}, \quad$ MHMD 200 W to 750 W
 MSMJ 200 W to $750 \mathrm{~W}, \mathrm{MHMJ} 200 \mathrm{~W}$ to 750 W |
| :--- | :--- | :--- | :--- | :--- |
| Specifications | For 20-bit incremental encoder (Without battery box) | | |

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030EAM
Shell kit	3Е306-3200-008		5	MFECA0050EAM
Connector (Motor side)	172160-1	Tyco Electronics	10	MFECA0100EAM
Connector pin	170365-1		20	MFECA0200EAM
Cable	$0.20 \mathrm{~mm}^{2} \times 3 \mathrm{P}$ (6 -wire)	Oki Electric Cable Co., Ltd.		

Part No.	MFECAO** 0EAE	Compatible motor output	MSMD MSMJ	50 W to 750 W , 200 W to 750 W ,	$\begin{aligned} & \text { MHMD } \\ & \text { MHMJ } \end{aligned}$	200 W to 750 W 200 W to 750 W
Specifications	For 17-bit absolute encoder (With battery box) *					

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030EAE
Shell kit	ЗЕ306-3200-008		5	MFECA0050EAE
Connector (Motor side)	172161-1	Tyco Electronics	10	MFECA0100EAE
Connector pin	170365-1		20	MFECA0200EAE
Cable	$0.20 \mathrm{~mm}^{2} \times 4 \mathrm{P}$ (8-wire)	Oki Electric Cable Co., Ltd.		

Part No.	MFECA0**0EAD	Compatible motor output	MSMD MSMJ	50 W to 750 W , 200 W to 750 W	MHMD MHM	200 W to 750 W 200 W to 750 W
Specifications	For 17-bit incremental encoder (Without battery box)					

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030EAD
Shell kit	3Е306-3200-008		5	MFECA0050EAD
Connector (Motor side)	172161-1	Tyco Electronics	10	MFECA0100EAD
Connector pin	170365-1		20	MFECA0200EAD
Cable	$0.20 \mathrm{~mm}^{2} \times 3 \mathrm{P}$ (6-wire)	Oki Electric Cable Co., Ltd.		

A5 Family
Options

Part No.	MFECA0 * * OMJD (Highly bendable type, Direction of motor shaft)	Compatible motor output	MSME 50 W to 750 W (200 V)
	MFECAO * * OMKD (Highly bendable type, Opposite direction of motor shaft)		
	MFECA0 * 0 OTJD (Standard bendable type, Direction of motor shaft)		
	MFECA0 ** OTKD (Standard bendable type, Opposite direction of motor shaft)		

Specifications For 20-bit incremental encoder (Without battery box) * 17bit-use is possible

Part No.	MFECA0 * * OMJE (Highly bendable type, Direction of motor shaft)	Compatible motor output	MSME 50 W to 750 W (200 V)
	MFECAO * * OMKE (Highly bendable type, Opposite direction of motor shaft)		
	MFECA0 * OTJE (Standard bendable type, Direction of motor shaft)		
	MFECAO ** OTKE (Standard bendable type, Opposite direction of motor shaft)		
Specitications	For 17-bit absolute encoder (With battery box) *		

Title	Part No.	Manufacturer	L (m)	Part No.(ex.)
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030MJE
Shell kit	3Е306-3200-008		5	MFECA0050MJE
Connector (Motor side)	JN6FR07SM1	Japan Aviation Electronics Ind	10	MFECA0100MJE
Connector pin	LYY0-C1-A1-10000		20	MFECA0200MJE
Cable	AWG24 4-wire, AWG22 2-wire (05.5)	Hitachi Cable, Ltd.		

Part No.	MFECAO **0ESD	Compatible motor output	MDME 400 W(400 V), MDME $600 \mathrm{~W}(400 \mathrm{~V})$ MSME $750 \mathrm{~W}(400 \mathrm{~V})$ 0.9 kW to 15.0 kW (IP65 Motor)
Specifications	For 20-bit incremental encoder (Without battery box)		

Title	Part No.	Manufacturer	L(m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030ESD
Shell kit	3Е306-3200-008		5	MFECA0050ESD
Connector (Motor side)	N/MS3106B20-29S	Japan Aviation Electronics Ind	10	MFECA0100ESD
Cable clamp	N/MS3057-12A		20	MFECA0200ESD
Cable	$0.2 \mathrm{~mm}^{2} \times 3 \mathrm{P}$ (6-wire)	Oki Electric Cable Co., Ltd.		

Part No.	MFECAO * * OETD	Compatible motor output	MDME 400 W(400 V), MDME $600 \mathrm{~W}(400 \mathrm{~V})$, MSME 750 W(400 V) 0.9 kW to 15.0 kW (IP67 Motor)
Specifications	For 20-bit incremental encoder (Without battery box)		

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030ETD
Shell kit	3Е306-3200-008		5	MFECA0050ETD
Connector (Motor side)	JN2DS10SL1-R	Japan Aviation Electronics Ind	10	MFECA0100ETD
Connector pin	JN1-22-22S-PKG100		20	MFECA0200ETD
Cable	. $2 \mathrm{~mm} \times 3$ P	ctric Cable		

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030ESE
Shell kit	3Е306-3200-008		5	MFECA0050ESE
Connector (Motor side)	N/MS3106B20-29S	Japan Aviation Electronics Ind.	10	MFECA0100ESE
Cable clamp	N/MS3057-12A		20	MFECA0200ESE
Cable	$0.2 \mathrm{~mm}^{2} \times 4 \mathrm{P}$ (8-wire)	Oki Electric Cable Co., Ltd.		

Part No.	MFECA0**0ETE	Compatible motor output	MDME 400 W(400 V), MDME 600 W(400 V) MSME 750 W(400 V) 0.9 kW to 15.0 kW (IP67 Motor)
Specifications	For 17-bit absolute encoder (With battery box) *		

*Battery is not included. Please buy the absolute encoder battery "DVOP2990" separately

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	3	MFECA0030ETE
Shell kit	3Е306-3200-008		5	MFECA0050ETE
Connector (Motor side)	JN2DS10SL1-R	Japan Aviation Electronics Ind.	10	MFECA0100ETE
Connector pin	JN1-22-22S-PKG100		20	MFECA0200ETE
Cable	$0.2 \mathrm{~mm}^{2} \times 3 \mathrm{P}$ (6 -wire)	Oki Electric Cable Co., Ltd.		

Options

| Part No. | MFMCAO ** OEED | Applicable
 model | MSMD 50 W to 750 W,
 MSMJ 200 W to 750 W, MHMD 200 W to 750 W |
| :--- | :--- | :--- | :--- | :--- | :--- | (50)

Title	Part No.	Manufacturer	L(m)	Part No.
Connector	172159-1	Tyco Electronics	3	MFMCA0030EED
Connector pin	170366-1		5	MFMCA0050EED
Rod terminal	Al0.75-8GY	Phoenix Contact	10	MFMCA0100EED
Nylon insulated round terminal	N1.25-M4	J.S.T Mfg. Co., Ltd.	20	MFMCA0200EED
Cable	ROBO-TOP $600 \mathrm{~V} 0.75 \mathrm{~mm}^{2} 4$-wire	DYDEN CORPORATION		

MFMCAO * * ONJD (Highy bendable type, Direcion of motor shat)	Applicable model	MSME 50 W to 750 W (200
MFMCAO * * ONKD (Highly bendable type, Opposite direction of motor shatt)		MSME 200 W to $750 \mathrm{~W}(200 \mathrm{~V})$
MFMCAO * * ORJD (Standard bendable type, Direction of motor shatt)		MSME 50 W to $750 \mathrm{~W}(200 \mathrm{~V})$
MFMCAO * * ORKD (Standard bendable type, Opposite direction of motor shaft)		MSME 200 W to 750 W (200)

$\substack{\text { Direction of } \\ \text { motor shaft }}$
Opposite direction of
motor shaft

Caution …s Motor cable for opposite direction of motor shaft cannot be used with a motor 50 W and 100 W .

Title	Part No.	Manufacturer	L (m)	Part No.(ex.)
Connector	JN8FT04SJ1	Japan Aviation Electronics Ind.	3	MFMCA0030NJD
Connector pin	ST-TMH-S-C1B-3500		5	MFMCA0050NJD
Rod terminal	AIO.75-8GY	Phoenix Contact	10	MFMCA0100NJD
Nylon insulated round terminal	N1.25-M4	J.S.T Mfg. Co., Ltd.	20	MFMCA0200NJD
Cable	AWG18 4-wire (ø6.7)	Hitachi Cable, Ltd.		

Part No.	MFMCAO **2ECD	$\begin{array}{l}\text { Applicable } \\ \text { model }\end{array}$	MFME $1.5 \mathrm{~kW}(200 \mathrm{~V})$

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JL04V-6A20-18SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCA0032ECD
Cable clamp	JL04-2022CK(14)-R		5	MFMCA0052ECD
Rod terminal	NTUB-2	J.S.T M Mg. Co., Ltd.	10	MFMCA0102ECD
Nylon insulated round terminal	N2-M4		20	MFMCA0202ECD
Cable	ROBO-TOP 600V 2.0mm ${ }^{2}$ 4-wire	DYDEN CORPORATION		

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JL04V-6A20-4SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCD0032ECD
Cable clamp	JL04-2022CK(14)-R		5	MFMCD0052ECD
Rod terminal	NTUB-2	J.S.T Mfg. Co., Ltd.	10	MFMCD0102ECD
Nylon insulated round terminal	N2-M4		20	MFMCD0202ECD
Cable	ROBO-TOP $600 \mathrm{~V} 2.0 \mathrm{~mm}^{2} 4$-wire	DYDEN CORPORATIO		

```
Part No. MFMCEO **2ECD Applicable MHME
```


Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JL04V-6A22-22SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCE0032ECD
Cable clamp	JL04-2022CK(14)-R		5	MFMCE0052ECD
Rod terminal	NTUB-2	J.S.T Mfg. Co., Ltd.	10	MFMCE0102ECD
Nylon insulated round terminal	N2-M4		20	MFMCE0202ECD
Cable	ROBO-TOP $600 \mathrm{~V} 2.0 \mathrm{~mm}^{2} 4$-wire	DYDEN CORPORATION		

| Part No. | MFMCFO ** 2ECD | Applicable
 model | MFME $1.5 \mathrm{~kW}(400 \mathrm{~V}), 2.5 \mathrm{~kW}(200 \mathrm{~V}$ and 400 V commonness) |
| :--- | :--- | :--- | :--- | :--- |

[Unit: m

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JL04V-6A24-11SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCF0032ECD
Cable clamp	JL04-2428CK(17)-R		5	MFMCF0052ECD
Rod terminal	NTUB-2	J.S.T Mfg. Co., Ltd.	10	MFMCF0102ECD
Nylon insulated round terminal	N2-M4		20	MFMCF0202ECD
Cable	ROBO-TOP $600 \mathrm{~V} 2.0 \mathrm{~mm}^{2}$ 4-wire	DYDEN CORPORATION		

Options
t doesn't correspond to IP65 and IP67.

Applicable MSME 3.0 kW to 5.0 kW , MDME 3.0 kW to 5.0 kW MHME 3.0 kW to 5.0 kW , MGME 2.0 kW to 4.5 kW (All model 200 V and 400 V commonness)
. 0.5 kW

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JL04V-6A22-22SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCA0033ECT
Cable clamp	JL04-2022CK(14)-R		5	MFMCA0053ECT
Nylon insulated round terminal	N5.5-5	J.S.T Mfg. Co., Ltd.	10	MFMCA0103ECT
Cable	ROBO-TOP $600 \mathrm{~V} 3.5 \mathrm{~mm}^{2} 4$-wire	DYDEN CORPORATION	20	MFMCA0203ECT

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JLO4V-6A24-11SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCD0033ECT
Cable clamp	JL04-2428CK(17)-R		5	MFMCD0053ECT
Nylon insulated round terminal	N5.5-5	J.S.T Mig. Co., Ltd.	10	MFMCD0103ECT
Cable	ROBO-TOP $600 \mathrm{~V} 3.5 \mathrm{~mm}^{2} 4$-wire	DYDEN CORPORATION	20	MFMCD0203ECT

Motor Cable (with Brake)

It doesn't correspond to IP65 and IP67.
Options

A5 Family
Options
Motor Cable (with Brake)

A5 Family

Options

Direction of
motor shaft

Opposite direction o
(国)

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JN4FT02SJMR	Japan Aviation Electronics Ind.	3	MFMCB0030PJT
Connector pin	ST-TMH-S-C1B-3500		5	MFMCB0050PJT
Nylon insulated round terminal	N1.25-M4	J.S.T Mfg. Co., Ltd.	10	MFMCB0100PJT
Cable	AWG22 2-wire (04.3)	Hitachi Cable, Ltd.	20	MFMCB0200PJT

Interface Cable

- Table for wiring

Pin No.	color								
1	Orange (Red1)	11	Orange (Black2)	21	Orange (Red3)	31	Orange (Red4)	41	Orange (Red5)
2	Orange (Black1)	12	Yellow (Black1)	22	Orange (Black3)	32	Orange (Black4	42	Orange (Black
3	Gray (Red1)	13	Gray (Red2)	23	Gray (Red3)	33	ay (Red4)	43	Gray (Red5)
4	Gray (Black1)	14	Gray (Black2)	24	ray (Black3)	34	nite (Red4)	44	hite (Red5)
5	White (Red1)	15	White (Red2)	25	White (Red3)	35	White (Black4)	45	hite (Black5)
6	White (Black1)	16	Yellow (Red2)	26	White (Black3)	36	Yellow (Red4)	46	Yellow (Red5)
7	Yellow (Red1)	17	Yel (Blk2) Pink (Bl\|	27	Yellow (Red3)	37	Yellow (Black4)	47	Yellow (Black5)
8	Pink (Red1)	18	Pink (Red2)	28	Yellow (Black3)	38	Pink (Red4)	48	Pink (Red5)
9	Pink (Black1)	19	White (Black2)	29	Pink (Red3)	39	Pink (Black4)	49	Pink (Black5)
10	Orange (Red2)	20		30	Pink (Black3)	40	Gray (Black4)	50	Gray (Black5)

<Remarks>

Color designation of the cable e.g.) Pin-1 Cable color : Orange (Red1) : One red dot on the cable The shield of this cable is connected to the connector shell but not to the terminal.

Interface Conversion Cable

\section*{| Part No. | DVOP4120, 4121, 4130, 4131, 4132 |
| :--- | :--- |}

Interface cables for old product (XX series or V series) can be connected to the current product by using the connector conversion cable shown below.

DV0P4120	MINAS XX \rightarrow A5II, A5 series (A4, A series) for position control/ velocity control
DVOP4121	MINAS XX \rightarrow A5II, A5 series (A4, A series) for torque control
DVOP4130	MINAS V \rightarrow A5II, A5 series (A4, A series) for position control
DVOP4131	MINAS V \rightarrow A5II, A5 series (A4, A series) for velocity control
DV0P4132	MINAS V \rightarrow A5II, A5 series (A4, A series) for torque control

* For details of wiring, contact our sales department.

Connector Kit

Connector Kit for Communication Cable (for RS485, RS232) (Excluding A5IIE, A5E Series)

Part No. DVOPM20102

- Components
- Components

Title	Part No.
Connector	CIF-PCNS08KK-072R

Manufacturer

- Dimensions

Connector Kit for Safety (Excluding A5IIE, A5E Series)

Part No.	DVOPM20103

- Components

Title	Part No.	Manufacturer	Note
Connector	CIF-PCNS08KK-071R	J.S.T Mfg. Co., Ltd.	For Connector X3 (8-pins)
- Pin disposition of connector, connector X3		- Dimensions	
			20, [Unit: mm]
	Shell: FG	${ }_{\text {[11) }}^{(37)}$	Recommended wire size 05.8 mm (MAX)
$\xrightarrow[\text { (Viewed from cable) }]{\text { SF2- }}$	<Remarks> Do not connect anything to NC.	風	Note: No wires are supplied with the connector kit

Safety bypass plug (Excluding A5IE, A5E Series)

Part No.	DVOPM20094

Connector Kit for Interface

Part No. DVOP4350

- Components

- Components
Title Part No. Number Manufacturer Note Connector $10150-300$ PE 1 Sumitomo 3 M (or equivalent) For Connector X4 (50 -pins) Connector cover $10350-52$ AO-008 1

- Pin disposition (50 pins) (viewed from the soldering side)

1) Check the stamped pin-No. on the connector body while making a wiring. 2) For the function of each signal title or its symbol, refer to the operating manual
Do not connect anything to NC pins in the above table.

<Remarks>

- For the crimping tools required for cable production, please check the manufacturer's website or contact the manufacturer. For manufacturer inquiries, refer to P. 213 "Peripheral Device Manufacturer List".

Connector Kit for External Scale (Excluding A5IE, A5E Series)

Part No. ${ }^{2}$ DVOPM20026

- Components

Title	Part No.	Manufacturer	Note
Connector	MUF-PK10K-X	J.S.T Mfg. Co., Ltd.	For Connector X5 (10-pins)

- Pin disposition of connector, connector X5
- Dimensions

EXB (Viewed from cable)
围

Connector Kit for Encoder			
Part No. ${ }^{\text {D }}$ DVOPM20010			
- Components			
Title	Part No.	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M (or equivalent)	For Connector X6
Shell kit	3E306-3200-008		
- Pin disposition of connector, connector X6		- Dimensions	
		<Shell kit>	<Connector>
(Viewed from cable)		N.	? $\square_{\text {[Unit } \mathrm{mm}}$

Connector Kit for Analog Monitor Signal
Part No. ${ }^{2}$ DVOPM20031

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	510040600	1	Molex Inc	For Connector X7 (6-pins)
Connector pin	500118100	6		

- Dimensions

<Remarks>

Connector X1: use with commercially available
Configuration of connector X1: USB mini-B cable.

Connector Kit for Power Supply Input

Part No.	DVOPM20032 (For A-frame to C-frame 100 V , A-frame to D-frame 200 V : Single row type)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	O5JFAT-SAXGF	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT	2		

Part No.	DVOPM20033 (For A-frame to D-frame 200 V: Double row type)

•Components

Title	Part No.	Number	Manufacturer	Note
Connector	05JFAT-SAXGSA-C	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT	2		

* When connection multiple axes in series, make sure the sum of the current value does not exceed the rated urrent (11.25 A) of DVOPM20033.

Remarks \cdots \%

When using drivers MDDKT5540 *** or MDDHT5540 *** in single-phase power supply, do not use DVOPM20033.

Driver part No.	Power supply	Rated input current
MADHT1105 *** MADKT1105 **夫	Single phase	1.7 A
$\begin{aligned} & \text { MADHT1107 *** } \\ & \text { MADKT1107*** } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Single phase } \\ 100 \mathrm{~V} \\ \hline \end{gathered}$	2.6 A
MADHT1505 *** MADKT1505 ***	$\begin{array}{c\|} \hline \text { Single phase/3-phase } \\ 200 \mathrm{~V} \end{array}$	1.6 A/0.9 A
$\begin{aligned} & \text { MADHT1507 *** } \\ & \text { MADKT1507 *** } \end{aligned}$	$\begin{gathered} \text { Single phase/3-phase } \\ 200 \mathrm{~V} \end{gathered}$	2.4 A/1.3 A
MBDHT2110 *** MBDKT2110 ***	Single phase	4.3 A
$\begin{aligned} & \text { MBDHT2510 *** } \\ & \text { MBDKT2510*** } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Single phase/3-phase } \\ 200 \mathrm{~V} \end{array}$	4.1 A/2.4 A
MCDHT3120 *** MCDKT3120 ***	$\begin{aligned} & \text { Single phase } \\ & 100 \mathrm{~V} \\ & \hline \end{aligned}$	7.6 A
MCDHT3520 *** MCDKT3520 ***	$\begin{array}{\|c\|} \hline \text { Single phase/3-phase } \\ 200 \mathrm{~V} \end{array}$	6.6 A/3.6 A
$\begin{aligned} & \text { MDDHT3530 *** } \\ & \text { MDDKT3530** } \end{aligned}$	Single phase/3-phase 200 V	9.1 A/5.2 A
MDDHT5540 ***	Single phase/3-phase 200 V	14.2 A/8.1 A

Part No. DVOPM20044 (For E-frame 200 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	05JFAT-SAXGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT-L	2		

Part No.	DVOPM20051 (For D-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAYGSA-M	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT-L	2		

Part No.	DVOPM20052 (For E-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAYGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT-L	2		

Connector Kit

Connector Kit for Control Power Supply Input

Part No.	DVOPM20053 (For D, E-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	02MJFAT-SAGF	1	J.S.T Mfg. Co., Ltd.	For Connector XD
Handle lever	MJFAT-OT	1		

Connector Kit for Regenerative Resistor Connection (E-frame)

Part No.	DVOPM20045 (For E-frame 200 V/400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	04JFAT-SAXGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XC
Handle lever	J-FAT-OT-L	2		

Part No.	DVOPM20055 (For D-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	04JFAT-SAXGSA-M	1	J.S.T Mfg. Co., Ltd.	For Connector XC
Handle lever	J-FAT-OT-L	2		

Connector Kit for Motor Connection (Driver side)

Part No.	DVOPM20034 (For A-frame to C-frame 100 V, A-frame to D-frame 200 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	06JFAT-SAXGF	1	J.S.T Mfg. Co., Ltd.	For Connector XB
Handle lever	J-FAT-OT	2		

Part No.	DVOPM20046 (For E-frame 200 V/400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAXGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XB
Handle lever	J-FAT-OT-L	2		

Part No.	DVOPM20054 (For D-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAXGSA-M	1	J.S.T Mfg. Co., Ltd.	For Connector XB
Handle lever	J-FAT-OT-L	2		

Connector Kit

When IP65 or IP67 are necessary, the customer must give appropriate processing.

Connector Kit for Motor/Encoder Connection

Part No.	DV0P4290	Applicable model	MSMD 50 W to 750 W , MHMD 200 W to 750 W (absolute encoder type)		
- Components					
	Title	Part No.	Number	Manufacturer	Note
	nector (Driver side)	3E206-0100 KV	V		
	Shell kit	ЗЕ306-3200-008	8	(or equivalent)	For Connector X6 (6-pins)
	Connector	172161-1	-....-- 1		For Encoder cable
	Connector pin	170365-1	9	Tyco Electronics	$\text { (} 9 \text {-pins) }$
	Connector	$172159-1$	1	Tyco Electronics	For Motor cable
	Connector pin	170366-1	4	Tyco Electronics	(4-pins)

- Pin disposition of connector connector X6

(Viewed from cable)
Pin disposition of connector for encoder cable

Pin disposition of connector for motor cable

| 1 2
 3 4 |
| :--- | :--- |
| (Viewed from cable) |
| PIN No. Application
 1 U-phase
 2 V-phase
 3 W-phase
 4 Ground |
| NC. |

When you connect the battery for absolute encoder, refer to P.207, "When you make your own cable for 17-bit absolute encoder"

Part No.	DV0P4380	Applicable model	MSMD 50 W to $750 \mathrm{~W}, \quad$ MHMD 200 W to 750 W MSMJ 200 W to 750 W, MHMJ 200 W to 750 W (incremental encoder type)

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Connector	172160-1	1	Tyco Electronics	For Encoder cable (6-pins)
Connector pin	170365-1	6		
Connector	172159-1	1	Tyco Electronics	For Motor cable (4-pins)
Connector pin	170366-1	4		

- Pin disposition of connector connector X6

$$
\begin{aligned}
& 1 \text { E5V } 2 \text { Eov } \\
& 3 \mathrm{NC} \text { HO } 4 \mathrm{NC}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 74 } \\
& \text { (Viewed from cable) }
\end{aligned}
$$

Pin disposition of connector
for encoder cable

1	2	3
4	5	6
(Viewed from cable)		
PIN No. Application		
1	NC	
2	NS	
3	PS	
4	E5V	
5	EOV	<Remarks>
6	FG(SHIELD)	
Do not connect		
anything to NC.		

Pin disposition of connector
for motor cable

iewed from cable) PIN No. Application PIN No. Application | 1 | U-phase |
| :---: | :---: |
| 2 | V-phase |
| 3 | W-phase |

4 Ground

A5 Family
Options

Connector Kit

* When IP65 or IP67 are necessary, the customer must give appropriate processing.

Part No.	DVOPM20035	Applicable model	MSME 50	50 W to $400 \mathrm{~W}(100 \mathrm{~V}), 50 \mathrm{~W}$ to $750 \mathrm{~W}(200 \mathrm{~V})$	
- Components					
	Title	Part No.	Number	Manufacturer	Note
	nnector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
	Shell kit	ЗЕ306-3200-008	1		
	Encoder connector	JN6FRO7SM1	1	Japan Aviation Electronics Ind.	For Encoder cable (7-pins)
	Socket contact	LY10-C1-A1-10000	7		
	Motor connector	JN8FT04SJ1	1	Japan Aviation Electronics Ind.	For Motor cable (4-pins)
	Socket contact	ST-TMH-S-C1B-3500	4		

$\begin{array}{cc}\text { - Pin disposition of connector, } & \text { - } \begin{array}{l}\text { Pin disposition of connector } \\ \text { connector } \mathrm{X6}\end{array} \\ \text { for encoder cable } & \text { - } \begin{array}{l}\text { Pin disposition of connector } \\ \text { for motor cable }\end{array}\end{array}$ connector X6
for encoder cable
[Direction of motor shaft] Gasket

Pins 2 and 5 are left unused (NC)
with an incremental encoder.
Remarks \cdots Secure the gasket in place without removing it from the connector. Otherwise, the degree of protection of IP67 will not be guaranteed.

Part No.	DVOPM20036	Applicable model	<IP67 motor> MSME $750 \mathrm{~W}(400 \mathrm{~V}$), 1.0 kW to 2.0 kW , MDME $400 \mathrm{~W}(400 \mathrm{~V}), 600 \mathrm{~W}(400 \mathrm{~V}), 1.0 \mathrm{~kW}$ to 2.0 kW MHME 1.0 kW to 1.5 kW , MGME 0.9 kW (All model 200 V and 400 V commonness)	Without brake

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3 E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1		

[^4]| Part No. | DV0P4310 | Applicable model | <IP65 motor>
 MSME $750 \mathrm{~W}(400 \mathrm{~V}), 1.0 \mathrm{~kW}$ to 2.0 kW
 MDME $400 \mathrm{~W}(400 \mathrm{~V}), 600 \mathrm{~W}(400 \mathrm{~V}), 1.0 \mathrm{~kW}$ to 2.0 kW
 MHME 1.0 kW to 1.5 kW , MGME 0.9 kW | | | | Without brake |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Components | | | | | | | |
| | Title | Part No. | | | Manufacturer | Note | |
| | nnector (Driver side) | 3E206-0100 KV | | 1 | Sumitomo 3M (or equivalent) | For Connector X6 (6-pins) | |
| | Shell kit | 3Е306-3200-008 | | 1 | | | |
| | Encoder connector | N/MS3106B20-29S | | 1 | Japan Aviation Electronics Ind | For Encoder cable | |
| | Cable clamp | N/MS3057-12A | | 1 | | | |
| | Motor connector | N/MS3106B20-4S | | 1 | Japan Aviation Electronics Ind. | For Motor cable | |
| | Cable clamp | N/MS3057-12A | | 1 | | | |

Part No.	DV0PM20037	Applicable model	<1 P67 motor> MSME 3.0 kW to 5.0 kW , MDME 3.0 kW to 5.0 kW MHME 2.0 kW to 5.0 kW , MGME 2.0 kW to 4.5 kW (All model 200 V and 400 V commonness)	Withou brake

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A22-22SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-2022CK(14)-R	1		

| Part No. | DVOP4320 | Applicable
 model | <IP65 motor>
 MSME
 MHME
 MHME
 2.0 kW |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	ЗЕ306-3200-008	1		
Encoder connector	N/MS3106B20-29S	1	Japan Aviation Electronics Ind.	For Encoder cable
Cable clamp	N/MS3057-12A	1		
Motor connector	N/MS3106B22-22S	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	N/MS3057-12A	1		

Part No.	DVOPM20038	Applicable model	<IP67 motor> MSME 1.0 kW to 2.0 kW , MDME 1.0 kW to 2.0 kW MFME 1.5 kW (Common to with/ without brake), MHME 1.0 kW to 1.5 kW , MGME 0.9 kW

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A20-18SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-2022CK(14)-R	1		

A5 Family
Options
Connector Kit

* When IP65 or IP67 are necessary, the customer must give appropriate processing.

| Part No. | DV0P4330 | Applicable
 model | <IP65 motor>
 MSME 1.0 kW to $2.0 \mathrm{~kW}, ~ M D M E ~$
 MHME 1.0 kW to 2.0 kW
 (All model 200 V) to $1.5 \mathrm{~kW}, ~ M G M E ~$
 0.9 kW | With
 brake |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	N/MS3106B20-29S	1	Japan Aviation Electronics Ind.	For Encoder cable
Cable clamp	N/MS3057-12A	1		
Motor connector	N/MS3106B20-18S	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	N/MS3057-12A	1		

Part No.	DVOPM20039	Applicable model	<IP67 motor> (200V) MSME 3.0 kW to 5.0 kW , MDME 3.0 kW to 5.0 kW MFME 2.5 kW to 4.5 kW (Common to with/ without brake), MHME 2.0 kW to 5.0 kW , MGME 2.0 kW to 4.5 kW (400V) MSME 750 W to 5.0 kW , MDME 400 W to 5.0 kW MFME 1.5 kW to 4.5 kW (Common to with/ without brake), MHME 1.0 kW to 5.0 kW , MGME 0.9 kW to 4.5 kW	With brake

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A24-11SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-2428CK(17)-R	1		

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	N/MS3106B20-29S	1	Japan Aviation Electronics Ind.	For Encoder cable
Cable clamp	N/MS3057-12A	1		
Motor connector	N/MS3106B24-11S	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	N/MS3057-16A	1		

[^5] the manufacturer. For manufacturer inquiries, refer to P. 213 "Peripheral Device Manufacturer List"

Part No.	DV0PM20056	Applicable model	<IP67 motor> MDME 7.5 kW to 15.0 kW MGME 6.0 kW , MHME 7.5 kW				Without brake
- Components							
	Title	Part No.			Manufacturer	Note	
	nector (Driver side)	3E206-0100 KV		1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)	
	Shell kit	3Е306-3200-008		1			
	ncoder connector	JN2DS	10SL1-R	1	Japan Aviation Electronics Ind	For Encoder cable	
	Connector pin	JN1-22-22S-PKG100		5			
	Motor connector	JL04V-6A32-17SE-EB-R		1	Japan Aviation Electronics Ind.	For Motor cable	
	Cable clamp	JL04-32CK(24)-R		1			

Cable cover sizz: $\$ 22$ to $\$ 25$. Cable core material is not speciified. The user can select the cable compatible with the connector to be
When manufacturing the motor extension cable refer to "Driver and List of Applicable Penipheral Equipment" on pages 19 and to for
When manufacturing the motor extension cable, refer to "Driver and List of Applicable Penipheral Equipment" on pages 19 and 20 for
thickness of the electric wire used and the size of the crimp terminal.

Part No.	DV0PM20057	Applicable model	<IP67 motor> MDME 7.5 kW to 15.0 kW MGME 6.0 kW, MHME 7.5 kW	With brake

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M (or equivalent)	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A32-17SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-32CK(24)-R	1		
Brake connector	N/MS3106B14S-2S	1	Japan Aviation Electronics Ind.	For Brake cable
Cable clamp	N/MS3057-6A	1		

- When manuuacturing the motor extension cable, refer to "Driver and List of Applicable Penipheral Equipment" on pages 19 and 20 fo
thickness of the electric wire used and the size of the crimp terminal.

Connector Kit for Motor/Brake Connection

Part No.	DVOPM20040	Applicable model	MSME 50 W to 750 W

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	JN4FTO2SJM-R	1	Japan Aviation Electronics Ind.	For brake cable
Socket contact	ST-TMH-S-C1B-3500	2	Elonnnnn	

- Pin disposition of connector for brake cable
[Direction of motor shaft] [Opposite direction of motor shaft]

<Remarks>
Secure the gasket in place without removing it from the connector. Otherwise, the degree of protection of IP67 will not be guaranteed

Battery for Absolute Encoder

Part No. DVOP2990

- Lithium battery: 3.6 V 2000 mAh

<Caution>

This battery is categorized as hazardous substance, and you may be required to present an application of hazardous substance when you transport by air (both passenger and cargo airlines)

Mounting Bracket
Options

<Caution>
For E, F and G -frame, it is possible to make both a front end and back end mounting by changing the mounting direction of L -shape bracket (attachment)

	Part No．	A	B	C	D	$\mathrm{E}_{\text {（max）}}$	F	G	H	1	Inductance （ mH ）	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rated } \\ \text { current } \\ \text { (A) } \end{array} \\ \hline \end{array}$
Fig． 1	DVOP220	65 ± 1	125 ± 1	（93）	136max	155	70＋3／－0	85 ± 2	4－7 ${ }^{1} 12$	M4	6.81	）
	DVOP221	60 ± 1	150 ± 1	（113）	155 max	130	60＋3／－0	75 ± 2	$4-7 \phi \times 12$	M4	4.02	5
	DVOP222	60 ± 1	150 1	（113）	155max	140	70＋3／－0	85さ2	$4-7 \phi \times 12$	M4	2	8
	DVOP223	60 ± 1	150 1	（113）	155max	150	79＋3／－0	95さ2	$4-7 \phi \times 12$	M4	1.39	11
	DVOP224	60 ± 1	150 1	（113）	160 max	155	84＋3／－0	100 2	$4-7 \phi \times 12$	M5	0.848	16
	DVOP225	60 ± 1	150 ± 1	（113）	160 max	170	100＋3／－0	115さ2	$4-7 \phi \times 12$	M5	0.557	25
Fig． 2	DVOP227	55 ± 0.7	80 ± 1	66.5 ± 1	110 max	90	41 ± 2	55ı2	$4-5 \phi \times 10$	M4	4.02	5
	DV0P228	55 ± 0.7	80 ± 1	66.5 ± 1	110 Max	95	46 ± 2	60 ± 2	$4-5 \phi \times 10$	M4	2	8
	VOPM2004					105			4－5¢ \times			

rapplication，refer to P． 21 to P． 28 and P． 153 to P． 154 ＂Table of Part Numbers and Options＂．

Harmonic restraint

Harmonic restraint measures are not common to all countries．Therefore，prepare the measures that meet the requirements of the destination country．
With products for Japan，on September，1994，＂Guidelines for harmonic restraint on heavy consumers who receive power
through high voltage system or extra high voltage system＂and＂Guidelines for harmonic restraint through high voltage system or extra high voltage system＂and＂Guidelines for harmonic restraint on household electrical appliances and general－purpose articles＂established by the Agency for Natural Resources and Energy of the Ministry of
Economy，Trade and Industry（the ex－Ministry of International Trade and Industry）．According to those guidelines，the Japan Electrical Manufacturers＇Association（JEMA）have prepared technical documents（procedure to execute harmonic restraint： JEM－TR 198，JEM－TR 199 and JEM－TR 201）and have been requesting the users to understand the restraint and to cooper－ ate with us．On January，2004，it has been decided to exclude the general－purpose inverter and servo driver from the＂Guide－ lines for harmonic restraint on household electrical appliances and general－purpose articles＂．After that，the＂Guidelines for harmonic restraint on household electrical appliances and general－purpose articles＂was abolished on September 6， 2004. We are pleased to inform you that the procedure to execute the harmonic restraint on general－purpose inverter and servo driver was modified as follows．
1．All types of the general－purpose inverters and servo drivers used by specific users are under the control of the＂Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system The users who are required to apply the guidelines must calculate the equivalent capacity and harmonic current according to the guidelines and must take appropriate countermeasures if the harmonic current exceeds a limit value specified in contract demand．（Refer to JEM－TR 210 and JEM－TR 225．）
September 6，2004．However based on conventional guidelines JEM－TR 227 to any users who do not fit into the＂Guidelines for harmonic restraint on heavy consumers who receive pow－ er through high voltage system or extra high voltage system＂from a perspective on enlightenment on general harmonic restraint．The purpose of these guidelines is the execution of harmonic restraint at every device by a user as usual to the utmost extent．

Part No．	Manufacturer＇s part No．	Specifications					Activation temperature of built－in thermal protector
		Resistance	cable core outside diameter	Weight	Rated power （reference）		
					Free air	with fan $1 \mathrm{~m} / \mathrm{s}$	
		Ω	mm	kg	W	W	
DVOP4280	RF70M	50		0.1	10	25	$140 \pm 5^{\circ} \mathrm{C}$ B－contact Open／Close capacity （resistance load） 1 A 125 VAC 6000 times 0.5 A 250 VAC 10000 times
DVOP4281	RF70M	100		0.1	10	25	
DV0P4282	RF180B	25		0.4	17	50	
DVOP4283	RF180B	50		0.2	17	50	
DV0P4284	RF240	30		0.5	40	100	
DVOP4285	RH450F	20		1.2	52	130	
DVOPM20048	RF240	120		0.5	35	80	
DVOPM20049	RH450F	80		1.2	65	190	

＊1 Power with which the driver can be used without activating the built－in thermal protector．
A built－in thermal fuse and a thermal protector are provided for safety
The circuit should be so designed that the power supply will be turned off as the thermal protector operates． The built－in thermal fuse blows depending on changes in heat dissipation condition，operating temperature limit， power supply voltage or load．
Mount the regenerative resistor on a machine operating under aggressive regenerating condition（high power supply voltage，large load inertia，shorter deceleration time，etc．）and make sure that the surface temperature will not exceed $100^{\circ} \mathrm{C}$ ．
Attach the regenerative resistor to a nonflammable material such as metal
Cover the regenerative resistor with a nonflammable material so that it cannot be directly touched．
Temperatures of parts that may be directly touched by people should be kept below $70^{\circ} \mathrm{C}$ ．
＊2 Terminal block with screw tightening torque as shown below．

$$
\begin{aligned}
& \mathrm{T} 1, \mathrm{~T} 2,24 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{E}: \mathrm{M} 4: 1.2 \mathrm{~N} \cdot \mathrm{~m} \text { to } 1.4 \mathrm{~N} \cdot \mathrm{~m} \\
& \mathrm{R} 1, \mathrm{R} 2
\end{aligned}: \begin{aligned}
& \mathrm{M} 5: 2.0 \mathrm{~N} \cdot \mathrm{~m} \text { to } 2.4 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

R1，R2
Use the cable with the same diameter as the main circuit cable．（Refer to P．19）．
＊3 With built－in fan which should always be operated with the power supply connected across 24 V and 0 V ．

Frame	Power supply		
	Single phase， 100 V	Single phase， 200 V 3－phase， 200 V	3－phase， 400 V
A	DVOP4280	$\begin{aligned} & \text { DVOP4281 } \\ & (50 \mathrm{~W}, 100 \mathrm{~W}) \\ & \text { DVOP4283 } \\ & (200 \mathrm{~W}) \end{aligned}$	－
B	DVOP4283	DV0P4283	
C	DVOP4282		
D	－	DV0P4284	DVOPM20048
E		$\begin{gathered} \text { DVOP4284 } \\ \times 2 \text { in parallel or } \\ \text { DVOP4285 } \end{gathered}$	DVOPM20049
F		DVOP4285 $\times 2$ in parallel	DVOPM20049 $\times 2$ in parallel
G		DVOP4285 $\times 3$ in parallel	DVOPM20049 $\times 3$ in parallel
H		DVOP4285 $\times 6$ in parallel	DVOPM20049 $\times 6$ in parallel

Options

External Regenerative Resistor
DVOP4284, DVOPM20048

[Unit: mm]
DVOP4285, DVOPM20049

<Caution when using external regenerative resistor

Regenerative resistor gets very hot.

Configure a circuit so that a power supply shuts down when built-in thermal protector of the regenerative resistor works. Because it is automatic reset thermal protector, please apply a self-holding circuit to the outside in order to maintain safety in case of sudden activation. During the failure of the driver, the surface temperature of the regenerative resistor may exceed the operating temperature before thermal protector starts to work.
Built-in thermal fuse of regenerative resistor is intended to prevent from ignition during the failure of the driver and not intended to suppress the surface temperature of the resistor.

- Be attached the regenerative resistance to non-combustible material such as metal.
- Built-in thermal fuse of regenerative resistor is intended to prevent from ignition during the failure of the driver and not intended to suppress the surface temperature of the resistor. Do not install the regenerative resistor near flammable materials.

Surge Absorber for Motor Brake

Motor		Part No.	Manufacturer
MSMD	50 W to 750 W	TND14V271K	NIPPON CHEMI-CONCORPORATION
MSMJ	200 W to 750 W		
MSME	50 W to 750 W		
	$\begin{gathered} 750 \mathrm{~W}(400 \mathrm{~V}) \\ 1.0 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW} \end{gathered}$	Z15D151	SEMITEC Corporation
	4.0 kW to 5.0 kW	NVD07SCD082	KOA Corporation
MDME	$400 \mathrm{~W}(400 \mathrm{~V}), 600 \mathrm{~W}(400 \mathrm{~V})$	Z15D151	SEMITEC Corporation
	1.0 kW to 3.0 kW	NVD07SCD082	KOA Corporation
	4.0 kW to 7.5 kW	Z15D151	SEMITEC Corporation
	$11 \mathrm{~kW}, 15 \mathrm{~kW}$	NVD07SCD082	KOA Corporation
MFME	1.5 kW	Z15D151	SEMITEC Corporation
	2.5 kW, 4.5 kW	NVD07SCD082	KOA Corporation
MGME	0.9 kW		
	2.0 kW to 6.0 kW	Z15D151	SEMITEC Corporation
MHMD MHMJ	200 W to 750 W	TND14V271K	NIPPON CHEMI-CON CORPORATION
MHME	1.0 kW , 1.5 kW	NVD07SCD082	KOA Corporation
	2.0 kW to 7.5 kW	Z15D151	SEMITEC Corporation

List of Peripheral Devices

Manufacturer	Tel No. / Home Page	Peripheral components
Panasonic Corporation Eco Solutions Company	http://panasonic.net/es/	Circuit breaker
Panasonic Corporation Automotive \& Industrial Systems Company	http://panasonic.net/id/	Surge absorber Switch, Relay
Iwaki Musen Kenkyusho Co., Ltd.	$\begin{aligned} & \hline+81-44-833-4311 \\ & \text { http://www.iwakimusen.co.jp/ } \end{aligned}$	Regenerative resistor
KOA Corporation	$\begin{aligned} & \hline+81-42-336-5300 \\ & \text { http://www.koanet.co.jp/en/index.htm } \end{aligned}$	Surge absorber for holding brake
NIPPON CHEMI-CON CORPORATION	+81-3-5436-7711 http://www.chemi-con.co.jp/e/index.html	
SEMITEC Corporation	$\begin{aligned} & \text { +81-3-3621-2703 } \\ & \text { http://www.semitec.co.jp/english2/ } \end{aligned}$	
KK-CORP.CO.JP	$+81-184-53-2307$ http://www.kk-corp.co.jp/	Ferrite core
MICROMETALS (Nisshin Electric Co., Ltd.)	$\begin{aligned} & \text { +81-4-2934-4151 } \\ & \text { http://www.nisshin-electric.com/ } \end{aligned}$	
TDK Corporation	$\begin{aligned} & \text { +81-3-5201-7229 } \\ & \text { http://www.global.tdk.com/ } \end{aligned}$	
Okaya Electric Industries Co. Ltd.	+81-3-4544-7040 http://www.okayaelec.co.jp/english/index.html	Surge absorber Noise filter
Japan Aviation Electronics Industry, Ltd.	$+81-3-3780-2717$ http://www.jae.co.jp/e-top/index.html	Connector
Japan Molex Inc.	$\begin{aligned} & \hline+81-462-65-2313 \\ & \text { http://www.molex.co.jp } \\ & \hline \end{aligned}$	
J.S.T. Mfg. Co., Ltd.	$+81-45-543-1271$ http://www.jst-mfg.com/index_e.php	
Sumitomo 3M	$+81-3-5716-7290$ http:/solutions.3m.com/wps/portal/3M/ja_JP/ WW2/Country/	
Tyco Electronics	$\begin{aligned} & \hline+81-44-844-8052 \\ & \text { http://www.te.com/ja/home.html } \end{aligned}$	
DYDEN CORPORATION	+81-3-5805-5880 http://www.dyden.co.jp/english/index.htm	Cable
DR. JOHANNES HEIDENHAIN GmbH	+81-3-3234-7781 http://www.heidenhain.de/de_EN/company/contact/	External scale
Fagor Automation S.Coop.	$\begin{aligned} & \text { +34-943-719-200 } \\ & \text { http://www.fagorautomation.com } \end{aligned}$	
Magnescale Co., Ltd.	$\begin{aligned} & \hline+81-463-92-7971 \\ & \text { http://www.mgscale.com/mgs/language/english/ } \\ & \hline \end{aligned}$	
Mitutoyo Corporation	$\begin{aligned} & \text { +81-44-813-8234 } \\ & \text { http://www.mitutoyo.co.jp/eng/ } \end{aligned}$	
Nidec Sankyo Corporation	+81-3-5740-3006 http://www.nidec-sankyo.co.jp/	
Renishaw plc	+44 1453524524 www.renishaw.com	
Schaffner EMC, Inc.	$+81-3-5712-3650$ http://www.schaffner.jp/	Noise filter
TDK-Lambda Corporation	+81-3-5201-7140 http://www.tdk-lambda.com/	

\qquad

* The above list is for reference only. We may change the manufacturer without notice.

Compact Servo Only for

Position Control.

Ultra compact
 position control type

Best Fit to Small Drives

- Further evolution in down-sizing, by 47% in size. Note)
- Exclusively designed for position control.
(Note) Compared to MUDSO43A1

Easy to Handle, Easy to Use

- DIN-rail mounting unit (option) improves handling/installation. - User-friendly Console makes the setup easy. - High functionality Real-Time Auto-Gain Tuning enables adjustment-free operation.
High-Speed Positioning with Resonance Suppression Filters
- Built-In notch filter suppresses resonance of the machine.
- Built-in adaptive filter detect resonance frequency and suppress vibration.

$$
4
$$

Smoother operation for Low Stiffness Machine

- Damping control function suppresses vibration during acceleration/deceleration

Contents
Features 215
Motor Line-up... 219
Model Designation. 220
Overall Wiring 221
Driver and List of Applicable Peripheral Devices 221
Driver.223
Driver Specifications. 223
Standard Wiring Example of Main Circuit 224
Encorder Wiring Diagram. 224
Control Circuit Standard Wiring Example 225
Dimensions of Driver. 226
Motor. 227
Specifications/Model designation/Torque Characteristics. 227
Dimensions of Moter. 231
Motors with Gear Reducer 232
Options236
Setup Support Software. 236
Cable part No. Designation 237
Cable Set 238
Encoder Cable 238
Motor Cable 238
Brake Cable 238
Connector Kit 239
Interface Cable 241
Communication Cable.. 241
Console.. 2
DIN Rail Mounting Unit 242
External Regenerative Resisto 242
Reactor24
Surge Absorber for Motor Brake 244

1 . Easy to Handle, Easy to Use

High-functionality Real-Time Auto-Gain Tuning Note

- Offers real automatic gain tuning for low and high stiffness machines with a combination of an adaptive filter.
- Supports the vertical axis application where the load

D. Further Reduction of Vibration

Adaptive filter (Note

Makes the notch filter frequency automatically follow the machine resonance frequency in real-time auto-gain tuning

- Suppression of "Judder" noise of the machine, which is caused by variation of the machines or resonance frequency due to aging, can be expected.

DIN-rail mounting unit (option)

- DIN-rail mounting unit allows parallel mounting with smal control devices such as PLC.
- Easy to mount and easy to dismount

50 ms/div

Effect of notch filter

50 ms/div

Notch filter ${ }^{\text {(Noter) }}$

1-channel notch filter is equipped in the driver indepen dent from adaptive filter
Each of 2 filters can set up frequency and notch width, and frequency in 1 Hz unit. Suppression of "Judder" noise be expected.

Damping control (Note1)

- You can suppress vibration occurring at both starting and stopping in low stiffness machine, by manually setting up vibration frequency in 0.1 Hz unit. Note) Only applies to manual adjustment

[^6]Ndaptive filter cannot te used
At high-functionality positioning mode (Proz=1) All of notch filter, damping
control, high--unctionality real-time auto-gain tuning and adaptive fiter can be used at the same time.

Console (Option)

You can set up parameters, copy and make a JOG run. - Convenient for maintenance at site.

- Refer to P.241, Options

Command control modes

- Offers 2 command modes, "Position control" and "Internal velocity control".
- You can make a 4 -speed running at preset values with parameter at internal velocity control mode

Inrush current suppressing function

- Inrush suppressing resistor, which prevent the circuit breaker shutdown of the power supply caused by inrush current at power-on, is equipped in this driver
Prevents unintentional shutdown of the power supply circuit breaker in multi axis application and does not give load to the power line.

Regeneration discharging function

- Discharges the regenerative energy with external resistor, where energy is generated while stopping the load with large moment of inertia, or use in up-down operation, and is returned to the driver from the motor.
No regenerative resistor is installed in the driver.
- It is highly recommended to install an external regener tive resistor (option)

Built-in dynamic brake

You can select the dynamic brake action which short the servo motor windings of U, V and W , at Servo-OFF, CW/ CCW over- travel inhibition, power shutdown and trip.
You can select the action sequence depending on the machine requirement.

Setup support software (Option)

- With the setup support software, "PANATERM" via RS232 / RS485 communication port, you can monitor the running status of the driver and set up parameters. Note) Refer to P. 236 for setup support software.

Key-way shaft and tapped shaft end

Easy pulley attachment and easy maintenance
Attache screw to the tapped shaft to prevent key or pulley from being pulled out.

Wave-form graphic function

With the setup support software, "PANATERM", you can monitor the "Command speed", "Actual speed", "Torque", "Position deviation" and "Positioning complete signal"

- Helps you to analyze the machine and shorten the setup time.
Note) Refer to P. 236 for setup support software.

Frequency analyzing function

You can confirm the response frequency characteristics of total machine mechanism including the servo motor with the setup support software, "PANATERM.
Helps you to analyze the machine and shorten the setup time.
Note) Refer to P. 236 for setup support software.

Torque limit switching function

- You can select 2 preset torque limit value from external input.
Use this function for tension control or press-hold control.

Conformity to CE and UL Standards

C \in 쁄

IEC
EN
EMC
ESA
EN: Europaischen Normen
EMC : Electromagnetic Compatibility
CSA : Canadiantien Standarards Association
Pursuant to at the directive 2004/108/EC, aricle 9 (2)
Panasonic Testing Centre
a division of Panasonic Marketing Europe GmbH
Winsbergring 15,22525 Hamburg.F.R.Germany
When exporting this product, follow statutory provisions of the destination country.

MINAS $\left.E_{\text {series }}(\circlearrowright)\right)$
Motor Line-up

MINAS $E_{\text {seriss }}$
 Model Designation

Servo Motor

M U M A 5 A \mathbf{Z} P 1 S $\begin{array}{lllllll} & *\end{array}$

Motor with gear reducer

Servo Drive

Table of Part Numbers and Options

		2500P/r, Incremental				Option					
Power supply	Output (W)	Motor ${ }^{\text {Note }} 1$	Rating/Spec. (page)	Driver	Dimensions $\binom{$ Frame }{ symbol }	Encoder Cable Note) 2	Motor Cable Note) 2	Brake Cable Note) 2	$\begin{aligned} & \text { External } \\ & \text { Regenerative } \\ & \text { Resistor } \end{aligned}$	Reactor	Noise Filter
Single phase 100 V	50	MUMA5AZP1 \square	227	MKDET1105P	226 (K)	MFECAO * * OEAM	MFMCAO * * OAEB	MFMCB0 * * 0GET	DV0P2890	DVOP227	DV0P4160
	100	MUMA011P1 \square	227	MKDET1110P	226 (K)						
	200	MUMA021P1 \square	227	MLDET2110P	226 (L)					DVOP228	
Single phase 200 V	50	MUMA5AZP1 \square	229	MKDET1505P	226 (K)				DVOP2891	DVOP220	
	100	MUMA012P1 \square	229	MKDET1505P	226 (K)						
	200	MUMA022P1■	229	MLDET2210P	226 (L)						
	400	MUMA042P1■	229	MLDET2510P	226 (L)						
$\begin{aligned} & \text { 3-phase } \\ & 200 \mathrm{~V} \end{aligned}$	50	MUMA5AZP1 \square	229	MKDET1505P	226 (K)						
	100	MUMA012P1 \square	229	MKDET1505P	226 (K)						
	200	MUMA022P1 \square	229	MKDET1310P	226 (K)						
	400	MUMA042P1 \square	229	MLDET2510P	226 (L)						

Note) 1 Motor model number suffix: \square
S: Key way with center tap, without brake
Note) $2 * *$ represents cable length. For details, refer to P. 237.

List of recommended peripheral devices

Power supply	Motor		Power capacity $\binom{$ at rated }{ output }	Circuit Breaker (Rated current)	Noise Filter	$\left.\begin{array}{c} \text { Magnetic } \\ \text { Contactor } \\ \text { Contact } \\ \text { Composition } \end{array}\right)$	Wire diameter (L1, L2, L3, U, V and W)
	Series	Output					
Single phase, 100 V	MUMA	50 W	0.3 kVA	(5 A)	DVOP4160	$\begin{gathered} 10 \mathrm{~A} \\ (3 \mathrm{P}+1 \mathrm{a}) \end{gathered}$	$0.75 \mathrm{~mm}^{2}$ to $0.85 \mathrm{~mm}^{2}$ AWG18
		100 W	0.4 kVA				
		200 W	0.5 kVA	(10 A)			
Single phase, 200 V		50 W	0.3 kVA	(5 A)			
		100 W	0.5 kVA			$15 \mathrm{~A}$	
		400 W	0.9 kVA	(10 A)			
3-phase 200 V		50 W	0.3 kVA	(5 A)		$\begin{gathered} 10 \mathrm{~A} \\ (3 \mathrm{P}+1 \mathrm{a}) \end{gathered}$	
		100 W					
		200 W	0.5 kVA				
		400 W	0.9 kVA	(10 A)			

* Select the single and 3 -phase common specifications corresponding to the power supplies.

To conform to EC Directives, install a circuit breaker which conforms to IEC and UL Standards (Listed, (4) marked) between noise filter and power supply.
For details of the noise filters, refer to P.256.
<Remarks>
Use a copper conductor cables with temperature rating of $60^{\circ} \mathrm{C}$ or higher for main power connector and ground terminal wiring
Use a cable for ground with diameter of $2.0 \mathrm{~mm}^{2}$ (AWG14) or larger.
Fastening torque list

Groun	minal screw	Connector to host controller[X5]	
Nominal size	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$) (Note 3)	Nominal	Fastening tor ($\mathrm{N} \cdot \mathrm{m}$) (Note 3)
M4	$0.7 \sim 0.8$	M2.6	$2 \pm$

(Note 3) <Caution>
Applying fastening torque larger than the maximum valu may result in damage to the product.
<Remarks>
To check for looseness, conduct periodic inspection of fastening torque once a year.

		Single phase, 100 V			Single phase, 100 V to $115 \mathrm{~V}{ }_{-15 \%}^{+10 \%}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
		Single phase, 200 V			Single phase, 200 V to $240 \mathrm{~V}{ }_{-15 \%}^{+10 \%} 5$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
		3 -phase, 200 V			3 -phase, 200 V to $240 \mathrm{~V}{ }_{-15 \%}^{+10 \%} 5$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
	T	Temperature			Operating : $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, Storage : $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (Max.temperature guarantee $80^{\circ} \mathrm{C}$ for 72 hours <Nomal temperature>)	
	\%	Humidity			Both operating and storage : 90% RH or less (rree from condensation)	
	$\stackrel{\text { ® }}{9}$	Altitude			1000 m or lower	
		Vibration			$5.88 \mathrm{~m} / \mathrm{s}^{2}$ or less, 10 Hz to 60 Hz (No continuous use at resonance frequency)	
		hstand voltage			Should be 1500 VAC (Sensed current: 20 mA) for 1 minute between Primary and Ground.	
	Control method				IGBT PWM Sinusoidal wave drive	
	Encoder feedback				$2500 \mathrm{P} / \mathrm{r}$ (10000 resolution) incremental encoder	
		Input			7 inputs (1) Servo-ON, (2) Alarm clear and other inputs vary depending on the control mode.	
	-	Output			(1) Servo alarm, (2) Alarm, (3) Release signal of external brake and other outputs vary depending on the control mode.	
		Input			2 inputs Supports both line driver I/F and open collector I/F.	
		Output			4 outputs Feed out the encoder pulse (A, B and Z-phase) in line driver. Z-phase pulse is also feed out in open collector.	
	Communication function			RS232	$1: 1$ communication to a host with RS232 interface is enabled.	
	Display LED				(1) Status LED (STATUS), (2) Alarm code LED (ALM-CODE)	
	Regeneration				No built-in regenerative resistor (external resistor only)	
	Dynamic brake				Built-in	
	Control mode				3 modes of (1) High-speed position control, (2) Internal velocity control and (3) High-functionality positioning control are selectable with parameter.	
		Control input			(1) CW over-travel inhibition, (2) CCW over-travel inhibition, (3) Deviation counter clear, (4) Gain switching, (5) Electronic gear switching	
		Control output			(1) Positioning complete (In-position)	
			Max. command frequency		Line driver : 500 kpps , Open collector : 200 kpps	
			Type of input pulse train		Differential input. Selectable with parameter, ((1) CW/CCW, (2) A and B-phase, (3) Command and Direction)	
			$\begin{aligned} & \text { Electronic gear } \\ & \binom{\text { Division/Multiplication }}{\text { of command pulse }} \end{aligned}$		Setup of electronic gear ratio Setup range of ($1-10000$) $\times 2{ }^{(0.17) /(1-10000)}$	
			Smoothing filte		Primary delay filter or FIR type filter is selectable to the command input.	
		Control input			(1) CW over-travel inhibition, (2) CCW over-travel inhibition, (3) Selection 1 of internal command speed, (4) Selection 2 of internal command speed, (5) Speed zero clamp	
		Control output			(1) Speed arrival (at-speed)	
		Internal speed command			Internal 4-speed is selectable with control input.	
		Soft-start/down function			Individual setup of acceleration and deceleration are enabled, with 0 s to $10 \mathrm{~s} / 1000 \mathrm{r} / \mathrm{min}$. Sigmoid acceleration/deceleration is also enabled.	
		Zero-speed clamp			0-clamp of internal speed command with speed zero clamp input is enabled.	
	$\begin{aligned} & \text { O} \\ & \text { ol } \\ & \text { 흥 } \end{aligned}$		Real-time		Estimates the load inertia in real-time in actual operation and sets up the gain automatically corresponding to the machine stiffness. Useable at (1) High-response position control, (2) Internal speed control and (3) High-functionality position control.	
			Normal mode		Estimates the load inertia with an action command inside of the driver, and sets up the gain automatically corresponding to setup of the machine stiffness. Useable at (1) High-response position control, (2) Internal speed control and (3) High-functionality position control.	
		Masking of unnecessary input			Masking of the following input signal is enabled. (1) Over-travel inhibition, (2) Speed zero clamp, (3) Torque limit switching	
		Division of encoder feedback pulse			$1 \mathrm{P} / \mathrm{r}$ to $2500 \mathrm{P} / \mathrm{r}$ (encoder pulses count is the max.).	
			꿍 Hardware error		Over-voltage, under-voltage, over-speed over-load, over-heat, over-current and encoder error etc.	
			Software error		Excess position deviation, command pulse division error, EEPROM error etc.	
		Traceability of alarm data			Traceable up to past 14 alarms including the present one.	
		Damping control function			Manual setup with parameter	
		$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	Manual		Console	
			Setup support software		PANATERM (Supporting OS : Windows98, Windows ME, Windows2000, and WindowsXP)	

Standard Wiring Example of Main Circuit

 Encorder Wiring DiagramStandard Wiring Example of Main Circuit

3-Phase, 200 V

Single Phase, 100 V / 200 V

Encorder Wiring Diagram

When you make your own junction cable for encoder (Refer to P.239, P. 240 "Options" for connector)

1) Refer the wiring diagram
) Use the twisted pair wire with shield, with core diameter of $0.18 \mathrm{~mm}^{2}$ (AWG24) or larger, with higher bending resistance.
Use the twisted pair wire for the corresponding signal and power supply.
) Shielding
Connect the shield of the driver to the case of CN X4
Connect the shield of the motor to Pin-6.

CN X 5 Wiring Example at Position Control Mode

CN X 5 Wiring Example at Internal Velocity Control Mode

Frame K

Frame L

Mass: 0.40 kg

			AC100 V		
Motor model		MUMA	5AZP1 \square	011P1 \square	021P1 \square
Applicable driver		Model No.	MKDET1105P	MKDET1110P	MLDET2110P
		Frame symbol	Frame K		Frame L
Power supply capacity (kVA)			0.3	0.4	0.5
Rated output (W)			50	100	200
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)			0.16	0.32	0.64
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)			0.48	0.95	1.91
Rated current (Arms)			1.0	1.6	2.5
Max. current (Ao-p)			4.3	6.9	11.7
$\begin{aligned} & \text { Regenerative brake } \\ & \text { frequency } \\ & \text { (times/min) } \end{aligned} \text { Note) } \begin{aligned} & \text { an } \end{aligned}$		Without option	No limit Note)2		
		DVOP2890	No limit Note)2		
Rated rotational speed (r/min)			3000		
Max. rotational speed (r/min)			5000		
Moment of inertia of rotor $\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$)		Without brake	0.021	0.032	0.10
		With brake	0.026	0.036	0.13
Recommended moment of inertia ratio of the load and the rotor Note)3			30 times or less		
Rotary encoder specifications			2500 P/r Incremental		
Resolution per single turn			10000		
Protective enclosure rating			IP65 (except rotating portion of output shaft and lead wire end)		
Environment	Ambient temperature		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (free from freezing), Storage : $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (Max.temperature guarantee $80^{\circ} \mathrm{C}$ for 72 hours <nomal humidity>)		
	Ambient humidity		85% RH or lower (free from condensing)		
	Installation location		Indoors (no direct sunlight), free from corrosive gas, inflammable gas, oil mist and dust		
	Altitude		1000 m or lower		
	Vibration resistance		$49 \mathrm{~m} / \mathrm{s}^{2}$ or less		
Mass (kg), () represents holding brake type			0.4 (0.6)	0.5 (0.7)	0.96 (1.36)
Brake specifications (This brake will be released when it is energized. Do not use this for braking the motor in motion.)					
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)			0.29		1.27
Engaging time (ms)					50
Releasing time (ms)		Note) 4			15 (100)
Exiting current (DC) (A)					0.36
Releasing voltage			DC 1 V or more		
Exciting voltage			DV $24 \mathrm{~V} \pm 10 \%$		
Permissible load					
During assembly	Radial load P-direction (N)		147		392
	Thrust load A-direction (N)		88		147
	Thrust load B-direction (N)		117		196
During operation	Radial load P-direction (N)		68		245
	Thrust load A-direction (N)		58		98
	Thrust load B-direction (N)		58		98

[^7]
Model Designation

Motor rated output		Voltage specifications	
Symbol	Rated output	Symbol	Specifications
5A	50 W	1	100 V
01	100 W	z	100/200 V
02	200 W		

$$
\begin{aligned}
& \text { Rotary encoder specifications } \\
& \begin{array}{c|c|c|c|c}
\\
\hline \text { Symbol } & \text { Format } & \text { Pulse counts } & \text { Resolution } & \text { Wires } \\
\hline \text { P } & \text { Incremental } & 2500 \text { P/r } & 10000 & 5
\end{array}
\end{aligned}
$$

Torque Characteristics [at AC100 V of power voltage (Dotted line represents the torque at 10% less supply voltage.)] MUMA5AZP1 \square

MUMA021P1 \square

			AC200 V				
Motor model		MUMA	5AZP1 \square	012P1 \square	022P1 \square	042P1 \square	
Applicable driver		Model No.	MKDET1505P		MKDET1310P	MLDET2310P	
		MKDET2210P			MLDET2510P		
		Frame symbol	Frame K		Frame K	Frame L	
		Frame L					
Power supply capacity (kVA)			0.3	0.3	0.5	0.9	
Rated output (W)			50	100	200	400	
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)			0.16	0.32	0.64	1.3	
Momentary Max. peak torque ($\mathrm{N} \cdot \mathrm{m}$)			0.48	0.95	1.91	3.8	
Rated current (Arms)			1.0	1.0	1.6	2.5	
Max. current (Ao-p)			4.3	4.3	7.5	11.7	
Regenerative brake frequency (times/min) Note) 1			Without option	No limit Note)2			
		DVOP2891	No limit Note)2				
Rated rotational speed (r/min)			3000				
Max. rotational speed (r/min)			5000				
Moment of inertia of rotor ($\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$)		Without brake	0.021	0.032	0.10	0.17	
		With brake	0.026	0.036	0.13	0.20	
Recommended moment of inertia ratio of the load and the rotor Note)3			30 times or less				
Rotary encoder specifications			2500 P/r Incremental				
Resolution per single turn			10000				
Protective enclosure rating			IP65 (except rotating portion of output shaft and lead wire end)				
Environment	Ambient temperature		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (free from freezing), Storage : $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (Max.temperature guarantee $80^{\circ} \mathrm{C}$ for 72 hours <nomal humidity>)				
	Ambient humidity		85% RH or lower (free from condensing)				
	Installation location		Indoors (no direct sunlight), free from corrosive gas, inflammable gas, oil mist and dust				
	Altitude		1000 m or lower				
	Vibratio	n resistance	$49 \mathrm{~m} / \mathrm{s}^{2}$ or less				
Mass (kg), () represents holding brake type			0.4 (0.6)	0.5 (0.7)	0.96 (1.36)	1.5 (1.9)	

Brake specifications (This brake will be released when it is energized. Do not use this for braking the motor in motion.)			
Static friction torque ($\mathrm{N} \cdot \mathrm{m}$)		0.29	1.27
Engaging time (ms)		25	50
Releasing time (ms) Note)4		20 (30)	15 (100)
Exciting current (DC) (A)		0.26	0.36
Releasing voltage		DC 1 V or more	
Exciting voltage		DV $24 \mathrm{~V} \pm 10 \%$	
Permissible load			
During assembly	Radial load P-direction (N)	147	392
	Thrust load A-direction (N)	88	147
	Thrust load B-direction (N)	117	196
During operation	Radial load P-direction (N)	68	245
	Thrust load A-direction (N)	58	98
	Thrust load B-direction (N)	58	98

For motor dimensions, refer to P.231, and for the driver, refer to P. 226
Note) Driver for 50 W and 100 W has a common power supply of single phase and 3-phase 200 V .
Driver for 200 W , the upper row is the power supply of 3 -phase 200 V , and lower is the power supply of single-phase 200 V .
Driver for 400 W , the upper row is the power supply of 3 -phase 200 V , and lower is the common power supply of single-phase and 3 -phase 200 V .

Model Designation

 Rotary encoder specifications | Symbol | Format | Pulse counts | Resolution | Wires |
| :---: | :---: | :---: | :---: | :---: |
| P | Incremental | $2500 \mathrm{P} / \mathrm{r}$ | 10000 | 5 |

Torque Characteristics [at AC200 V of power voltage (Dotted line represents the torque at 10% less supply voltage.)] MUMA5AZP1 \square

MUMA012P1 \square

MUMA022P1 \square

Note) 1. Regenerative brake frequency represents the frequency of the motor's stop from the rated speed with deceleration without load.
If the load is connected, frequency will be defined as $1 /(m+1)$, where $m=$ (load moment of inertia) / (rotor moment of inertia). When the motor speed exceeds the rated speed, regenerative brake
requency is in inverse proportion to the square
 Power supply volage is AC 240 V (at 200 V of the main voltage) If the supply voltage fluctuates, frequency is in inverse proportion to the When regeneration occurs continuosly such cases as running spee frequently changes or vertical feeding, consult us or a dealer.
2. If the effective torque is within the rated torque, there is no limit in regenera tive brake.
Consult us or a dealer if the load moment of inertia exceeds the specified Specified releasing time is obtained with the use of surge absorber for brak (Z15D151 by SEMITEC Corporation or equivalent),) represents the actually measured value using a diode ($200 \mathrm{~V}, 1 \mathrm{~A}$ or

mensions are surject to

[Unit:					
		MUMA series (Ultra low inertia)			
Motor output		50 W	100 W	200 W	400 W
Motor mode	MUMA	5A $\square \mathbf{P 1} \square$	$01 \square \mathrm{P} 1 \square$	02 $\square \mathbf{P 1} \square$	04 \square P1 \square
Rotary encoder specifications		2500 P/r Incremental			
LL	Without brake	75.5	92.5	96	123.5
	With brake	107	124	129	156.5
LR		24	24	30	30
S		8	8	11	14
LA		48	48	70	70
LB		22	22	50	50
LC		42	42	60	60
LE		2	2	3	3
LF		7	7	7	7
LH		34	34	43	43
Lz		3.4	3.4	4.5	4.5
Key way		14	14	20	25
		12.5	12.5	18	22.5
	KW	3h9	3h9	4h9	5 h 9
	KH	3	3	4	5
	RH	6.2	6.2	8.5	11
	TP	M3 $\times 6$ (depth)	M \times ¢ 6 (depth)	M 4×8 (depth)	M5 $\times 10$ (depth)
Mass (kg)	Without brake	0.40	0.50	0.96	1.5
	With brake	0.60	0.70	1.36	1.9
Connector/Plug specifications		refer to Options, P.239, P. 240.			

Connector/Plug specifications
refer to Options, P 239, P.340

<Cautions>

Reduce the moment of inertia ratio if high speed response operation is required.
Read the Instruction Manual carefully and understand all precautions and remarks before using the products.

MINAS E Series Motors with Gear Reducer

Motor Types with Gear Reducer

Model No. Designation

Specifications of Motor with Gear Reducer

	Motor type	muma
Gear reducer	Backlash	3 minutes or smaller (initial value) at output shaft of the reducer
	Composition of gear	Planetary gear
	Gear efficiency	65 \% to 85%
	Rotational direction at output shaft (of reducer)	Same direction as the motor output shaft
	Composition of gear	Planetary gear
	Mounting method	Flange mounting
	Permissible moment of inertia of the load (conversion to the motor shaft)	10 times or smaller than rotor moment of inertia of the motor
	Protective structure	IP44 (at gear reducer)
Environment	Ambient temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
	Ambient humidity	$85 \% \mathrm{RH}$ (free from condensation) or less
	Vibration resistance	$49 \mathrm{~m} / \mathrm{s}^{2}$ or less (at motor frame)
	Impact resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ or less

Table of Motor with Gear Reducer Specifications

Model	Motor						MA with g	reduce					
	Output	$\underset{\text { ratio }}{\text { Reduction }}$	Outpu	Ratedspeed	Max．	Ratedtorque	Peak max． torque	$\begin{aligned} & \text { Moment of inertia } \\ & \binom{\text { motor + reducer/converted }}{\text { to motor shaft }} \end{aligned}$		）Mass		Permissibl radial load	Permissible thrust load
								w／o brake	w／brake	w／o brake	w／brake		
	（W）		（W）	（r／min）	（r／min）	（ $\mathrm{N} \cdot \mathrm{m}$ ）	（ $\mathrm{N} \cdot \mathrm{m}$ ）	$J\left(\times 10^{-4}\right.$	－ $\mathrm{kg} \cdot \mathrm{m}^{2}$ ）	2）（k		（ N ）	（ N ）
MUMA01 \square P $\square 1 \mathrm{~N}$	100	1／5	75	600	1000	1.18	3.72	0.072	0.076	1.05	1.25	490	245
MUMA01 $\square \mathrm{P} \square 2 \mathrm{~N}$		1／9	80	333	555	2.25	6.86	0.0663	0.0703	31.05	1.25	588	294
MUMA01 $\square \mathrm{P} \square 4 \mathrm{~N}$		1／25	80	120	200	6.27	19.0	0.0645	0.0685	35.20	2.40	1670	833
MUMA02 \square P $\square 1 \mathrm{~N}$	200	1／5	170	600	1000	2.65	8.04	0.218	0.248	1.68	2.08	490	245
MUMA02 $\square \mathrm{P} \square 2 \mathrm{~N}$		1／9	132	333	555	3.72	11.3	0.368	0.398	2.66	3.06	1180	588
MUMA02 $\square \mathrm{P} \square 4 \mathrm{~N}$		$1 / 25$	140	120	200	11.1	33.3	0.388	0.418	2.66	3.06	1670	833
MUMA042P $\square 1 \mathrm{~N}$	400	1／5	340	600	1000	5.39	16.2	0.533	0.563	3.2	3.6	980	490
MUMAO42P $\square 2 \mathrm{~N}$		1／9	332	333	555	9.51	28.5	0.438	0.468	3.2	3.6	1180	588
MUMA042P $\square 4 \mathrm{~N}$		1／25	332	120	200	26.4	79.2	0.470	0.500	4.7	5.1	2060	1030
For dimensions，refer to P． 235 ．													
The Combination of the Driver and the Motor with Gear Reducer													
Combination with	with driver	100 V							200 V				
Encoder	Motor	Part No．of motor with gear reducer		Single phase， 100 V			Part No．of motor with gear reducer			3 －phase， 2	200 V	Single ph	ase， 200 V
					Part No．of	of driver				Part No．of	driver	Part No．	of driver
$\begin{aligned} & 2500 \text { P/r } \\ & \text { Incremental } \end{aligned}$	100 W	MUMA011	$1 P \square \square N$		MKDET	1110P	MUMA	A012P■ \square		MKDET15	505P	MKDE	T1505P
	200 W	MUMA021	$1 \mathrm{P} \square \square \mathrm{N}$		MLDET	2110P	MUMA	A022P■ \square		MKDET13	310P	MLDE	T2210P
	400 W	－		－			MUMA042P $\square \square \mathrm{N}$			MLDET25	510P	MLDET2510P	
					MLDET23	310P							

For High Precision（MUMA Series 100 W to 400 W）

Supply voltage to driver		1／5	1／9	1／25
100 V	100 W	MUMAO11PロIN	MUMA011P $\square 2 N$	MUMA011P $\square 4 N$
	200 W	MUMA021PロIN	MUMA021P■2N	MUMA021P $\square 4 N$
200 V	100 W	MUMA012P $\square 1 N$	MUMA012P $\square 2 N$	
	200 W	MUMAO22P■IN	MUMA022P $\square 2 N$	MUMAO22P $\square 4 N$
	400 W	MUMA042PロIN	MUMA042P $\square 2 N$ rotational speed［r／min］	

[^8]
Setup Support Software "PANATERM" for MINAS series AC Servo Motor \& Driver

> | Part No. | DV0P4460 (Japanese/English version) |
| :--- | :--- |

The PANATERM assists users in setting parameters, monitoring control conditions, setup support, and analyzing mechanical operation data on the PC screen, when installed in a commercially available personal computer, and connected to the MINAS A4 series, E series through the RS232 serial interface.

- Parameter setup

After a parameter is defined on the screen, it will be sent to the driver immediately.

- Once you register parameters you frequently use, they can be easily set up on the screen.

Monitoring Control Conditions

- Monitor
- Control conditions: Control mode, velocity, torque, error and warning - Driver input signa

Load conditions: Total count of command/feedback pulses, Load ratio, Regenerative resistor load ratio

- Alarm

Displays the numbers and contents of the current alarm and up to 14 error events in the past
Clears the numbers and contents of the current alarm and up to 14 error events in the past.

Setup

- Auto tuning

Gain adjustment and inertia ratio measuremen

- Graphic waveform display

The graphic display shows command velocity, actual velocity, torque, and error waveforms

- Absolute encoder setup

Clears absolute encoder at the origin.
Displays single revolution/multi-revolution data.
Displays absolute encoder status.

Analysis of Mechanical Operation Data

- Frequency analysis

Measures frequency characteristics of the machine, and displays Bode diagram.

■ Can not use with A5 family.

Hardware contiguration

(Personal computer] - CPU : Pentium 100MHz or more - Memory: 16 MB or more (32 MB recommended)

- Hard disk capacity (vacancy of 25 MB or more recommended) - OS : Windows ${ }^{\ominus} 98$, Windows ${ }^{\circ}$ Me, Windows ${ }^{\circledR}$ 2000, Windows ${ }^{\ominus} \mathrm{XP}$ (US version)
 [CD-ROM drive]•CD-ROM drive operable on the above-mentioned personal computer

Graphic waveform display

Encoder Cable - For available optional items, please refer to P. 238.

Motor Cable, Brake Cable - For available optional items, please refer to P.238.

ROBO-TOPs is a trade mark of DYDEN CORPORATION

Cable Set (3 m)

Part No.	DVOP37300

1) Interface cable : DVOPO800
2) Encoder cable (3 m) : MFECA0030EAM
3) Motor cable (3 m) : MFMCA0030AEB
4) Connector kit for driver power supply connection : DVOP2870

Cable Set (5 m)

Part No.	DVOP39200

1) Interface cable : DVOP0800
2) Encoder cable (5 m) : MFECA0050EAM
3) Motor cable (5 m) : MFMCA0050AEB
4) Connector kit for driver power supply connection DVOP2870

Encoder Cable

Part No.	MFECAO $* *$ OEAM

Motor Cable (ROBO-TOP ® $_{\text {© }} 105^{\circ} \mathrm{C} 600$ V . DP)

Part No. MFMCAO $* *$ OAEB

Brake Cable (ROBO-TOP $®_{\circledast} 105^{\circ} \mathrm{C} 600 \mathrm{~V}$. DP)

ROBO-TOP。 is a trade mark of DYDEN CORPORATION

Part No. MFMCBO $* *$ OGET

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	172157-1	Tyco Electronics	3	MFMCB0030GET
Connector Pin	170362-1, 170366-1		5	MFMCB0050GET
Nylon insulated round terminal	N1.25-M4	J.S.T Mfg. Co., Ltd.	10	MFMCB0100GET
Cable	ROBO-TOP $600 \mathrm{~V} 0.75 \mathrm{~mm}^{2}$	Daiden Co.,Ltd.	20	MFMCB0200GET

Connector Kit for Power Supply Connection

Part No. DVOP2870

- Parts composition
Parts composition

Title	Part No.	Number	Manufacturer	Note
Connector (10 pins)	$5557-10 \mathrm{R}-210$	1	Molex Inc.	For connector, CN X1 $(10$ pins)
Connector pin	5556 (BTL	6		

- Pin contiguration of connector CN X1

- Recommended manual crimping tool (to be prepared by customer)

<Cautions>

1. The above pin disposition is shown when viewed from the terminal inserting direction. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Refer to P. 224 for wiring and connection.
3. Do not connect anything to pins marked "NC"

Connector Kit for Motor/Encoder Connection

Part No.	DVOP3670 (Incremental 2500 pulse, 5-wire)

This option is required when you make your own encoder cable and motor cable. (Brake cable is required for brake.)

- Parts composition

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M or equivalent	For connector, CN X4 (6 pins)
Shell kit	ЗЕЗ06-3200-008	1		
Connector (6 pins)	$172160-1$	1	Tyco Electronics	For junction to encoder cable (6 pins)
Connector pin	170365-1	6		
Connector (4 pins)	172159-1	1	Tyco Electronics	For junction to motor power cable (4 pins)
Connector pin	170366-1	4		
Connector (6 pins)	5557-06R-210	1	Molex Inc.	For connector, CN X3 (6 pins)
Connector pin	5556 PBTL	4		

<Remarks>

We may use parts equivalent to the above for shell and connector cove

- Pin configuration of connector CN X4 plug

$1+5 \mathrm{~V}$		20 V
$3+5 \mathrm{~V}$	4	40 V
5 Tx/Rx	10	$6 \mathrm{Tx} / \mathrm{Rx}$
	5	$\left(\begin{array}{c} \text { Case } \\ \mathrm{FG} \end{array}\right.$

- Recommended manual crimping tool (to be prepared by customer)

Title	Part No.	Manufacturer	Cable material
For encoder cable junction	755330-1	Tyco Electronics	-
For motor power cable junction	755331-1		
For Connector CN X3	57026-5000	Molex Inc.	UL1007

<Remarks>

1. The above pin configuration is shown when viewed from the pin-soldering direction. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Connect the shield of the wire to the case (FG) without fail.
3. For wiring and connection, refer to P.224.

- Pin configuration of encoder cable junction

- Pin configuration of motor power cable junction

- Pin configuration of mating connector to $\mathrm{CN} \times 3$ connector

<Cautions>

1. The above pin configuration is shown when viewed from the terminal inserting direction. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Refer to P. 224 for wiring and connection.

Connector Kit for External Peripheral Equipment

\section*{| Part No. | DV0P0770 |
| :--- | :--- |}

- Parts composition

Title	Part No.	Number	Manufacturer	Note
Connector	10126-3000PE	1	Sumitomo 3M	For connector, CN X5
Connector cover	10326-52AO-008	1	or equivalent	(26 pins)

- Pin configuration of connector CN X5 (26 pins) (viewed from the soldering side)

<Cautions>

1. Make a correct wiring by checking the stamped pin numbers on the connector itself.
2. Refer to P. 225 for symbols and functions of the above signals.

E Series
Options
Interface Cable

- Wiring table

Pin No.	Title of signal	Color or cable	Pin No.	Title of signal	Color or cable	Pin No.	Title of signal	Color or cable
1	COM +	Orange (Red 1)	10	COIN	Pink (Black 1)	19	OZ +	Pink (Red 2)
2	SRV-ON	Orange (Black 1)	11	BRK-OFF	Orange (Red 2)	20	OZ-	Pink (Black 2)
3	A-CLR	Gray (Red 1)	12	WARN	Orange (Black 2)	21	CZ	Orange (Red 3)
4	CLINTSPD2	Gray (Black 1)	13	COM-	Gray (Red 2)	22	PULLS1	Gray (Red 3)
5	GAINZEROSPD	White (Red 1)	14	GND	Gray (Black 2)	23	PULS2	Gray (Black 3)
6	DIVINTSPD1	White (Black 1)	15	OA +	White (Red 2)	24	SIGN1	White (Red 3)
7	CWL	Yellow (Red 1)	16	OA-	White (Black 2)	25	SIGN2	White (Black 3)
8	CCWL	Yellow (Black 1)	17	OB +	Yellow (Red 2)	26	FG	Orange (Black 3)
9	ALM	Pink (Red 1)	18	OB-	Yellow (Black 2)			

e. g. of Pin No. designation : Pin No. 1 Wire color is orange, and one red dot.

Pin No. 12 ... Wire color is orange, and two black dot.
<Remarks>
The shield of this cable is not connected to a connector pin. To connect the shield to FG or GND at the driver side, use a connector kit for external device connection.

Communication Cable (For Connection with PC)

| Part No. | DVOP1960 |
| :--- | :--- | :--- | :--- |

Console

DIN Rail Mounting Unit/

External Regenerative Resistor
DIN Rail Mounting Unit
Part No. DVOP3811

External Regenerative Resistor

Part No.	Manufacturer's Part No.	Specifications			$\begin{gathered} \text { Note } \\ \text { (Input Power of drive) } \end{gathered}$
		Resistance	Rated power	Activation temperature of built-in fuse	
		Ω	w	${ }^{\circ} \mathrm{C}$	
DVOP2890	45M03	50	10	$137 \pm$	Single phase, 100 V
DVOP2891	45M03	100	10	$137{ }_{-2}^{+3}$	Single/3-phase, 200 V
Dimension				Manufactured by	usen Kenkyuusho Co., Lt

<Remarks>
Thermal fuse is installed for safety. Make it sure that the surface temperature of the resistor may not exceed $100^{\circ} \mathrm{C}$ at the worst running conditions with the machine, which brings large regeneration (such case as high supply voltage, load inertia is large or deceleration time is short) Please carry out air cooling if needed.

Caution of when using external regeneration resistor> Since it becomes high temperature, external regeneration resistor must be installed according to the contents shown below.

- Attach to incombustibles, such as metal
- Anstall in the place which cannot touch directly by covering with incombustibles etc.
Although the thermal cutoff is built in external regeneration esistor, the skin temperature of regeneration resistor may become high exceeding the operating temperature of thermal cutoff by the time the thermal cutoff operates in driver failure. he thermal cutoff is for preventing ignition of the regeneration
esistor in driver failure, and is not for controlling the skin temperature of resistor.

Reactor

	Part No.	A	B	c	D	E(Max)	F	G	H	1	Inductance (mH)	Rated curren (A)
Fig. 1	DVOP227	55 ± 0.7	80ı1	66.5 ± 1	110 Max	90	41 ± 2	55 ± 2	4-5¢ $\times 10$	M4	4.02	5
	DVOP228	55 ± 0.7	80 ± 1	66.5 ± 1	110 Max	95	46 ± 2	60 ± 2	$4-5 \phi \times 10$	M4	2	8
Fig. 2	DVOP220	65 ± 1	125 ± 1	(93)	136 Max	155	70+3/-0	85 ± 2	$4-7 \phi \times 12$	M4	6.81	3

Harmonic restraint on general-purpose inverter and servo driver

On September, 1994, Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system and Guidelines for harmonic restraint on household electrical appliances and generalpurpose articles established by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and ndustry (the ex-Ministry of International rrade and Industy). Accoraing to those guidelies, the Japan Electrical Manu facturers Association (JEMA) have prepared technical documents (procedure to execute harmonic restraint. JEM-TR 98 , On January, 2004, it has been decided to exclude the general-purpose inverter and servo driver from the Guidelines for On ic restraint on household electrical appliances and general-purpose articles was abolished on September 6, 2004.
We inform you that the procedure to execute the harmonic restraint on general-purpose inverter and servo driver will be modified as follows.

1. All types of the general-purpose inverters and servo drivers used by specific users are under the control of the Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system". The users who are required to apply the guidelines must calculate the equivalent capacity and harmonic current according to the guidelines and must take appropriate countermeasures if the harmonic current exceeds a limit value specified in a contract demand. (Refer to JEM-TR 210 and JEM-TR 225.)
2. The Guidelines for harmonic restraint on household electrical appliances and general-purpose articles was abolished on September 6, 2004. However, based on conventional guidelines, JEMA applies the technical documents JEM-TR 226 and JEM-TR 227 to any users who do not fit into the Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system from a perspective on enlightenment on genera harmonic restraint. The purpose of these guidelines is the execution of harmonic restraint at every device by a user as usual to the utmost extent.

<Remarks

When using a reactor, be sure to install one reactor to one servo driver.

Recommended devices

Surge Absorber for Motor Brake

Motor	Surge absorber for motor brake	
	Part No. (Manufacturer's)	Manufacturer
MUMA 50 W to 400 W	Z15D151	SEMITEC Corporation

List of Peripheral Devices

Manufacturer	Tel No. / Home Page	Peripheral Devices
Panasonic Corporation Eco Solutions Company	http://panasonic.net/es/	Circuit breaker
Panasonic Corporation Automotive \& Industrial Systems Company	http://panasonic.net/id/	Surge absorber Switch, Relay
Iwaki Musen Kenkyusho Co., Ltd.	+81-44-833-4311 http://www.iwakimusen.co.jp/	Regenerative resistor
SEMITEC Corporation	+81-3-3621-2703 http://www.semitec.co.jp/english2/	Surge absorber for motor brake
TDK Corporation	+81-3-5201-7229 http://www.global.tdk.com/	Ferrite core
Okaya Electric Industries Co. Ltd.	+81-3-4544-7040 http://www.okayaelec.co.jp/english/index.html	Surge absorber Noise filter
Sumitomo 3M	+81-3-5716-7290 http:/solutions.3m.com/wps/portal/3M/ja_JP/ WW2/Country/	
Tyco Electronics	+81-44-844-8052 http://www.te.com/ja/home.html	Connector
Japan Molex Inc.	+81-462-65-2313 http://www.molex.co.jp	Cable
DYDEN CORPORATION	+81-3-5805-5880 http://www.dyden.co.jp/english/index.htm	

Contents

A5 Family 247
EC Directives / Conformity to UL Standards / KC 247
Composition of Peripheral Devices 249
E Series 255
Compliance to EC and EMC Directives 255
Composition of Peripheral Components 255
Conformity to UL Standards 256
Motor capacity selection software 257
AC Servo Motor Capacity Selection Software 257
Option Selection Software for AC Servo Motor 257
Guide to the International System of Units (SI) 258
Selecting Motor Capacity. 260
Request Sheet for Motor Selection 266
Connection Between Driver and Controller 274
Connection Between A5 Family Driver and Controller. 274
Replacing Old Model Servo Driver with MINAS A5II and A5 Series 279
Connection Between E Series Driver and Controller. 283
Index. 288
Sales Office 306

EC Directives

The EC Directives apply to all such electronic products as those having specific functions and have been exported to EU and directly sold to general consumers. Those products are required to conform to the EU unified standards and to furnish the CE marking on the products.
However, our AC servos meet the relevant EC Directives for Low Voltage Equipment so that the machine or equipment comprising our AC servos can meet EC Directives.

EMC Directives

MINAS Servo System conforms to relevant standard under EMC Directives setting up certain model (condition) with certain locating distance and wiring of the servo motor and the driver. And actual working condition often differs from this model condition especially in wiring and grounding. Therefore, in order for the machine to conform to the EMC Directives, especially for noise emission and noise terminal voltage, it is necessary to examine the machine incorporating our servos.

Conformity to UL Standards

Observe the following conditions of (1) and (2) to make the system conform to UL508C (E164620)
(1) Use the driver in an environment of Pollution Degree 2 or 1 prescribed in IEC60664-1.
(e.g. Install in the control box with IP54 enclosure.)
(2) Make sure to install a circuit breaker or fuse which are UL recognized (Listed (4L) marked) between the power supply and the noise filter.
For rated current of circuit breaker and fuse, refer to P. 19 "Driver and List of Applicable Peripheral Devices".
Use a copper cable with temperature rating of $75^{\circ} \mathrm{C}$ or higher.
(3) Over-load protection level

Over-load protective function will be activated when the effective current exceeds 115% or more than the rated current based on the time characteristics (see the graph). Confirm that the effective current of the driver does not exceed the rated current.

Set up the peak permissible current with Pro. 13 (Setup of 1st torque limit) and Pr5.22 (Setup 2nd torque limit).

Conformed Standards

		Driver	Motor
EC Directives	EMC Directives	EN55011 EN61000-6-2 EN61800-3	-
	Low-Voltage Directives	EN61800-5-1	EN60034-1 EN60034-5
	Machinery Directives Functional safety ${ }^{\text {¹ }}$	ISO13849-1(PL d)(Cat.3) EN61508(SIL2) EN62061(SILCL 2) EN61800-5-2(STO) IEC61326-3-1	-
UL Standards		UL508C (E164620)	UL1004-1, UL1004-6 (E327868)
CSA Standards		C22.2 No. 14	C22.2 No. 100
Radio Waves Act (South Korea) (KC) ${ }^{\text {² }}$		KN11 KN61000-4-2, 3, 4, 5, 6, 8, 11	-

IEC :International Electrotechnical Commission
EN : Europaischen Normen
EMC : Electromagnetic Compatibility
CSA : Canadian Standards Associatio
Pursuant to the directive 2004/108/EC, article 9(2)
Panasonic Testing Centre
Panasonic Service Europe, a division of
Winsbergring 15, 22525 Hamburg, F.R. Germany

- When export this product, follow statutory provisions of the destination country.

1 A5IIE and A5E series doesn't correspond to the functional safety standard.
*2 Information related to the Korea Radio Law
This servo driver is a Class A commercial broadcasting radio wave generator not designed for home use. The user and dealer should be aware of this fac
A 급 기기 (업무용 방송통신기자재)
이 기기는 업무용(A 급) 전자파적합기기로서 판매자
또는 사용자는 이 점을 주의하시기 바라며, 가정외의
지역에서 사용하는 것을 목적으로 합니다.
(대상기종 : Servo Driver)

A5 Family

Conformance to

Installation Environment

Use the servo driver in the environment of Pollution Degree 1 or 2 prescribed in IEC-60664-1 (e.g. Install the driver in control panel with IP54 protection structure.)

*A5IE, A5E is not provided with X3 terminal.

<Caution>

Use options correctly after reading Operating Instructions of the options to better understand the precautions Take care not to apply excessive stress to each optional part.

Power Supply

100 V type (A-frame to C-frame)	Single phase, 100 V	${ }_{-15 \%}^{+10 \%}$ to	120 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
$\begin{gathered} 200 \mathrm{~V} \text { type } \\ \text { (A-frame to D-frame) } \end{gathered}$	Single/3-phase, $200 \mathrm{~V}{ }_{-}^{+}$	$\begin{gathered} +10 \% \\ -15 \% \end{gathered} \text { to }$	240 V	$+10 \%$ -15%	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
$\begin{gathered} 200 \mathrm{~V} \text { type } \\ \text { (E-frame to H-frame) } \end{gathered}$	$3-\mathrm{phase}, 200 \mathrm{~V}{ }_{-}^{+}$	${ }_{-15 \%}^{+15 \%}$ to	230 V	$+10 \%$ -15%	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
400 V type [Main power supply] (D-frame to H-frame)	3 -phase, $380 \mathrm{~V}^{+}$	${ }_{-15 \%}^{+10 \%}$ to	480 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$

DC $24 \mathrm{~V} \pm 15 \%$
(1) This product is designed to be used in over-voltage category (installation category) III of EN 61800-5-1:2007.
(2) Use an insulated power supply of DC12 V to 24 V which has CE marking or complies with EN60950.

Circuit Breaker

Install a circuit breaker which complies with IEC Standards and UL recognized (Listed and marked) between power supply and noise filter
The short-circuit protection circuit on the product is not for protection of branch circuit.
The branch circuit should be protected in accordance with NEC and the applicable local regulations in your area

Noise Filter

When you install one noise filter at the power supply for multi-axes application, contact the manufacturer of the noise filter. If noise margin is required, connect 2 filters in series to emphasize effectiveness.

- Options

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Applicable driver (frame)	Manufacturer
DVOP4170	Single phase $100 \mathrm{~V}, 200 \mathrm{~V}$	SUP-EK5-ER-6	A-frame and B-frame	Okaya Electric Ind.
Option part No.	Voltage specifications for driver	Manufacturer's part No.	Applicable driver (frame)	Manufacturer
DVOPM20042	3-phase 200 V	3SUP-HU10-ER-6	A-frame and B-frame	Okaya Electric Ind.
	Single phase $100 \mathrm{~V}, 200 \mathrm{~V}$ 3-phase 200 V		C-frame	
DV0P4220	Single/3-phase 200 V	3SUP-HU30-ER-6	D-frame	
DVOPM20043	3-phase 200 V	3SUP-HU50-ER-6	E-frame	

International Standards

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Applicable driver (frame)	Manufacturer
DV0P3410	3 -phase 200 V	3SUP-HL50-ER-6B	F-frame	Okaya Electric Ind.

- Recommended components

Part No.	Voltage specifications for driver	Current rating (A)	Applicable driver (frame)	Manufacturer
RTHN-5010	3-phase 200 V	10	A-frame to C-frame	TDK-Lambda Corp.
RTHN-5030		30	D-frame	
RTHN-5050		50	E-frame and F-frame	

[RTHN-5010]

[RTHN-5050]

<Remarks>

- Select a noise filter of capacity that exceeds the capacity of the power source (also check for load condition)
- For detailed specification of the filter, contact the manufacturer.
- When two or more servo drivers are used with a single noise filter at the common power source, consult with the noise filter manufacturer.

Part No.	Voltage specifications for driver	Current rating (A)	Applicable driver (frame)	Manufacturer
FS5559-60-34	3-phase 200 V	60	G-frame	Schaffner EMC, Inc.
FS5559-80-34		80	H -frame	
FN258L-16-07	3 -phase 400 V	16	D-frame and E-frame	
FN258L-30-07		30	F-frame	
FN258-42-07		42		
FN258-42-33		42	and H -rame	

[FS5559-60-34, FS5559-80-34]

[FN258L-16-07]
[FN258L-30-07]

[FN258-42-07]
[FN258-42-33]

[Unit: mm]

[Unit: mm]

<Remarks>

Select a noise filter of capacity that exceeds the capacity of the power source (also check for load condition)
For detailed specification of the filter, contact the manufacturer
When two or more servo drivers are used with a single noise filter at the common power source, consult with the noise filter manufacturer.

Surge Absorber

Provide a surge absorber for the primary side of noise filter.

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Manufacturer
DVOP1450	3-phase 200 V	$\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}$-781BXZ-4	Okaya Electric Ind.
DVOPM20050	3-phase 400 V	$\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}$-801BXZ-4	

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Manufacturer
DV0P4190	Single phase $100 \mathrm{~V}, 200 \mathrm{~V}$	R•A•V-781BWZ-4	Okaya Electric Ind.

Ferrite core

Install ferrite core to all cables (power cable, motor cable, encoder cable and interface cable)

Symbol ${ }^{1+}$	Cable Name	$100 \mathrm{~V} / 200 \mathrm{~V}$ Amp. frame symbol	400 V Amp. frame symbol	Option part No	Manufacturer's part No.	Manufacturer	Qty.
NF1	Power cable	A, B, C, D	D, E, F	DVOP1460	ZCAT3035-1330	TDK Corp.	4
		E, F	-	Recommended components	RJ8035	KK-CORP.CO.JP	1
		G, H	G, H	Recommended components	RJ8095	KK-CORP.CO.JP	1
NF2	Motor cable	A, B, C, D, E, F	D, E, F	DVOP1460	ZСАТ3035-1330	TDK Corp.	4
		G, H	G, H	Recommended components	T400-61D	MICROMETALS	1
NF3	- 24 V Power cable - Encoder cable - Interface cable - USB cable - Control power cable	Common (to all frames)		DVOP1460	ZCAT3035-1330	TDK Corp.	4

*1 For symbols, refer to the Block Diagram "Installation Environment" (P.249).
<Remarks>
To connect the ferrite core to the connector XB connection cable, adjust the sheath length at the tip of the cable, as required
<Caution>
Fix the ferrite core in order to prevent excessive stress to the cables. <Fig.2: Dimensions>

Part No.	Current	100 kHz (μH)	A	B	C	D1	D2	Core thickness	E	F
RJ8035	35 A	9.9 ± 3	170	150	23	80	53	24	R3.5	7
RJ8095	95 A	7.9 ± 3	200	180	34	130	107	35	R3.5	7

Fig.2: RJ8035, RJ8095
(Recommended components)

Fig.3: T400-61D (Recommended components)

Residual Current Device

Install a type B Residual current device (RCD) at primary side of the power supply.
Type B: Residual current device which detects a direct-current ingredient.

Grounding

(1) Connect the protective earth terminal (Θ) of the driver and the protective earth terminal (PE) of the control box without fail to prevent electrical shocks
(2) Do not make a joint connection to the protective earth terminals (\oplus). 2 terminals are provided for protective earth.

<Note>

For driver and applicable peripheral devices, refer to P. 19 "Driver and List of Applicable Peripheral Devices".

E Series

Conformance to
International Standards

Compliance to EC and EMC Directives Composition of Peripheral Components

Compliance to EC and EMC Directives

EC Directives

The EC Directives apply to all such electronic products as those having specific functions and have been exported to EU and directly sold to general consumers. Those products are required to conform to the EU unified standards and to furnish the CE marking on the products. MINAS AC Servos conforms to the EC Directives for Low Voltage Equipment so that the machine incorporating our servos has an easy access to the conformity to relevant EC Directives for the machine.

EMC Directives

MINAS Servo System conform to relevant standard under EMC Directives setting up certain model (condition) with certain locating distance and wiring of the servo motor and the driver. And actual working condition often differs from this model condition especially in wiring and grounding. Therefore, in order for the machine to conform to the EMC Directives, especially for noise emission and noise terminal voltage, it is necessary to examine the machine incorporating our servos,

Conformed Standards

Subject		Confo		IEC : International Electrotechnical Commission EN : Europaischen Normen EMC: Electromagnetic Compatibility UL : Underwriters Laboratories CSA : Canadian Standards Association Pursuant to at the directive 2004/108/EC, article 9(2) Panasonic Testing Centre Panasonic Service Europe, a division of Panasonic Marketing Europe GmbH Winsbergring 15,22525 Hamburg,F.R.Germany
Motor	E660034-1	IEC60034-5 UL1004 CSA22.2 No. 100	Conforms to Low- Voltage Directives	
	EN50178	UL508C CSA22.2 No. 14		
Motor anddriver	55011	Radio Disturbance Characteristics of Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment	Conforms to references Directiv Directives	
	EN61000-6-2	Immunity for Industrial Environments		
	IEC61000-4-2	Electrostatic Discharge Immunity Test		
	IEC61000-4-3	Radio Frequency Electromagnetic Field Immunity Test		
	IEC61000-4-4	Electric High-Speed Transition Phenomenon/Burst Immunity Test		
	IEC61000-4-5	Lightening Surge Immunity Test		
	IEC61000-4-6	High Frequency Conduction Immunity Test		
	1000-4-11	Instantaneous Outage Immunity Test		

Composition of Peripheral Components

Precautions in using options>
Use options correctly after reading operation manuals of the options to better understand the precautions. Take care not to apply excessive stress to each optional part.

Installation Environment

Use Minas driver in environment of Pollution Degree 1 or 2 prescribed in IEC-60664-1 (e.g. Install the driver in control panel with IP54 protection structure.)

Power Supply

100 V system	Single phase, $100 \mathrm{~V}{ }_{-}^{+}$	$\begin{aligned} & +10 \% \\ & -15 \% \\ & \hline \end{aligned}$	to	115 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
200 V system	Single phase, $200 \mathrm{~V}{ }_{-}^{+}$	$+10 \%$ -15%	to	240 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
200 V system	3 -phase, $200 \mathrm{~V}_{-}^{+}$	+10\%	to	240 V	$\begin{aligned} & +10 \% \\ & -15 \% \\ & \hline \end{aligned}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$

(1) Use the power supply under an environment of Overvoltage Category II specified in IEC60664-1.
(2) For a interface power supply, use the insulated one with 12 VDC to 24 VDC which conforms to CE Marking or EN Standards (EN60950).

Circuit Breaker

Connect a circuit breaker which conforms to IEC standards and is UL recognized (UL Listed, (4L) marked), between the power supply and the noise filte

Composition of Peripheral Components Conformity to UL Standards

E Series

Conformance to
International Standards

Noise Filte

When you install one noise filter in the power supply for multi axis application, consult with the manufacture of the filter.

Option part No.	Part No.	Manufacturer
DVOP4160	3SUP-HU10-ER-6	Okaya Electric Industries Co.

-Main bod

Surge Absorbe

Install a surge absorber at primary side of the noise filter.

<Remarks>
Remove this surge absorber when you perform dielectric test on the machine, or surge absorber might be damaged.

Ferrite Core

Install ferrite core to all cables (Power line, motor cable, encoder cable, interface cable)
<Caution>

Please fix a ferrite core to avoid excessive stress to the cable. might influence driver and peripheral equipment and result to malfunction.
Please insert ferrite core between driver and motor wires ($\mathrm{U}, \mathrm{V}, \mathrm{W}$ but grounding).
(Please refer to P. 255 "Composition of Peripheral Components".)

Grounding

(1) Connect the protective earth terminal of the driver (Θ) and protective earth terminal of the control panel (PE) withou fail to prevent electrical shocks.
(2) Do not co-clamp to the ground terminals ($\left(\frac{\sigma}{)}\right.$). Two ground terminals are provided

Ground-Fault Breaker

Install a ground fault curcuit braker (RCD) to the primary side of the power supply.
Please use B-type (DC sensitive) ground fault circuit breakers defined in IEC60947-2, JISC8201-2-2.

Conformity to UL Standards

Observe the following conditions of (1) and (2) to make the system conform to UL508C (File No. E164620),
(1) Use the driver in an environment of Pollution Degree 2 or 1 prescribed in IEC60664-1. (e.g. Install in the control box with IP54 enclosure.)
(2) Install a circuit breaker or fuse which are UL recognized (LISTED (4L) marked) between the power supply and the noise filter without fail.

AC Servo Motor Capacity Selection Software
Option Selection Software for AC Servo Motor

AC Servo Motor Capacity Selection Software

We have prepared PC software "M-SELECT" for AC servo motor capacity selection.
Consult our sales representative or authorized distributor.

- Three-step selection

1. Select components and specified values elect appropriate mechanical parameter items and fill them with parameter values derived from To simulate the target machine s practical as possible, use number of parameters available.
. Enter operation pattern
nput the planned operation pattern that will contain [speed and rotation standard] or [absolute position standard] with
optional settings such as
S-acceleration/de celeration.
2. Select the motor

When the data required in step 1 and 2 above have been input, the software lists the motors, which will be appropriate to
use with your machine. Select the motor that is best suitable for application.

Details of moto
Once the motor is selected, specifications of the motor and driver, and details of reason for determination are displayed
and may be
printed out.

Option Selection Software for AC Servo Motor

We have prepared PC software to enable fast, easy, and correct option selection, a complicated job without the software. - Two procedures for option selection

1. Selection according to driver series and motor type
Suitable option can be selected by selecting driver series, motor type and motor specification through

Please download from our web site and use after install to the PC.
http://industrial.panasonic.com/ww/products/motors-compressors/fa-motors

Organization of the System of Units
Guide to the Internationa System of Units (SI)

Quantity	Symbol of conventional unit	Symbol of SI unit and compatible unit	Conversion value
Length	μ (micron)	$\mu \mathrm{m}$	$1 \mu=1 \mu \mathrm{~m}$ (micrometer)
Acceleration	Gal	$\mathrm{m} / \mathrm{s}^{2}$	$1 \mathrm{Gal}=10^{-2} \mathrm{~m} / \mathrm{s}^{2}$
	G	$\mathrm{m} / \mathrm{s}^{2}$	$1 \mathrm{G}=9.80665 \mathrm{~m} / \mathrm{s}^{2}$
Frequency	$\mathrm{c} / \mathrm{s}, \mathrm{c}$	Hz	$1 \mathrm{c} / \mathrm{s}=\mathrm{Hz}$
Revolving speed, Number of revolutions	rpm	s^{-1} or min ${ }^{-1}$, $\mathrm{r} / \mathrm{min}$	$1 \mathrm{rpm}=1 \mathrm{~min}^{-1}$
Weight	kgf		Ssame value
Mass	-	kg	
Weight flow rate	kgf/s	-	Same value
Mass flow rate		kg/s	Same value
Specific weight	$\mathrm{kg} / \mathrm{m}^{3}$	-	
Density		$\mathrm{kg} / \mathrm{m}^{3}$	Same value
Specific volume	$\mathrm{m}^{3} \mathrm{kgf}$	$\mathrm{m}^{3} \mathrm{~kg}$	Same value
Load	kgt	N	$1 \mathrm{kgf}=9.80665 \mathrm{~N}$
Force	kgt	N	$1 \mathrm{kgf}=9.80665 \mathrm{~N}$
	dyn	N	$1 \mathrm{dyn}=10^{-5} \mathrm{~N}$
Moment of force	$\mathrm{kgf} \cdot \mathrm{m}$	$\mathrm{N} \cdot \mathrm{m}$	$1 \mathrm{~kg} \cdot \mathrm{~m}=9.806 \mathrm{~N} \cdot \mathrm{~m}$
Pressure	$\mathrm{kgf} / \mathrm{cm}^{2}$	$\mathrm{Pa}, \mathrm{bar}{ }^{(1)}$ or kgt/cm ${ }^{2}$	$\begin{aligned} 1 \mathrm{kgf} / \mathrm{cm}^{2} & =9.80665 \times 10^{4} \mathrm{~Pa} \\ & =0.980665 \mathrm{bar} \end{aligned}$
	at (Engineering atmospheric pressure)	Pa	$1 \mathrm{at}=9.80665 \times 10^{4} \mathrm{~Pa}$
	atm (Atmospheric pressure)	Pa	$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$
	m $\mathrm{H}_{2} \mathrm{O}, \mathrm{mAq}$	Pa	$1 \mathrm{mH} \mathrm{O}=9.80665 \times 10^{3} \mathrm{~Pa}$
	mmHg	Pa or $\mathrm{mmHg}{ }^{(2)}$	$1 \mathrm{mmHg}=133.322 \mathrm{~Pa}$
	Torr	Pa	
Stress	kg/ $/ \mathrm{mm}^{2}$	Pa or $\mathrm{N} / \mathrm{m}^{2}$	$1 \mathrm{kgf} / \mathrm{mm}^{2}=9.80665 \times 10^{6} \mathrm{~Pa}$
	kgf/cm ${ }^{2}$	Pa or $\mathrm{N} / \mathrm{m}^{2}$	$1 \mathrm{~kg} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~Pa}$
	kgt/m ${ }^{2}$		$=9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
Elastic modulus		Pa or $\mathrm{N} / \mathrm{m}^{2}$	$\begin{aligned} & 1 \mathrm{kgf} / \mathrm{m}^{2}=9.80665 \mathrm{~Pa}=9.80665 \mathrm{~N} / \mathrm{m}^{2} \\ & 1 \mathrm{~kg} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$
Energy, Work	kgf.m	J (joule)	$1 \mathrm{~kg} \cdot \mathrm{~m}=9.80665 \mathrm{~J}$
	erg	J	$1 \mathrm{erg}=10^{-7} \mathrm{~J}$
Work efficiency, Power	kgf.m/s	W (watt)	$\begin{aligned} & 1 \mathrm{kgf} \cdot \mathrm{~m} / \mathrm{s}=9.80665 \mathrm{~W} \\ & 1 \mathrm{PS}=0.7355 \mathrm{~kW} \end{aligned}$
	PS	w	
Viscosity Kinetic viscosity	PP	Pa.s	$\begin{aligned} & 1 \mathrm{P}=0.1 \mathrm{~Pa} \cdot \mathrm{~s} \\ & 10^{-2} \mathrm{St}=1 \mathrm{~mm}^{2} / \mathrm{s} \end{aligned}$
	St	mm 2/s	
Thermodynamic temperature Temperature interval	k	K (kelvin)	$1 \mathrm{~K}=1 \mathrm{~K}$
	deg	$\mathrm{K}^{(3)}$	$1 \mathrm{deg}=1 \mathrm{~K}$
Amount of heat Heat capacity Specific heat, Specific heat capacity Entropy Specific entropy Internal energy (Enthalpy) Specific internal energy (Specific enthalpy)			$1 \mathrm{cal}=4.18605 \mathrm{~J}$ $1 \mathrm{cal} /{ }^{\circ} \mathrm{C}=4.18605 \mathrm{~J} / \mathrm{K}$ $1 \mathrm{cal} /\left(\mathrm{kgf} \cdot{ }^{\circ} \mathrm{C}\right)=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ $1 \mathrm{cal} / \mathrm{K}=4.18605 \mathrm{~J} / \mathrm{K}$ $1 \mathrm{cal} /(\mathrm{kg} \cdot \mathrm{K})=4.18605 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ $1 \mathrm{cal}=4.18605 \mathrm{~J}$ $1 \mathrm{cal} / \mathrm{kgf}=4.18605 \mathrm{~J} / \mathrm{kg}$
Heat flux Heat flux density Thermal conductivity Coefficient of thermal conductivity	$\mathrm{cal} / \mathrm{h}$ $\mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{m}^{2}\right)$ cal/ $\left(\mathrm{h} \cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$ $\mathrm{cal} /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)$	w	$\begin{aligned} & 1 \mathrm{kcal} / \mathrm{h}=1.16279 \mathrm{~W} \\ & 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2}\right)=1.16279 \mathrm{~W} / \mathrm{m}^{2} \\ & 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m} \cdot{ }^{\circ} \mathrm{C}\right)=1.16279 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) \\ & 1 \mathrm{kcal} /\left(\mathrm{h} \cdot \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)=1.16279 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \end{aligned}$
		$\mathrm{W} / \mathrm{m}^{2}$	
		$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})^{(3)}$	
		$\mathrm{w} /\left(\mathrm{m}^{2} \cdot \mathrm{k}\right)^{(3)}$	
Intensity of magnetic field	Oe	A/m	$1 \mathrm{Oe}=10^{3} /(4 \pi) \mathrm{A} / \mathrm{m}$
Magnetic flux	Mx	Wb (weber)	$1 \mathrm{Mx}=10^{-8} \mathrm{~Wb}$
Magnetic flux density	Gs,G	T (tesla)	$1 \mathrm{Gs}=10^{-4} \mathrm{~T}$

[^9] (2) Applicable to scale or indication of blood pressure manometers.
(3) "cC" can be substituted for "K". (3) "C" can be substituted for " K ".

Flow of Motor Selection

1. Definition of mechanism to be driven by motor.

Define details of individual mechanical components (ball screw length, lead and pulley diameters, etc.)

<Typical mechanism>

Ball screw mechanism

Rack \& pinion, etc.

2. Definition of operating pattern.

Acceleration/deceleration time, Constant-velocity time, Stop time, Cycle time, Travel distance

Note) Selection of motor capacity significantly varies depending on the operating pattern The motor capacity can be reduced if the acceleration/deceleration time and stop time are set as long as possible.

3. Calculation of load inertia and inertia ratio

Calculate load inertia for each mechanical component. (Refer to "General inertia calculation method" described later.)
Divide the calculated load inertia by the inertia of the selected motor to check the inertia ratio For calculation of the inertia ratio, note that the catalog value of the motor inertia is expressed as " $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ".

4. Calculation of motor velocity

Calculate the motor velocity from the moving distance, acceleration / deceleration time and constant-velocity time.

5. Calculation of torque

Calculate the required motor torque from the load inertia, acceleration/deceleration time and constant-velocity time.

6. Calculation of motor

Select a motor that meets the above 3 to 5 requirements

Description on the Items Related to Motor Selection

1. Torque

(1) Peak torque

Indicate the maximum torque that the motor requires during operation (mainly in acceleration and deceleration steps). The reference value is 80% or less of the maximum motor torque. If the torque is a negative value, a regenerative discharge resistor may be required.
(2) Traveling torque, Stop holding torque

Indicates the torque that the motor requires for a long time. The reference value is 80% or less of the rated motor torque. If the torque is a negative value, a regenerative discharge resistor may be required.

Traveling torque calculation formula for each mechanism

Belt mechanism

$$
\text { Traveling torque } \quad \mathrm{T} f=\frac{\mathrm{D}}{2 \pi \eta}(\mu \mathrm{gW}+\mathrm{F})
$$

W: Weight [kg]
 η : Mechanical efficiency

$\mathrm{P}:$ Pulley diameter $[\mathrm{m}] \quad \mu:$ Coefficient of friction
F : External force $[\mathrm{N}] \quad \mathrm{g}$: Acceleration of gravity $9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
(3) Effective torque

Indicates a root-mean-square value of the total torque required for running and stopping the motor per unit time. The reference value is approx. 80% or less of the rated motor torque.

$$
\text { Trms }=\sqrt{\frac{\mathrm{Ta}^{2} \times \mathrm{ta}+\mathrm{Tf}^{2} \times \mathrm{tb}+\mathrm{Td}^{2} \times \mathrm{td}}{\mathrm{tc}}}
$$

$\mathrm{Ta}:$ Acceleration torque $[\mathrm{N} \cdot \mathrm{m}]$
ta : Acceleration time [s]
tc: Cycle time [s]
Tf : Traveling torque $[\mathrm{N} \cdot \mathrm{m}]$
tb : Constant-velocity time [s]
td: Deceleration time [s]

2. Motor velocity

Maximum velocity
Maximum velocity of motor in operation: The reference value is the rated velocity or lower value
When the motor runs at the maximum velocity, you must pay attention to the motor torque and
temperature rise. For actual calculation of motor velocity, see "Example of motor selection" described later.

3. Inertia and inertia ratio

Inertia is like the force to retain the current moving condition
Inertia ratio is calculated by dividing load inertia by rotor inertia
Generally, for motors with 750 W or lower capacity, the inertia ratio should be " 20 " or less. For motors with 1000 W or higher capacity, the inertia ratio should be " 10 " or less.
If you need quicker response, a lower inertia ratio is required.
(For example, when the motor takes several seconds in acceleration step, the inertia ratio can be further) increased.

General inertia calculation method

Shape	J calculation formula	Shape	J calculation formula
Disk	$\begin{aligned} & J=\frac{1}{8} W^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right] \\ & W: \text { Weight }[\mathrm{kg}] \\ & D: \text { Outer diameter }[\mathrm{m}] \end{aligned}$	Hollow cylinder	$J=\frac{1}{8} W\left(D^{2}+d^{2}\right)\left[k g \cdot m^{2}\right]$ W: Weight [kg] D : Outer diameter [m] d : Inner diameter [m]
	$J=\frac{1}{12} W\left(a^{2}+b^{2}\right)\left[k g \cdot m^{2}\right]$ W: Weight [kg] a, b, c : Side length [m]	Uniform rod	$\begin{aligned} & \mathrm{J}=\frac{1}{48} \mathrm{~W}\left(3 \mathrm{D}^{2}+4 \mathrm{~L}^{2}\right)\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right] \\ & \mathrm{W}: \text { Weight }[\mathrm{kg}] \\ & \mathrm{D}: \text { Outer diameter }[\mathrm{m}] \\ & \mathrm{L}: \text { Length }[\mathrm{m}] \end{aligned}$
Straight rod	$\mathrm{J}=\frac{1}{3} \mathrm{WL}^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] L : Length [m]	Separated rod	$J=\frac{1}{8} W D^{2}+W S^{2}\left[k g \cdot m^{2}\right]$ W: Weight [kg] D: Outer diameter [m] S: Distance [m]
Reduction gear	Inertia on shaft "a" $\mathrm{J}=\mathrm{J}_{1}+\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right)^{2} \mathrm{~J}_{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ n_{1} : A rotational speed of a shaft [$\mathrm{r} / \mathrm{min}$] n_{2} : A rotational speed of b shaft $[\mathrm{r} / \mathrm{min}]$		
Conveyor	$J=\frac{1}{4} W D^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ W : Workpiece weight on conveyor [kg] D : Drum diameter [m] * Excluding drum J	Ball screw	$J=J_{B}+\frac{W \cdot P^{2}}{4 \pi^{2}}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ W: Weight [kg] P:Lead JB : J of ball screw

[^10]Brass $\rho=8.5 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$

To Drive Ball Screw Mechanism

1. Example of motor selection for driving ball screw mechanism

Workpiece weight
Ball screw length
Ball screw diameter
Ball screw lead
$W_{A}=10[\mathrm{~kg}]$

Ball screw lead $\quad B D=0.02[\mathrm{~m}]$
Travel distance $0.3[\mathrm{~m}]$
Coupling inertia $\mathrm{Jc}=10 \times 10^{-6}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ (Use manufacturer-specified catalog value, or calculation value.)
2. Running pattern :

Acceleration time
Constant-velocity time
Deceleration time
Cycle time
$\mathrm{ta}=0.1[\mathrm{~s}]$
$\mathrm{tb}=0.8[\mathrm{~s}]$ $\mathrm{td}=0.1[\mathrm{~s}]$ tc $=2[\mathrm{~s}]$
Travel distance 0.3[m]

3. Ball screw weight $\quad B W=\rho \times \pi \times\left(\frac{B D}{2}\right)^{2} \times B L=7.9 \times 10^{3} \times \pi \times\left(\frac{0.02}{2}\right)^{2} \times 0.5$

$$
=1.24[\mathrm{~kg}]
$$

4. Load inertia

$$
\begin{aligned}
\mathrm{JL} & =\mathrm{JC}+\mathrm{JB}=\mathrm{JC}+\frac{1}{8} \mathrm{BW} \times \mathrm{BD}^{2}+\frac{\mathrm{WA} \cdot \mathrm{BP}^{2}}{4 \pi^{2}} \\
& =0.00001+\left(1.24 \times 0.02^{2}\right) / 8+10 \times 0.02^{2} / 4 \pi^{2} \\
& =1.73 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]
\end{aligned}
$$

5. Provisional motor selection

In case of MSME 200 W motor : $\mathrm{JM}=0.14 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$

6. Calculation of inertia ratio

$\mathrm{JL} / \mathrm{JM}=1.73 \times 10^{-4} / 0.14 \times 10^{-4}$ Therefore, the inertia ratio is "12.3" (less than " 30 ")
(In case of MSME 100 W motor: $\mathrm{JM}=0.051 \times 10^{-4}$ Therefore, the inertia ratio is "33.9".)

7. Calculation of maximum velocity (Vmax)

$\frac{1}{2} \times$ Acceleration time $\times V \max +$ Constant-velocity time $\times V \max +\frac{1}{2} \times$ Deceleration time \times Vmax $=$ Travel distance
$\frac{1}{2} \times 0.1 \times \operatorname{Vmax}+0.8 \times \operatorname{Vmax}+\frac{1}{2} \times 0.1 \times \operatorname{Vmax}=0.3$
$0.9 \times \operatorname{Vmax}=0.3$
Vmax $=0.3 / 0.9=0.334[\mathrm{~m} / \mathrm{s}]$
8. Calculation of motor velocity ($\mathrm{N}[\mathrm{r} / \mathrm{min}]$) Ball screw lead per resolution: $\mathrm{BP}=0.02$ [m] $N=0.334 / 0.02=16.7[\mathrm{r} / \mathrm{s}]$
$=16.7 \times 60=1002[\mathrm{r} / \mathrm{min}]<3000[\mathrm{r} / \mathrm{min}]$ (Rated velocity of MSME 200W motor)
9. Calculation of torque

$$
\text { Traveling torque } \quad \begin{aligned}
& \mathrm{T}_{f}=\frac{\mathrm{BP}}{2 \pi \mathrm{~B} \eta}(\mu \mathrm{gWA}+\mathrm{F})=\frac{0.02}{2 \pi \times 0.9}(0.1 \times 9.8 \times 10+0) \\
&=0.035[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Acceleration torque } \quad \begin{aligned}
\mathrm{Ta} & =\frac{(\mathrm{JL}+\mathrm{JM}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time }[\mathrm{s}]}+\text { Traveling torque } \\
& =\frac{\left(1.73 \times 10^{-4}+0.14 \times 10^{-4}\right) \times 2 \pi \times 16.7}{0.1}+0.035 \\
& =0.196+0.035=0.231[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
\end{aligned}
$$

$$
\text { Deceleration torque } \quad \begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{(\mathrm{JL}+\mathrm{Jm}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time }[\mathrm{s}]}-\text { Traveling torque } \\
& =\frac{\left(1.73 \times 10^{-4}+0.14 \times 10^{-4}\right) \times 2 \pi \times 16.7}{0.1}-0.035 \\
& =0.196-0.035=0.161[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
$$

10. Verification of maximum torque

Acceleration torque $=\mathrm{Ta}=0.231[\mathrm{~N} \cdot \mathrm{~m}]<1.91[\mathrm{~N} \cdot \mathrm{~m}]$ (Maximum torque of MSME 200 W motor)
11. Verification of effective torque

$$
\begin{aligned}
\text { Trms } & =\sqrt{\frac{\mathrm{Ta}^{2} \times \mathrm{ta}+\mathrm{Tf}^{2} \times \mathrm{tb}+\mathrm{Td}^{2} \times \mathrm{td}}{\mathrm{tc}}} \\
& =\sqrt{\frac{0.231^{2} \times 0.1+0.035^{2} \times 0.8+0.161^{2} \times 0.1}{2}} \\
& =0.067[\mathrm{~N} \cdot \mathrm{~m}]<0.64[\mathrm{~N} \cdot \mathrm{~m}] \text { (Rated torque of MSME } 200 \mathrm{~W} \text { motor) }
\end{aligned}
$$

12. Judging from the inertia ratio calculated above, selection of 200 W motor is preferable, although the torque margin is significantly large.

Example of Motor Selection

Example of motor selection for timing belt mechanism
1.Mechanism

Pulley weight
Mechanical efficiency
Coupling inertia
Belt mechanism inertia
Pulley inertia
time $\quad \mathrm{ta}=0.1[\mathrm{~s}]$
locity time $\mathrm{tb}=0.8[\mathrm{~s}]$
time $\quad t d=0.1[\mathrm{~s}]$
tc $=2[\mathrm{~s}]$
ce $1[\mathrm{~m}]$

WA $=2[\mathrm{~kg}]$ (including belt)
$\mathrm{PD}=0.05[\mathrm{~m}]$
WP $=0.5[\mathrm{~kg}]$ (Use manufacturer-specified catalog value, or calculation value.) $\mathrm{B} \eta=0.8$
Jc $=0$ (Direct connection to motor shaft) Jc
JB
Belt mechanism inertia JB
Pulley inertia JP

2. Running pattern

Acceleration time $\mathrm{a}=0.1[\mathrm{~s}]$
Constant-velocity time tb $=0.8[\mathrm{~s}]$
Deceleration time $t d=0.1[\mathrm{~s}]$
Cycle time tc $=2[\mathrm{~s}]$
Travel distance 1[m]

3. Load inertia $\mathrm{JL}=\mathrm{JC}+\mathrm{JB}+\mathrm{JP}$
$=\mathrm{Jc}+\frac{1}{4} \mathrm{WA} \times \mathrm{PD}^{2}+\frac{1}{8} \mathrm{~W} \times \mathrm{PD}^{2} \times 2$
$=0+\frac{1}{4} \times 2 \times 0.05^{2}+\frac{1}{8} \times 0.5 \times 0.05^{2} \times 2$
$=0.00156=15.6 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
4. Provisional motor selection

In case of MSME 750 W motor : $\mathrm{JM}=0.87 \times 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
5. Calculation of inertia ratio
$\mathrm{JL} / \mathrm{JM}=15.6 \times 10^{-4} / 0.87 \times 10^{-4}$ Therefore, the inertia ratio is "17.9" (less than "20")

6. Calculation of maximum velocity (Vmax)

$\frac{1}{2} \times$ Acceleration time \times Vmax + Constant-velocity time $\times \operatorname{Vmax}+\frac{1}{2} \times$ Deceleration time \times Vmax $=$ Travel distance
$\frac{1}{2} \times 0.1 \times V \max +0.8 \times V \max +\frac{1}{2} \times 0.1 \times V \max =1$
$0.9 \times V_{m a x}=1$
$V \max =1 / 0.9=1.111[\mathrm{~m} / \mathrm{s}]$

7. Calculation of motor velocity ($\mathrm{N}[\mathrm{r} / \mathrm{min}]$)

A single rotation of pulley : $\pi \times \mathrm{PD}=0.157[\mathrm{~m}]$
$\mathrm{N}=1.111 / 0.157=7.08[\mathrm{r} / \mathrm{s}]$
$=7.08 \times 60=424.8[\mathrm{r} / \mathrm{min}]<3000[\mathrm{r} / \mathrm{min}]$ (Rated velocity of MSME 750 W motor)

8. Calculation of torque

$$
\begin{aligned}
& \text { Traveling torque } \quad \mathrm{Tf}=\frac{\mathrm{PD}}{2 \eta}(\mu \mathrm{GW} A+\mathrm{F})=\frac{0.05}{2 \times 0.8}(0.1 \times 9.8 \times 3+0) \\
& =0.061[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Acceleration torque } \\
& \mathrm{Ta}=\frac{(\mathrm{JL}+\mathrm{Jm}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Acceleration time } \mathrm{s}]}+\text { Traveling torque } \\
& =\frac{\left(15.6 \times 10^{-4}+0.87 \times 10^{-4}\right) \times 2 \pi \times 7.08}{0.1}+0.061 \\
& =0.751+0.061=0.812[\mathrm{~N} \cdot \mathrm{~m}] \\
& \text { Deceleration torque } \\
& \mathrm{Td}=\frac{(\mathrm{JL}+\mathrm{JM}) \times 2 \pi \mathrm{~N}[\mathrm{r} / \mathrm{s}]}{\text { Deceleration time[s] }}-\text { Traveling torque } \\
& =\frac{\left(15.6 \times 10^{-4}+0.87 \times 10^{-4}\right) \times 2 \pi \times 7.08}{0.1}-0.061 \\
& =0.751-0.061=0.69[\mathrm{~N} \cdot \mathrm{~m}]
\end{aligned}
$$

1. Driven mechanism and running data

1) Travel distance of the work load
2) Cycle time

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning accuracy of the
9) work load
10) Total weight of the work load
11) and the table
12) Power supply voltage
13) Diameter of the ball screw
14) Total length of the ball
15) Lead of the ball screw

$\mathrm{ta}:$ s $\mathrm{td}:$ s $\mathrm{ts}:$ s $\mathrm{V}:$ mm / s $\mathrm{F}:$ N \pm mm $\mathrm{W}:$ kg V mm mm

Traveling direction (horizontal, vertical etc.) \qquad
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request Sheet for Motor Selection

Request for motor selection II : Timing pulley + Ball screw drive

1. Driven mechanism and running data				Diameter of the pulley	Motor side		Ball screw side	
1) Travel distance of the work load per one cycle	$\ell{ }_{1}$:	mm			D1:	mm	D2:	mm
2) Cycle time	to:	s	16)	Weight of the pulley	W_{1} :	kg	W_{2} :	kg

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning
9) Total weight of the work load and the table
10) Power supply voltage
11) Diameter of the ball screw
12) Total length of the ball screw
13) Lead of the ball screw
14) Traveling direction

17) Width of the pulley	$\mathrm{L}:$	mm
18) Material of the pulley		
19) Weight of the belt	W_{M}	kg

 ed.)
(or item 17) and 18))
2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection III : Belt drive

1. Driven mechanism and running data

1) Travel distance of the work load
per one cycle

$\ell_{1}:$	mm
to:	s

(Fill in items 3) and 4) if required.)
3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External force
8) Positioning accuracy of the
8) work load
9) Total weight of the work load
10) Power supply voltage
11) Weight of the belt
12) Diameter of the driving pulley
13) Total weight of the pulley

ta:	s
td:	s
ts:	s
V :	mm/s
F:	N
\pm	mm
W_{A} :	kg
	v
$\mathrm{W}_{\text {м }}$	kg
D_{1} :	mm
W_{1} :	kg

Running pattern

(or item 14) and 15))
14) Width of the pulley
15) Material of the pulley
16) Traveling direction
${ }^{16)}$ (horizontal, vertical etc.)

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection IV : Timing pulley + Belt drive \qquad

1. Driven mechanism and running data

1) Travel distance of the work load per one cycle			16)	Diameter of the pulley	Motor side		Belt side	
	ℓ 1:	mm			D3:	mm	D4:	mm
2) Cycle time	to:	s	17)	Weight of the pulley	W3:	kg	W_{4} :	kg

(Fill in items 3) and 4) if required.)
(or item 18) and 19))

Running pattern
7) External force

ta:	s
td:	s
ts:	s
V :	mm/s
F:	N
\pm	mm
WA:	kg
	v
W :	kg

8) Positioning accuracy of the
9) Total weight of the work
10) load
11) Weight of motor side belt \qquad Belt side

(or item 14) and 15))
12) Width of the
belt

$\mathrm{L} 1:$	mm

15) Material of the

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection V : Turntable drive

1. Driven mechanism and running data

	Travel distance of the work 1) load per one cycle	14) Dimensions of the work load	
2) Cycle time	to:		

(Fill in items 3) and 4) if required.)

3)	Acceleration time	ta:	s
4)	Deceleration time	td:	s
5)	Stopping time	ts:	s
6)	Max. rotational speed of the table	v :	deg/s
	(or)	v :	r/s
7)	Positioning accuracy of the work load	\pm	deg
8)	Weight of one work load	W_{A} :	kg
9)	Driving radius of the center of gravity of the work	R1:	mm
10)	Diameter of the table	D1:	mm
11)	Mass of the table	w_{1} :	kg
12)	Diameter of the table support	T1:	mm
13)	Power supply voltage		V

15) Number of work loads

Prism	Cylinder		
a:	mm	a:	mm
b:	mm	$\mathrm{b}:$	mm
c:	mm	$\mathrm{c}:$	mm
			pcs

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request Sheet for Motor Selection

Request for motor selection VI : Timing pulley + Turntable drive

1. Driven mechanism a			16)	Diameter of the pulley	Motor side		Turntable side	
1) Travel distance of the work load per one cycle	d1:	deg			D2:	mm	D3:	mm
2) Cycle time	to:	s	17)	Weight of the pulley	W_{2} :	kg	W_{3} :	kg

(Fill in items 3) and 4) if required.)
(or item 18) and 19))
3) Acceleration time
4) Deceleration time

ta:	s
$\mathrm{td}:$	s

18) Width of the pulley
19) Material of the pulley
20) Weight of the belt

21) Max. rotational speed of the table
22) $\begin{aligned} & \text { Positioning accuracy of the } \\ & \text { work load }\end{aligned}$
23) Weight of one work load
a) Driving radius of the center of gravity of the work
24) Diameter of the table
25) Mass of the table
26) Diameter of the table
27) Power supply voltage

	(Prism)	(Cylinder)	
	14)Dimension of the work load	a:	mm
	a:	mm	
	$\mathrm{b}:$	mm	$\mathrm{b}:$

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection VII : Roller feed drive

1. Driven mechanism and running data

1) Travel distance of the work load
per one cycle

$\ell_{1}:$	mm
to:	s

3) Acceleration time
4) Deceleration time
5) Stopping time
6) Max. velocity
7) External pulling force
8) Positioning accuracy of the
9) work load
10) Number of rollers
11) Power supply voltage
12) Diameter of the roller
13) Mass of the roller

ta:	s
td:	s
ts:	s
v :	mm / s
F:	N
\pm	mm
	pcs
	v
D1:	mm
W_{1} :	kg

(or item 13) and 14))
13) Width of the roller
14) Material of the roller

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

Request for motor selection VIII : Driving with Rack \& Pinion

1. Driven mechanism and running data

1) Travel distance of the work load		
per one cycle	$\ell_{1}:$	mm
2) Cycle time	to:	s

(Fill in items 3) and 4) if required.)

3)	Acceleration time	ta:	s
4)	Deceleration time	td:	s
5)	Stopping time	ts:	s
6)	Max. velocity	V :	mm/s
7)	External force	F:	N
8)	Positioning accuracy of the work load	\pm	mm
9)	Total weight of the work load	W_{A} :	kg
10)	Power supply voltage		V
11)	Diameter of the pinion	D_{3} :	mm
12)	Mass of the pinion	W_{3} :	kg
13)	Traveling direction (horizontal, vertical, etc.)		

2. Other data (Fill the details on specific mechanism and its configurations in the following blank.)

FP7-AFP7PP02T/L(2-axes) AFP7PP04T/L(4-axes) Connection with the Panasonic devices SUNX.

F3YP22-0P/F3YP24-0P/F3YP28-0P Connection with the Yokogawa Electric Corp.

F3NC32-ON/F3NC34-ON Connection with the Yokogawa Electric Corp.

A5 Family

Connection Between
Driver and Controlle
Replacing Old Model Servo Driver with MINAS A5II, A5 series
or easier replacement of old driver (MINAS X/XX/N series) with A5II, A5 series, use the interface conversion connector.

When selecting the cable, refer to the table below because the part number of the cable is specific to the contro mode of the old model.

Old model	Control mode	Conversion cable part No.	Conversion wiring table
X series XX series (36-pin)	Position/velocity control	DVOP4120	P.280
	Torque control	DVOP4121	
	Position control	DVOP4130	P.281
	Velocity control	DVOP4131	
	Torque control	DVOP4132	P.282

* For external dimensions, refer to P. 197

Conversion Wiring Table

Pin No. on Old Mode	DVOP4120			DV0P4121		
	$\begin{array}{\|c} \hline \text { Pin } \\ \text { No. } \\ \text { Courrent } \\ \text { Cur } \\ \text { Model } \end{array}$	Signal Name	Symbol	Pin No. on Current Model	Signal Name	Symbol
1	23	z-phase output	OZ+	23	z-phase output	OZ+
2	24	z-phase output	oz-	24	z-phase output	Oz-
3	13	Signal ground	GND	13	Signal ground	GND
4	19	Z-phase output	Cz	19	z-phase output	Cz
5	4	Command pulse input 2	PULS2	4	Command pulse input 2	PuLS2
6	3	Command pulse input 2	PULS1	3	Command pulse input 2	PULS1
7	6	Command pulse sign input 2	SIGN2	6	Command pulse sign input 2	SIGN2
8	5	Command pulse sign input 2	SIGN1	5	Command pulse sign input 2	SIGN1
9	33	Command pulse inhibition input	INH	33	Command pulse inhibition input	INH
10	26	Speed zero clamp input	ZEROSPD	26	Speed zero clamp input	ZEROSPD
11	7	Power supply for control signal (+)	COM+	7	Power supply for control signal (+)	COM+
12	29	Servo-ON input	SRV-ON	29	Servo-ON input	SRV-ON
13	30	Deviation counter clear input	CL	30	Deviation counter clear input	CL
14	14	Speed command input	SPR	NC		
15	15	Signal ground	GND	15	Signal ground	GND
16	43	Speed monitor output	SP	43	Speed monitor output	SP
17	25	Signal ground	GND	25	Signal ground	GND
18	50	Frame ground	FG	50	Frame ground	FG
19	21	A-phase output	OA_{+}	21	A-phase output	OA+
20	22	A-phase output	OA-	22	A-phase output	OA-
21	48	B-phase output	OB+	48	B-phase output	OB+
22	49	B-phase output	OB-	49	B-phase output	OB-
23	NC			NC		
24	NC			NC		
25	39	Positioning complete output Speed arrival output	COIN+ AT-SPEED+ +	39	Positioning complete output Speed arrival output	COIN + AT-SPEED +
26	37	Servo-Alarm output	ALM +	37	Servo-Alarm output	ALM +
27	35	Servo-Ready output	S-RDY+	35	Servo-Ready output	S-RDY+
28	34	$\begin{aligned} & \text { Positioning complete output (-) } \\ & \text { Speed arrival output (-) } \end{aligned}$	COIN- AT-SPEED-	34	Positioning complete output (-) Speed arrival output (-)	COIN- AT-SPEED-
	36	Servo-Alarm output (-)	ALM-	36	Servo-Alarm output (-)	ALM-
	38	Servo-Ready output (-)	S-RDY-	38	Servo-Ready output (-)	S-RDY-
	41	Power supply for control signal (-)	COM-	41	Power supply for control signal (-)	COM-
29	8	CW over-travel inhibiti input	cWL	8	CW over-travel inhibiti input	CWL
30	9	CCW over-travel inhibit input	CCWL	9	CCW over-travel inhibit input	CCWL
31	31	Alarm clear input	A-CLR	31	Alarm clear input	A-CLR
32	32	Control mode switching input	C-MODE	32	Control mode switching input	C-MODE
33	18	CW direction torque limit input	CWTL	18	CW direction torque limit input	CWTL
34	16	CCW direction torque limit input	CCWTL	14	Torque command input	TRQR
35	17	Signal ground	GND	17	Signal ground	GND
36	42	Torque monitor output	וM	42	Torque monitor output	IM

"NC" is no connect.

A5 Family
Connection Between
Driver and Controller

$$
\begin{array}{l|l}
\hline & \text { DVop4130 }
\end{array}
$$

$\begin{aligned} & \text { Pin No. } \\ & \text { on Odd } \\ & \text { Model } \end{aligned}$	DVOP4130			DVOP4131		
	Pin No. on Current Model	Signal Name	Symbol	Pin No. on Current Model	Signal Name	Symbol
1	8	CW over-travel inhibit input	cWL	8	CW over-travel inhibitit input	cWL
2	9	CCW over-travel inhibit input	CCWL	9	CCW over-travel inhibit input	cCWL
3	3	Command pulse input 2	PULS1	NC		
4	4	Command pulse input 2	PULS2	NC		
5	5	Command pulse sign input 2	SIGN1	NC		
6	6	Command pulse sign input 2	SIGN2	NC		
7	7	Power supply for control signal (+)	COM+	7	Power supply for control signal (+)	COM+
8	NC			NC		
9	NC			NC		
10	NC			NC		
11	11	External brake release signal	BRK-OFF+	11	External brake release signal	BRK-OFF+
12	12	Zero-speed detection output signal	ZSP	12	Zero-speed detection output signal	zsp
13	13	Torque in-limit signal output	TLC	13	Torque in-limit signal output	TLC
14	NC			14	Speed command input	SPR
15	15	Signal ground	GND	15	Signal ground	GND
16	16	CCW direction torque limit input	CCWTL	16	CCW direction torque limit input	CCWTL
17	17	Signal ground	GND	17	Signal ground	GND
18	18	CW direction torque limit input	CWTL	18	CW direction torque limit input	CWTL
19	19	z-phase output	cz	19	Z-phase output	Cz
20	NC			NC		
21	21	A-phase output	OA_{+}	21	A-phase output	OA+
22	22	A-phase output	OA-	22	A-phase output	OA-
23	23	Z-phase output	OZ+	23	Z-phase output	OZ+
24	24	z-phase output	Oz-	24	z-phase output	Oz-
25	50	Frame ground	FG	50	Frame ground	FG
26	26	Speed zero clamp input	ZEROSPD	26	Speed zero clamp input	ZEROSPD
27	27	Gain switching input	GAIN	27	Gain switching input	GAIN
28	NC			33	Selection 1 input of internal command speed	INTSPD1
29	29	Servo-ON input	SRV-ON	29	Servo-ON input	SRV-ON
30	30	Deviation counter clear input	CL	NC		
31	31	Alarm clear input	A-CLR	31	Alarm clear input	A-CLR
32	32	Control mode switching input	C-MODE	32	Control mode switching input	C-mode
33	33	Command pulse inhibition input	INH	NC		
34	NC			NC		
35	35	Servo-Ready output	S-RDY+	35	Servo-Ready output	S-RDY+
36	NC			NC		
37	37	Servo-Alarm output	ALM +	37	Servo-Alarm output	ALM+
38	NC			NC		
39	39	Positioning complete output	COIN+	39	Speed arrival output	AT-SPEED+
40	40	Torque in-limit signal output	TLC	40	Torque in-limit signal output	TLC
41	10	External brake release signal (-)	BRK-OFF-	10	External brake release signal (-)	BRK-OFF-
	34	Positioning complete output (-)	COIN-	34	Speed arrival output (-)	AT-SPEED-
	36	Servo-Alarm output (-)	ALM-	36	Servo-Alarm output (-)	ALM-
	38	Servo-Ready output (-)	S-RDY-	38	Servo-Ready output (-)	S-RDY-
	41	Power supply for control signal (-)	COM-	41	Power supply for control signal (-)	COM-
42	42	Torque monitor output	IM	42	Torque monitor output	IM
43	43	Speed monitor output	SP	43	Speed monitor output	SP
44	25	Signal ground	GND	25	Signal ground	GND
45	25	Signal ground	GND	25	Signal ground	GND
46	25	Signal ground	GND	25	Signal ground	GND
47	NC			NC		
48	48	B-phase output	OB+	48	B-phase output	OB+
49	49	B-phase output	OB-	49	B-phase output	OB-
50	50	Frame ground	FG	50	Frame ground	FG

Pin No. on Old Model	DVOP4132		
	$\begin{gathered} \hline \text { Pin } \\ \text { No. on } \\ \text { Current } \\ \text { Model } \end{gathered}$	Signal Name	Symbol
1	8	CW over-travel inhibitit input	cWL
2	9	CCW over-travel inhibit input	CCWL
3	NC		
4	NC		
5	NC		
6	NC		
7	7	Power supply for control signal (t)	COM+
8	NC		
9	NC		
10	NC		
11	11	External brake release signal	BRK-OFF+
12	12	Zero-speed detection output signal	ZSP
13	13	Torque in-limit signal output	TLC
14	NC		
15	15	Signal ground	GND
16	16	Torque command input	TRQR
17	17	Signal ground	GND
18	18	CW direction torque limit input	CWTL
19	19	Z-phase output	Cz
20	NC		
21	21	A-phase output	OA+
22	22	A-phase output	OA-
23	23	z-phase output	OZ+
24	24	z-phase output	Oz-
25	50	Frame ground	FG
26	26	Speed zero clamp input	ZEROSPD
27	27	Gain switching input	GAIN
28	NC		
29	29	Servo-ON input	SRV-ON
30	NC		
31	31	Alarm clear input	A-CLR
32	32	Control mode switching input	C-MODE
33	NC		
34	NC		
35	35	Servo-Ready output	S-RDY+
36	NC		
37	37	Servo-Alarm output	ALM +
38	NC		
39	39	Speed arrival output	AT-SPEED+
40	40	Torque in-limit signal output	TLC
41	10	External brake release signal (-)	BRK-OfF-
	34	Speed arival output (-)	AT-SPEED-
	36	Servo-Alarm output (-)	ALM-
	38	Servo-Ready output (-)	S-RDY-
	41	Power supply for control signal (-)	COM-
42	42	Torque monitor output	IM
43	43	Speed monitor output	SP
44	25	Signal ground	GND
45	25	Signal ground	GND
46	25	Signal ground	GND
47	NC		
48	48	B-phase output	OB+
49	49	B-phase output	OB-
50	50	Frame ground	FG

* " NC " is no connect.

Driver and Controller

FP7-AFP7PP02T/L(2-axes) AFP7PP04T/L(4-axes) Connection with the Panasonic devices SUNX.

F3YP22-0P/F3YP24-0P/F3YP28-0P Connection with the Yokogawa Electric Corp.

F3NC32-ON/F3NC34-ON Connection with the Yokogawa Electric Corp.

CJ1W-NC113 Connection with the Omron Corp.

DVOP		
Part No.	Title	Page
DVOP0770	Connector kit for external peripheral equipment	240
DVOP0800	Interface cable	241
DVOP1450	Surge absorber (3-phase)	25,256
DVOP1460	Ferrite core	254
DVOP1960	Communication cable	241
DVOP220	Reactor	209
DVOP221	Reactor	209
DVOP222	Reactor	209
DVOP223	Reactor	209
DVOP224	Reactor	09
DVOP225	Reactor	209
DVOP227	Reactor	209
DVOP228	Reactor	209
DVOP2870	Connector kit for power supply connection	239
DVOP2890	External regenerative resistor	42
DVOP2891	External regenerative resistor	242
DVOP2990	Battery For Absolute Encoder	207
DVOP3410	Noise Filter	251
DVOP3670	Connector kit for motorlencoder connection	239
DVOP37300	Cable set (3 m)	238
DVOP3811	DIN rail mounting unit	242
DVOP39200	Cable set (5 m)	238
DV0P4120	Interface conversion cable	197
DV0P4121	Interface conversion cable	197
DV0P4130	Interface conversion cable	97
DVOP4131	Interface conversion cable	197
DV0P4132	Interface conversion cable	197
DVOP4160	Noise filter	256
DV0P4170	Noise Filter	250
DV0P4190	Surge absorber (Single phase)	25,256
DV0P4220	Noise Filter	250
DVOP4280	External Regenerative Resistor: $50 \Omega 25 \mathrm{~W}$	210
DV0P4281	External Regenerative Resistor: $100 \Omega 25 \mathrm{~W}$	210
DV0P4282	External Regenerative Resistor: $25 \Omega 50 \mathrm{~W}$	210
DV0P4283	External Regenerative Resistor: $50 \Omega 50 \mathrm{~W}$	210
DVOP4284	External Regenerative Resistor: $30 \Omega 100 \mathrm{~W}$	210
DVOP4285	External Regenerative Resistor: 20 ת130 W	210
DVOP4290	Connector Kit for Motor/EEncoder Connection	202
DV0P4310	Connector Kit for Motor/Encoder Connection	204
DV0P4320	Connector Kit for Motor/EEncoder Connection	204
DV0P4330	Connector Kit for Motor/Encoder Connection	205
DVOP4340	Connector Kit for Motor/EEncoder Connection	205
DVOP4350	Interface Connector	198
DVOP4360	Interface cable	197
DV0P4380	Connector Kit for Motor/Encoder Connection	202
DV0P4420	Console	241
DVOP4430	Battery Box	207
DVOP4460	Setup support software "PANATERM" for MINAS series AC servo motor \& Driver	236
DVOPM20010	Connector Kit: Encoder	199
DVOPM20026	Connector Kit: External Scale	199
DVOPM20027	Mounting bracket: A-frame	208
DVOPM20028	Mounting bracket: B-frame	208
DVOPM20029	Mounting bracket: C-frame	208
DVOPM20030	Mounting bracket: D-frrame	208
DVOPM20031	Connector Kit: Analog Monitor Signal	199
DVOPM20032	Connector for Power Supply Input Connection (A-frame to D-frame (Single row type))	200
DVOPM20033	Connector for Power Supply Input Connection (A-frame to D-frame (Double row type))	200
DVOPM20034	Connector for Motor Connection (A-frame to D-frame)	201
DVOPM20035	Connector Kit for Motor/Encoder Connection	203
DVOPM20036	Connector Kit for Motor/Encoder Connection	203
DVOPM20037	Connector Kit for Motor/Encoder Connection	204
DVOPM20038	Connector Kit for Motor/Encoder Connection	204
DVOPM20039	Connector Kit for Motor/EEncoder Connection	205
DVOPM20040	Connector Kit for Motor/Brake Connection	206
DVOPM20042	Noise Filter	250
DVOPM20043	Noise Filter	250
DVOPM20044	Connector for Power Supply Input Connection (E-frame)	200

DVOP		
Part No.	Title	Page
DVOPM20045	Connector for Regenerative Resistor (E-frame $200 \mathrm{~V} / 400 \mathrm{~V}$ common)	201
DVOPM20046	Connector for Motor Connection (E-frame $200 \mathrm{~V} / 400 \mathrm{~V}$ common)	201
DVOPM20047	Reactor	209
DVOPM20048	External Regenerative Resistor: $120 \Omega 240 \mathrm{~W}$	210
DVOPM20049	External Regenerative Resistor: $80 \Omega 450 \mathrm{~W}$	210
DVOPM20050	Surge absorber (3-phase)	253
DVOPM20051	Connector for Power Supply Input Connection (D-frame 400 V)	200
DVOPM20052	Connector for Power Supply Input Connection (E-frame 400 V)	200
DVOPM20053	Connector for Control Power Supply Input Connection (D-frame, E-frame 400 V)	201
DVOPM20054	Connector for Motor Connection (D-frame 400V)	201
DVOPM20055	Connector for Regenerative Resistor (D-frame 400 V)	201
DVOPM20056	Connector Kiit for Motor/EEncoder Connection	206
DVOPM20057	Connector Kit for Motor/Encoder Connection	206
DVOPM20102	Connector Kit: RS485, 232	198
DVOPM20103	Connector Kit: Safety	198

MAD
\mathbf{P}
MAD
MA
M
\mathbf{N}
M
M

Part	Title.	Page

MADKT		
Part No.	Title	Page
MADKT1105	A5II series Driver: A-frame	29,42
MADKT1105E	A5IIE series Driver: A-frame	31,42
MADKT1107	A5II series Driver: A-frame	29,42
MADKT107E	A5IIE series Driver: A-frame	31,42
MADKT1505	A5II series Driver: A-frame	29,42
MADKT1505E	A5IIE series Driver: A-frame	1,42
MADKT1507	A5II series Driver: A-frame	29,4
MADKT1507E	A5IIE series Driver: A-frame	31,42

MBDHT		
Part No.	Titte	Page
MBDHT2110	A5 series Driver: B-frame	29,42
MBDHT2110E	A5E series Driver: B-frame	31,42
MBDHT2510	A5 series Driver: B-frame	29,42
MBDHT2510E	A5E series Driver: B-rrame	31,42

MBDKT		
Part No.	Title	Page
MBDKT2110	A5II series Driver: B-frame	29,42
MBDKT2110E	A5IE series Driver: B-frame	31,42
MBDKT2510	A5I series Driver: B-frame	29,42
MBDKT2510E	A5IE series Driver: B-frame	31,42
MCDHT		
Part No.	Title	Page
MCDHT3120	A5 series Driver: C-frame	29,43
MCDHT3120E	A5E series Driver: C-frame	31,43
MCDHT3520	A5 series Driver: C-frame	29,43
MCDHT3520E	A5E series Driver: C-frame	31,43

MDDHT			MDME (Middle inertia)		
Part No.	Title	Page	Part No.	Title	Page
MDDHT2407	A5 series Driver: D-frame	29,44	MDME102S1G	MDME 1.0 kW Absolute encoder	80
MDDHT2407E	A5E series Driver: D-frame	31,44	MDME102S1H	MDME 1.0 kW Absolute encoder	80
MDDHT2412	A5 series Driver: D-frame	29,44	MDME102SCC	MDME 1.0 kW Absolute encoder	80
MDDHT2412E	A5E series Driver: D-frame	31,44	MDME102SCCM	MDME 1.0 kW Absolute encoder	164
MDDHT3420	A5 series Driver: D-frame	29,44	MDME102SCD	MDME 1.0 kW Absolute encoder	80
MDDHT3420E	A5E series Driver: D-frame	31,44	MDME102SCDM	MDME 1.0 kW Absolute encoder	164
MDDHT3530	A5 series Driver: D-frame	29,44	MDME102SCG	MDME 1.0 kW Absolute encoder	80
MDDHT3530E	A5E series Driver: D.frame	31,44	MDME102SCGM	MDME 1.0 kW Absolute encoder	164
MDDHT5540	A5 series Driver: D-frame	29,44	MDME102SCH	MDME 1.0 kW Absolute encoder	80
MDDHT5540E	A5E series Driver: D-frame	31,44	MDME102SCHM	MDME 1.0 kW Absolute encoder	164
MDDKT			MDME104G1C	MDME 1.0 kW Incremental encoder	113
			MDME104G1D	MDME 1.0 kW Incremental encoder	113
Part No.	Title	Page	MDME104G19	MDME 1.0 kW Incremental encoder	113
MDDKT2407	A5II series Driver: D-frame	29,44	MDME104G1H	MDME 1.0 kW Incremental encode	113
MDDKT2407E	A5IE series Driver: D-frame	31,44	MDME104GCC	MDME 1.0 kW Incremental encoder	113
MDDKT2412	A5II series Driver: D-frame	29,44	MDME104GCD	MDME 1.0 kW Incremental encoder	113
MDDKT2412E	A5IE series Driver: D-frame	31,44	MDME104GCG	MDME 1.0 kW Incremental encoder	113
MDDKT3420	A5II series Driver: D.frame	29,44	MDME104GCH	MDME 1.0 kW Incremental encoder	113
MDDKT3420E	A5IE series Driver: D-frame	31,44	MDME104S1C	MDME 1.0 kW Absolute encoder	113
MDDKT3530	A5II series Driver: D-frame	29,44	MDME104S1D	MDME 1.0 kW Absolute encoder	113
MDDKT3530E	A5IE series Driver: D-frame	31,44	MDME104S1G	MDME 1.0 kW Absolute encoder	113
MDDKT5540	A5II series Driver: D-frame	29,44	MDME104S1H	MDME 1.0 kW Absolute encoder	113
MDDKT5540E	A5IE series Driver: D-frame	31,44	MDME104SCC	MDME 1.0 kW Absolute encoder	113
			MDME104SCD	MDME 1.0 kW Absolute encoder	113
MDME (Middle ineriia)			MDME104SCG	MDME 1.0 kW Absolute encoder	113
Part No.	Title	Page	MDME104SCH	MDME 1.0 kW Absolute encoder	113
MDME044G1C	MDME 400 W Incremental encoder	111	MDME152G1C	MDME 1.5 kW Incremental encoder	81
MDME044G1D	MDME 400 W Incremental encoder	111	MDME152G1D	MDME 1.5 kW Incremental encoder	81
MDME044G1G	MDME 400 W Incremental encoder	111	MDME152G19	MDME 1.5 kW Incremental encoder	81
MDME044G1H	MDME 400 W Incremental encoder	111	MDME152G1H	MDME 1.5 kW Incremental encoder	81
MDME044GCC	MDME 400 W Incremental encoder	111	MDME152GCC	MDME 1.5 KW Incremental encoder	81
MDME044GCD	MDME 400 W Incremental encoder	111	MDME152GCCM	MDME 1.5 KW Incremental encoder	165
MDME044GCG	MDME 400 W Incremental encoder	111	MDME152GCD	MDME 1.5 kW Incremental encoder	81
MDME044GCH	MDME 400 W Incremental encoder	111	MDME152GCDM	MDME 1.5 kW Incremental encoder	165
MDME044S1C	MDME 400 W Absolute encoder	111	MDME152GCG	MDME 1.5 kW Incremental encoder	81
MDME044S1D	MDME 400 W Absolute encoder	111	MDME152GCGM	MDME 1.5 kW Incremental encoder	165
MDME044S1G	MDME 400 W Absolute encoder	111	MDME152GCH	MDME 1.5 kW Incremental encoder	81
MDME044S1H	MDME 400 W Absolute encoder	111	MDME152GCHM	MDME 1.5 kW Incremental encoder	165
MDMEO44SCC	MDME 400 W Absolut encoder	111	MDME152S1C	MDME 1.5 kW Absolute encoder	81
MDME044SCD	MDME 400 W Absolute encoder	111	MDME152S1D	MDME 1.5 kW Absolute encoder	81
MDME044SCG	MDME 400 W Absolute encoder	111	MDME152S1G	MDME 1.5 kW Absolute encoder	81
MDME044SCH	MDME 400 W Absolute encoder	111	MDME152S1H	MDME 1.5 kW Absolute encoder	81
MDME064G1C	MDME 600 W Incremental encoder	112	MDME152SCC	MDME 1.5 kW Absolute encoder	81
MDME064G1D	MDME 600 W Incremental encoder	112	MDME152SCCM	MDME 1.5 kW Absolute encoder	165
MDME064G1G	MDME 600 W Incremental encoder	112	MDME152SCD	MDME 1.5 kW Absolute encoder	81
MDME064G1H	MDME 600 W Incremental encoder	112	MDME152SCDM	MDME 1.5 kW Absolute encoder	165
MDME064GCC	MDME 600 W Incremental encoder	112	MDME152SCG	MDME 1.5 kW Absolute encoder	81
MDME064GCD	MDME 600 W Incremental encoder	112	MDME152SCGM	MDME 1.5 kW Absolute encoder	165
MDME064GCG	MDME 600 W Incremental encoder	112	MDME152SCH	MDME 1.5 kW Absolute encoder	81
MDME064GCH	MDME 600 W Incremental encoder	112	MDME152SCHM	MDME 1.5 kW Absolute encoder	165
MDME064S1C	MDME 600 W Absolute encoder	112	MDME154G1C	MDME 1.5 kW Incremental encoder	114
MDME064S1D	MDME 600 W Absolute encoder	112	MDME154G1D	MDME 1.5 kW Incremental encoder	114
MDME064S1G	MDME 600 W Absolute encoder	112	MDME154G19	MDME 1.5 kW Incremental encoder	114
MDME064S1H	MDME 600 W Absolute encoder	112	MDME154G1H	MDME 1.5 kW Incremental encoder	114
MDME064SCC	MDME 600 W Absolute encoder	112	MDME154GCC	MDME 1.5 kW Incremental encoder	114
MDME064SCD	MDME 600 W Absolute encoder	112	MDME154GCD	MDME 1.5 kW Incremental encoder	114
MDME064SCG	MDME 600 W Absolute encoder	112	MDME154GCG	MDME 1.5 kW Incremental encoder	114
MDME064SCH	MDME 600 W Absolute encoder	112	MDME154GCH	MDME 1.5 KW Incremental encoder	114
MDME102G1C	MDME 1.0 kW Incremental encoder	80	MDME154S1C	MDME 1.5 kW Absolute encoder	114
MDME102G1D	MDME 1.0 kW Incremental encoder	80	MDME154S1D	MDME 1.5 kW Absolute encoder	114
MDME102G1G	MDME 1.0 kW Incremental encoder	80	MDME154S1G	MDME 1.5 kW Absolute encoder	114
MDME102G1H	MDME 1.0 kW Incremental encoder	80	MDME154S1H	MDME 1.5 kW Absolute encoder	114
MDME102GCC	MDME 1.0 kW Incremental encoder	80	MDME154SCC	MDME 1.5 kW Absolute encoder	114
MDME102GCCM	MDME 1.0 kW Incremental encoder	164	MDME154SCD	MDME 1.5 kW Absolute encoder	114
MDME102GCD	MDME 1.0 kW Incremental encoder	80	MDME154SCG	MDME 1.5 kW Absolute encoder	114
MDME102GCDM	MDME 1.0 kW Incremental encoder	164	MDME154SCH	MDME 1.5 kW Absolute encoder	114
MDME102GCG	MDME 1.0 kW Incremental encoder	80	MDME202G1C	MDME 2.0 kW Incremental encoder	82
MDME102GCGM	MDME 1.0 kW Incremental encoder	164	MDME202G1D	MDME 2.0 kW Incremental encoder	82
MDME102GCH	MDME 1.0 kW Incremental encoder	80	MDME202G19	MDME 2.0 kW Incremental encoder	82
MDME102GCHM	MDME 1.0 kW Incremental encoder	164	MDME202G1H	MDME 2.0 kW Incremental encoder	82
MDME102S1C	MDME 1.0 kW Absolute encoder	80	MDME202GCC	MDME 2.0 kW Incremental encoder	82
MDME102S1D	MDME 1.0 kW Absolute encoder	80	MDME202GCCM	MDME 2.0 kW Incremental encoder	166

MDME (Middle inertia)			MDME (Middle inertia)		
Part No.	Title	Page	Part No.	Title	Page
MDME202GCD	MDME 2.0 kW Incremental encoder	82	MDME304SCG	MDME 3.0 kW Absolute encoder	116
MDME202GCDM	MDME 2.0 kW Incremental encoder	166	MDME304SCH	MDME 3.0 kW Absolute encoder	116
MDME202GCG	MDME 2.0 kW Incremental encoder	82	MDME402G1C	MDME 4.0 kW Incremental encoder	84
MDME202GCGM	MDME 2.0 kW Incremental encoder	166	MDME402G1D	MDME 4.0 kW Incremental encoder	84
MDME202GCH	MDME 2.0 kW Incremental encoder	82	MDME402G1G	MDME 4.0 kW Incremental encoder	84
MDME202GCHM	MDME 2.0 kW Incremental encoder	166	MDME402G1H	MDME 4.0 kW Incremental encoder	84
MDME202S1C	MDME 2.0 kW Absolute encoder	82	MDME402GCC	MDME 4.0 kW Incremental encoder	84
MDME202S1D	MDME 2.0 kW Absolute encoder	82	MDME402GCCM	MDME 4.0 kW Incremental encoder	168
MDME202S1G	MDME 2.0 kW Absolute encoder	82	MDME402GCD	MDME 4.0 kW Incremental encoder	84
MDME202S1H	MDME 2.0 kW Absolute encoder	82	MDME402GCDM	MDME 4.0 kW Incremental encoder	168
MDME202SCC	MDME 2.0 kW Absolute encoder	82	MDME402GCG	MDME 4.0 kW Incremental encoder	84
MDME202SCCN	MDME 2.0 kW Absolute encoder	166	MDME402GCGM	MDME 4.0 kW Incremental encode	168
MDME202SCD	MDME 2.0 kW Absolute encoder	82	MDME402GCH	MDME 4.0 kW Incremental encoder	84
MDME202SCDM	MDME 2.0 kW Absolute encoder	166	MDME402GCHM	MDME 4.0 kW Incremental encoder	168
MDME202SCG	MDME 2.0 kW Absolute encoder	82	MDME402S1C	MDME 4.0 kW Absolute encoder	84
MDME202SCGM	MDME 2.0 kW Absolute encoder	166	MDME402S1D	MDME 4.0 kW Absolute encoder	84
MDME202SCH	MDME 2.0 kW Absolute encoder	82	MDME402S1G	MDME 4.0 kW Absolute encoder	84
MDME202SCHM	MDME 2.0 kW Absolute encoder	166	MDME402S1H	MDME 4.0 kW Absolute encoder	84
MDME204G1C	MDME 2.0 kW Incremental encoder	115	MDME402SCC	MDME 4.0 kW Absolute encoder	84
MDME204G1D	MDME 2.0 kW Incremental encoder	115	MDME402SCCM	MDME 4.0 kW Absolute encoder	168
MDME204G1G	MDME 2.0 kW Incremental encoder	115	MDME402SCD	MDME 4.0 kW Absolute encoder	84
MDME204G1H	MDME 2.0 kW Incremental encoder	115	MDME402SCDM	MDME 4.0 kW Absolute encoder	168
MDME204GCC	MDME 2.0 kW Incremental encoder	115	MDME402SCG	MDME 4.0 kW Absolute encoder	84
MDME204GCD	MDME 2.0 kW Incremental encoder	115	MDME402SCGM	MDME 4.0 kW Absolute encoder	168
MDME204GC	MDME 2.0 kW Incremental encoder	115	MDME402SCH	MDME 4.0 kW Absolute encoder	84
MDME204GCH	MDME 2.0 kW Incremental encoder	115	MDME402SCHM	MDME 4.0 kW Absolute encoder	168
MDME204S1C	MDME 2.0 kW Absolute encoder	115	MDME404G1C	MDME 4.0 kW Incremental encoder	117
MDME204S1D	MDME 2.0 kW Absolute encoder	115	MDME404G1D	MDME 4.0 kW Incremental encoder	117
MDME204S1G	MDME 2.0 kW Absolute encoder	115	MDME404G1G	MDME 4.0 kW Incremental encoder	117
MDME204S1H	MDME 2.0 kW Absolute encoder	115	MDME404G1H	MDME 4.0 kW Incremental encoder	117
MDME204SCC	MDME 2.0 kW Absolute encoder	115	MDME404GCC	MDME 4.0 kW Incremental encoder	117
MDME204SCD	MDME 2.0 kW Absolute encoder	115	MDME404GCD	MDME 4.0 kW Incremental encoder	117
MDME204SCG	MDME 2.0 kW Absolute encoder	115	MDME404GCG	MDME 4.0 kW Incremental encoder	117
MDME204SCH	MDME 2.0 kW Absolute encoder	115	MDME404GCH	MDME 4.0 kW Incremental encoder	117
MDME302G1C	MDME 3.0 kW Incremental encoder	83	MDME404S1C	MDME 4.0 kW Absolute encoder	17
MDME302G1D	MDME 3.0 kW Incremental encoder	83	MDME404S1D	MDME 4.0 kW Absolute encoder	117
MDME302G1G	MDME 3.0 kW Incremental encoder	83	MDME404S1G	MDME 4.0 kW Absolute encoder	117
MDME302G1H	MDME 3.0 kW Incremental encoder	83	MDME404S1H	MDME 4.0 kW Absolute encoder	117
MDME302GCC	MDME 3.0 kW Incremental encoder	83	MDME404SCC	MDME 4.0 kW Absolute encoder	17
MDME302GCCM	MDME 3.0 kW Incremental encoder	167	MDME404SCD	MDME 4.0 kW Absolute encoder	17
MDME302GCD	MDME 3.0 kW Incremental encoder	83	MDME404SCG	MDME 4.0 kW Absolute encoder	117
MDME302GCDM	MDME 3.0 kW Incremental encoder	167	MDME404SCH	MDME 4.0 kW Absolute encoder	117
MDME302GCG	MDME 3.0 kW Incremental encoder	83	MDME502G1C	MDME 5.0 kW Incremental encode	85
MDME302GCGM	MDME 3.0 kW Incremental encoder	167	MDME502G1D	MDME 5.0 kW Incremental encoder	85
MDME302GCH	MDME 3.0 kW Incremental encoder	83	MDME502G1G	MDME 5.0 kW Incremental encoder	85
MDME302GCHM	MDME 3.0 kW Incremental encoder	167	MDME502G1H	MDME 5.0 kW Incremental encoder	85
MDME302S1C	MDME 3.0 kW Absolute encoder	83	MDME502GCC	MDME 5.0 kW Incremental encoder	85
MDME302S1D	MDME 3.0 kW Absolute encoder	83	MDME502GCCM	MDME 5.0 kW Incremental encoder	169
MDME302S1G	MDME 3.0 kW Absolute encoder	83	MDME502GCD	MDME 5.0 kW Incremental encoder	85
MDME302S1H	MDME 3.0 kW Absolute encoder	83	MDME502GCDM	MDME 5.0 kW Incremental encoder	169
MDME302SCC	MDME 3.0 kW Absolute encoder	83	MDME502GCG	MDME 5.0 kW Incremental encoder	85
MDME302SCCM	MDME 3.0 kW Absolute encoder	167	MDME502GCGM	MDME 5.0 kW Incremental encoder	169
MDME302SCD	MDME 3.0 kW Absolute encoder	83	MDME502GCH	MDME 5.0 kW Incremental encoder	85
MDME302SCDM	MDME 3.0 kW Absolute encoder	167	MDME502GCHM	MDME 5.0 kW Incremental encoder	169
MDME302SCG	MDME 3.0 kW Absolute encoder	83	MDME502S1C	MDME 5.0 kW Absolute encoder	85
MDME302SCGM	MDME 3.0 kW Absolute encoder	167	MDME502S1D	MDME 5.0 kW Absolute encoder	85
MDME302SCH	MDME 3.0 kW Absolute encoder	83	MDME502S1G	MDME 5.0 kW Absolute encoder	85
MDME302SCHM	MDME 3.0 kW Absolute encoder	167	MDME502S1H	MDME 5.0 kW Absolute encoder	85
MDME304G1C	MDME 3.0 kW Incremental encoder	116	MDME502SCC	MDME 5.0 kW Absolute encoder	85
MDME304G1D	MDME 3.0 kW Incremental encoder	116	MDME502SCCM	MDME 5.0 kW Absolute encoder	169
MDME304G1G	MDME 3.0 kW Incremental encoder	116	MDME502SCD	MDME 5.0 kW Absolute encoder	85
MDME304G1H	MDME 3.0 kW Incremental encoder	116	MDME502SCDM	MDME 5.0 kW Absolute encoder	169
MDME304GCC	MDME 3.0 kW Incremental encoder	116	MDME502SCG	MDME 5.0 kW Absolute encoder	85
MDME304GCD	MDME 3.0 kW Incremental encoder	116	MDME502SCGM	MDME 5.0 kW Absolute encoder	169
MDME304GCG	MDME 3.0 kW Incremental encoder	116	MDME502SCH	MDME 5.0 kW Absolute encoder	85
MDME304GCH	MDME 3.0 kW Incremental encoder	116	MDME502SCHM	MDME 5.0 kW Absolute encoder	169
MDME304S1C	MDME 3.0 kW Absolute encoder	116	MDME504G1C	MDME 5.0 kW Incremental encode	118
MDME304S1D	MDME 3.0 kW Absolute encoder	116	MDME504G1D	MDME 5.0 kW Incremental encoder	118
MDME304S1G	MDME 3.0 kW Absolute encoder	116	MDME504G1G	MDME 5.0 kW Incremental encoder	118
MDME304S1H	MDME 3.0 kW Absolute encoder	116	MDME504G1H	MDME 5.0 kW Incremental encoder	118
MDME304SCC	MDME 3.0 kW Absolute encoder	116	MDME504GCC	MDME 5.0 kW Incremental encoder	118
MDME304SCD	MDME 3.0 kW Absolute encoder	116	MDME504GCD	MDME 5.0 kW Incremental encoder	118

(Middle inertia)		
Part No.	Title	Page
MDME504GCG	MDME 5.0 kW Incremental encoder	118
MDME504GCH	MDME 5.0 kW Incremental encoder	118
MDME504S1C	MDME 5.0 kW Absolute encoder	118
MDME504S1D	MDME 5.0 kW Absolute encoder	118
MDME504S1G	MDME 5.0 kW Absolute encoder	118
MDME504S1H	MDME 5.0 kW Absolute encoder	118
MDME504SCC	MDME 5.0 kW Absolute encoder	118
MDME504SCD	MDME 5.0 kW Absolute encoder	118
MDME504SCG	MDME 5.0 kW Absolute encoder	118
MDME504SCH	MDME 5.0 kW Absolute encoder	118
MDME752G1C	MDME 7.5 kW Incremental encoder	86
MDME752G1D	MDME 7.5 kW Incremental encoder	86
MDME752G1G	MDME 7.5 kW Incremental encoder	86
MDME752G1H	MDME 7.5 kW Incremental encoder	86
MDME752S1C	MDME 7.5 kW Absolute encoder	86
MDME752S1D	MDME 7.5 kW Absolute encoder	86
MDME752S1G	MDME 7.5 kW Absolute encoder	86
MDME752S1H	MDME 7.5 kW Absolute encoder	86
MDME754G1C	MDME 7.5 kW Incremental encoder	119
MDME754G1D	MDME 7.5 kW Incremental encoder	119
MDME754G1G	MDME 7.5 kW Incremental encoder	119
MDME754G1H	MDME 7.5 kW Incremental encoder	119
MDME754S1C	MDME 7.5 kW Absolute encoder	119
MDME754S1D	MDME 7.5 kW Absolute encoder	119
MDME754S1G	MDME 7.5 kW Absolute encoder	119
MDME754S1H	MDME 7.5 kW Absolute encoder	119
MDMEC12G1C	MDME 11.0 kW Incremental encoder	87
MDMEC12G1D	MDME 11.0 kW Incremental encoder	87
MDMEC12G1G	MDME 11.0 kW Incremental encoder	87
MDMEC12G1H	MDME 11.0 kW Incremental encoder	87
MDMEC12S1C	MDME 11.0 kW Absolute encoder	87
MDMEC12S1D	MDME 11.0 kW Absolute encoder	87
MDMEC12S1G	MDME 11.0 kW Absolute encoder	87
MDMEC12S1H	MDME 11.0 kW Absolute encoder	87
MDMEC14G1C	MDME 11.0 kW Incremental encoder	120
MDMEC14G1D	MDME 11.0 kW Incremental encoder	120
MDMEC14G1G	MDME 11.0 kW Incremental encoder	120
MDMEC14G1H	MDME 11.0 kW Incremental encoder	120
MDMEC14S1C	MDME 11.0 kW Absolute encoder	120
MDMEC14S1D	MDME 11.0 kW Absolute encoder	120
MDMEC14S19	MDME 11.0 kW Absolute encoder	120
MDMEC14S1H	MDME 11.0 kW Absolute encoder	120
MDMEC52G1C	MDME 15.0 kW Incremental encoder	88
MDMEC52G1D	MDME 15.0 kW Incremental encoder	88
MDMEC52G1G	MDME 15.0 kW Incremental encoder	88
MDMEC52G1H	MDME 15.0 kW Incremental encoder	88
MDMEC52S1C	MDME 15.0 kW Absolute encoder	88
MDMEC52S1D	MDME 15.0 kW Absolute encoder	88
MDMEC52S1G	MDME 15.0 kW Absolute encoder	88
MDMEC52S1H	MDME 15.0 kW Absolute encoder	88
MDMEC54G1C	MDME 15.0 kW Incremental encoder	121
MDMEC54G1D	MDME 15.0 kW Incremental encoder	121
MDMEC54G1G	MDME 15.0 kW Incremental encoder	21
MDMEC54G1H	MDME 15.0 kW Incremental encoder	121
MDMEC54S1C	MDME 15.0 kW Absolute encoder	121
MDMEC54S1D	MDME 15.0 kW Absolute encoder	121
MDMEC54S1G	MDME 15.0 kW Absolute encoder	121
MDMEC54S1H	MDME 15.0 kW Absolute encoder	121
MEDHT		
Part No.	Title	Page
MEDHT4430	A5 series Driver: E-frame	29,45
MEDHT4430E	A5E series Driver: E-frame	31,45
MEDHT7364	A5 series Driver: E-frame	29,44
MEDHT7364E	A5E series Driver: E-frame	31,44
MEDKT		
Part No.	Title	Page
MEDKT4430	A5II series Driver: E-frame	29,45
MEDKT4430E	A5IE series Driver: E-frame	31,45
MEDKT7364	A5II series Driver: E-frame	29,44
MEDKT7364E	ASIIE series Driver: E-frame	31,44

MFDHT		
Part No.	Title	e
MFDHT5440	A5 series Driver: F-frame	29,45
MFDHT5440E	A5E series Driver: F-frrame	45
MFDHTA390	A5 series Driver: F-frame	29,45
MFDHTA390E	A5E series Driver: F-frame	31,45
MFDHTA464	A5 series Driver: F-frame	45
MFDHTA464E	A5E series Driver: --frame	31,45
MFDHTB3A2	A5 series Driver: F-frame	
MFDHTB3AZE	A5E series Driver: --frame	45
MFDKT		
Part No.	Title	Page
MFDKT5440	A5II series Driver: F-frrame	29,45
MFDKT5440E	A5IIE series Driver: F-frame	31,45
MFDKTA390	A5II series Driver: F-frame	45
MFDKTA390E	A5IIE series Driver: F-frame	
MFDKTA464	A5II series Driver: F-frrame	45
MFDKTA464E	A5IIE series Driver: F-frame	45
MFDKTB3A2	A5II series Driver: F-frrame	29,45
MFDKTB3A2E	A5IIE series Driver: F-frame	31,45
MFECA		
Part No.	Title	Page
MFECA0030EAD	Encoder Cable (without Battery Box)	188
MFECAOO30EAE	Encoder Cable (with Battery Box)	188
MFECAOO30EAM	Encoder Cable (without Battery Box)	188,238
MFECA0030ESD	Encoder Cable (without Battery Box)	189
MFECAOO30ESE	Encoder Cable (with Battery Box)	190
MFECAOO30ETD	Encoder Cable (without Battery Box)	190
MFECAOO30ETE	Encoder Cable (with Battery Box)	190
MFECAOO30MJD	Encoder Cable (without Battery Box)	189
MFECA0030MJE	Encoder Cable (with Battery Box)	189
MFECAOO3OMKD	Encoder Cable (without Battery Box)	189
MFECAOO3OMKE	Encoder Cable (with Battery Box)	189
MFECAOO3OTJD	Encoder Cable (without Battery Box)	189
MFECAOO3OTJE	Encoder Cable (with Battery Box)	189
MFECA0030TKD	Encoder Cable (without Battery Box)	189
MFECAOO3OTKE	Encoder Cable (with Battery Box)	189
MFECA0050EAD	Encoder Cable (without Battery Box)	188
MFECAO050EAE	Encoder Cable (with Battery Box)	188
MFECA0050EAM	Encoder Cable (without Battery Box)	88,238
MFECA0050ESD	Encoder Cable (without Battery Box)	189
MFECAO050ESE	Encoder Cable (with Battery Box)	190
MFECA0050ETD	Encoder Cable (without Battery Box)	190
MFECA0050ETE	Encoder Cable (with Battery Box)	190
MFECA0050MJD	Encoder Cable (without Battery Box)	89
MFECA0050MJE	Encoder Cable (with Battery Box)	189
MFECA0050MKD	Encoder Cable (without Battery Box)	
MFECA0050MKE	Encoder Cable (with Battery Box)	189
MFECA0050TJD	Encoder Cable (without Battery Box)	189
MFECA0050TJE	Encoder Cable (with Battery Box)	
MFECA0050TKD	Encoder Cable (without Battery Box)	189
MFECA0050TKE	Encoder Cable (with Battery Box)	89
MFECA0100EAD	Encoder Cable (without Battery Box)	188
MFECAOO100EAE	Encoder Cable (with Battery Box)	188
MFECA0100EAM	Encoder Cable (without Battery Box)	180,238
MFECA0000ESD	Encoder Cable (without Battery Box)	189
MFECA0000ESE	Encoder Cable (with Battery Box)	190
MFECA0100ETD	Encoder Cable (without Battery Box)	190
MFECA0100ETE	Encoder Cable (with Battery Box)	190
MFECA0000MJD	Encoder Cable (without Battery Box)	18
MFECA00100MJE	Encoder Cable (with Battery Box)	189
MFECA0100MKD	Encoder Cable (without Battery Box)	189
MFECA0100MKE	Encoder Cable (with Battery Box)	189
MFECA0000TJD	Encoder Cable (without Battery Box)	189
MFECA0000TJE	Encoder Cable (with Battery Box)	189
MFECA0100TKD	Encoder Cable (without Battery Box)	189
MFECA0000TKE	Encoder Cable (with Battery Box)	189
MFECAO200EAD	Encoder Cable (without Battery Box)	188
MFECAO200EAE	Encoder Cable (with Battery Box)	188
MFECAO200EAM	Encoder Cable (without Battery Box)	88,238
MFECAO200ESD	Encoder Cable (without Battery Box)	189
MFECAO200ESE	Encoder Cable (with Battery Box)	90

MFME (Middle inertia)		
Part No.	Title	ge
ME452S1C	FFME 4.5 kW Absolute encod	91
MFME452S1D	MFME 4.5 kW Absolute encoder	91
MFME452S1G	MFME 4.5 kW Absolute encoder	91
MFME452S1H	MFME 4.5 kW Absolute encoder	91
MFME454G1C	MFME 4.5 KW Incremental encoder	124
MFME454G1D	MFME 4.5 KW Incremental encoder	124
FME454G1G	MFME 4.5 KW Incremental encoder	124
MFME454G1H	MFME 4.5 KW Incremental encoder	124
MFME454S1C	MFME 4.5 kW Absolute encoder	124
MFME454S1D	MFME 4.5 kW Absolute encoder	124
MFME454S1G	MFME 4.5 kW Absolute encoder	124
MFME454S1H	MFME 4.5 kW Absolute encoder	124

MGDPT		
Part No.	Title	Page
MGDHTB4A2	A5 series Driver: G-rrame	29,46
MGDHTC3B4	A5 series Driver: G-frame	29,46

MGDKT		
	Part No.	Title
MGDKTBAA2	A5I series Drive: G-rtame	Page
MGDKTC3B4	A5II series Driver: G-riame	29,46

\quad Title				
MGME (Midddle inertia)				
Part				

ME (Middle inertia)		
Part No.	Title	Page
MGME304SCH	MGME 3.0 kW Absolute encoder	127
MGME452G1C	MGME 4.5 kW Incremental encoder	95
MGME452G1D	MGME 4.5 kW Incremental encoder	95
MGME452G1G	MGME 4.5 kW Incremental encode	95
MGME452G1H	MGME 4.5 kW Incremental encoder	
MGME452S1C	MGME 4.5 kW Absolute encoder	95
MGME452S1D	MGME 4.5 kW Absolute encoder	95
MGME452S1G	MGME 4.5 kW Absolute encoder	
MGME452S1H	MGME 4.5 kW Absolute encoder	95
MGME454G1C	MGME 4.5 kW Incremental encoder	128
MGME454G1D	MGME 4.5 kW Incremental encoder	128
MGME454G1G	MGME 4.5 kW Incremental encoder	
MGME454G1H	MGME 4.5 kW Incremental encoder	128
MGME454S1C	MGME 4.5 kW Absolute encoder	
MGME454S1D	MGME 4.5 kW Absolute encoder	128
MGME454S1G	MGME 4.5 kW Absolute encoder	128
MGME454S1H	MGME 4.5 kW Absolute encoder	
MGME602G1C	MGME 6.0 kW Incremental encode	96
MGME602G1D	MGME 6.0 kW Incremental encoder	
MGME602G1G	MGME 6.0 kW Incremental encoder	
MGME602G1H	MGME 6.0 kWW Incremental encoder	96
MGME602S1C	MGME 6.0 kW Absolute encoder	96
MGME602S1D	MGME 6.0 kW Absolute encoder	96
MGME602S1G	MGME 6.0 kW Absolute encoder	
MGME602S1H	MGME 6.0 kW Absolute encoder	
MGME604G1C	MGME 6.0 kW Incremental encoder	
MGME604G1D	MGME 6.0 kW Incremental encoder	129
MGME604G1G	MGME 6.0 kW Incremental encoder	129
MGME604G1H	MGME 6.0 kW Incremental encoder	
MGME604S1C	MGME 6.0 kW Absolute encoder	129
MGME604S1D	MGME 6.0 kW Absolute encoder	
MGME604S1G	MGME 6.0 kW Absolute encoder	129
MGME604S1H	MGME 6.0 kW Absolute encoder	

MHMD (High inertia)	
Part No.	Title

Part No.
MHMDO22G1C
MHMDO22G1D
:---
MHMDO22G1P
MHMDO22G10
:---
MHMDO22G1S

 \begin{tabular}{l}
MHMDO22G1U

\hline MHMDO22G1V

MHMDO22G1V

\hline MHMDO22STA

 MHMDO22S1B

\hline MHMDO22SSIC

\hline MHMDO2SS1D

\hline

MHMDO22SID

\hline MHDO22SIN

\hline

 MHMDDO22S1P

\hline MHMDO22S1Q

\hline MHMDO22S1R

\hline

\hline MHMDO22S1R

\hline MHMDO22S1S

\hline

\hline MHMDO22STS

\hline MHMDO2SS1T

\hline

MHMDO22SIU

\hline MHMDO22S1V

MHMDD22STV

\hline MHMDO41G1A

\hline

MHMDD4G1G1A

\hline MHMD041G1B

MHMDO4G1G1B

\hline MHMDO41G1C

 MHMDD41G1D

\hline MHMDO41G1N

\hline MHMDO41G1P

\hline

 MHMD041G1P MHMDO41G1R MHMD041G1S

MHMD041GTT

\hline MHMD041G1U

MHMD041G1U

\hline MHMD041G1V
\end{tabular}

\qquad | MHMDO41S1A |
| :--- |
| MHMDO4IS1B | | MHMD041S1C |
| :--- |
| MHMD041S1D | | MHMDO4SSDD |
| :--- |
| MHMD041S1N | $\frac{\text { MHMDO41SS1N }}{\text { MHMDO4IS1P }}$ | MHMDO4STP |
| :--- |
| MHMDO41STQ | | MHMDO4STR |
| :--- |
| MHDDO41S1R | MHMDO41SIS MHMDD41SSTT

MHMDO41STIU MHMD041S1V MHMDO42G1A MHMDO42G1B \begin{tabular}{l}
MHMD042G1C

\hline MHMDO42G1D

\hline

MHMD042G1D

\hline MHMDOA2G1N

 MHMDD42G1N

MHMDO42G1Q

\hline MHMD022G1R

MHMD042G1R

\hline MHMD042G1S

MHMDO42G1S

\hline MHMDO42G1T

\hline

MHMDO42G1T

\hline MHMDO42G1U

\hline MHMDO42G1U

\hline MHMDO42G1V

\hline MHMDO2SS1A

\hline

MHMDO42S1A

\hline MHMDO2SS1B

MHMD042S1B

\hline MHMDO42S1C

 MHMDO42S1D MHMDO42S1N

MHMDO42S1P

\hline MHMD042S1Q

MHMDO42S1Q

\hline MHMDO42STR

MHMDD42S1R

\hline MHMDO42S1S

\hline

 MHMO42SIS

MHMDO42STI

\hline MHMDO42STU

\hline MHMDO2STV

\hline

\hline MHMDD42STV

\hline MHMDO82G1A
\end{tabular} MHMDD822G1A

MHMD 200 W I ncrerementantal encoder MHMD 200 W Incremental encooder MHMD 200 W Absolute encoder MHMD 200 W Absolute encode MHMD 200 W Absolute encode HMD 200 W Absolute encoder HMD 200 W Absolute encoder MHMD 200 W Absolute encode HMD 200 W Absolute encode HMD 200 W Absolute encode MHMD 200 W Absolute encode MHMD 400 W Incremental encoder MHMD 400 W Incremental encooder
MHMD 400 W Incremental encoder MHMD 400 W Absolute encode MHMD 400 W Absolute encode MHMD 400 W Absolute encode HMD 400 W Absolute encoode MHMD 400 W Absolute encode
MHMD 400 W Absolute encode MHMD 400 W Absolute encode HMMD 400 W Absolute encode MHMD 400 W Absolute encoder MHMD 400 W Incremental encoder
MHMD 400 W Inemental encoder MHMD 400 W Incrementale encocoder
MHMD 400 W Incremental encoder MHMD 400 W Incremental encoder MHMD 400 W Incremental encoder MHMD 400 W Incremental encodder
MHMD 400 W Incremental encoder HMMD 400 W Incremental encoder MHMD 400 W Absolute encoder MHMD 400 W Absolute encoder
MHMD 400 W Absolute encoder MHMD 400 W Absolute encoder MHMD 400 W Absolute encode HHMD 400 W Absolute encode HMD 400 W Absolute encoder MMD 400 W Absolute encoode MHMD 400 W Absolute encoder HMD 400 W Absolute encode HMD 750 W Incremental encood

MHMD with Gear Reducer (High ineritia)
Part No.
Title

MHMDD021G33N $\frac{\text { MHMD021G34N }}{\text { MHMD021G41N }}$ | MHMD021G42N |
| :--- |
| MHMDO21G43N | MHMD021G44N

MHMDO21S31N MHMDO21S32N
MHMDO21S33N MHMD021534N MHMDO21S42N
MHMD221S43N
\qquad MHMDO22G31N MHMDDO22G33N MHMDO22G34N
MHMDO22G41N MHMDO22G43N MHMD022G44N
MHMDO22S31N MHMD022S32N MHMDDO22S34N
MHMDO22S41N MHMDO22S41N
MHMDO22S42N MHMDO22S43N
MHMDO2S44N MHMDO41G31N MHMDDO41G33N
MHMD041G34N MHMD041G41N MHMD041G42N

MHMDO41G43N | MHMD041G44N |
| :--- |
| MHMD041531N | MHMD041S31N MHMD041S33N

MHMD041S34N MHMD041S34N MHMD041S42N
MHMD041S43N

| MHMDO21G33 | MHMD with reduction gear 200 W Incremental encoder 141,14 |
| :--- | :--- | :--- |
| MHMDO21G2 | |
| 1 | |

 MHMD with reduction gear 200 W Incremental encoder 141,149
MHMD with reduction gear 200 W Incemental encoder 141,149 MHMD With reducultion gear gear 200 W W Incremenental encoder encor 141,149 MHMD with reduction gear 200 W Incremental encoder
MHMD with reduction gear 200 W Incemental encoder MHMD with reducution geaar 200 W W Absomulutal encododer HMD with reduction gear 200 W Absolute encoder HMDD with reductucion gear 2000 W Absolute encoder HMD with reduction gear 200 W Absolute encoded HMD with reduction gear 200 W Absolutue encoder HMD with reduction gear 200 W Absolute encoder MHMD with reduction gear 200 W Incremental encoder MHMD with reduction gear 200 W Incrementalal encoder MHMD with reduction gear 200 W Incremental encoder 1411149 MHMD with reduction gear 200 W Incremental encoder 141,149 MHMD with reduction gear 200 W I ncrementala encoder MHMD with reducciocion geaer 200 W Incremental encoder MHMD with reduction gear 200 W Absolute encoder MHMD with reduction gear 200 W Absolute encoder MHMD with reduction gear 200 W Absolute encoder MHMD with reacuction gear 200 W Absolute encocoder HMD with reduction gear 200 W Absolute encoder MHMD with reduction gear 400 W Incremental encooder WHMD with reduction gear 400 W Incremental encoder 141,149 MHMD with reduction gear 400 W Incremental encoder 141,149 MHMD with reduction gear gear 400 W W Incremenental encoder encr 141,149 HMD with reduction gear 400 W Incremental encoder 141,149 MHMD with reduccioion geaar 400 W Incremental encoderer 141,149 MHMD with reduction gear 400 W Absolute encoder $\quad 141,149$ HMDD with reductuction gear 400 W Absolute encoder MHMD with reaccicion gear 400 W Absolute encoder MHMD with reductucion geaer 400 W Absolute encoder HD with reduction gear 400 W Absolute e encoded

	tia)	
Part No.	Title	
HMD041S44N	MHMD with reduction gear 400 W Absolut e encoder	
MHMD042G31N	MHMD with reduction gear 400 W Incremental encoder	
MHMD042G32N	MHMD with reduction gear 400 W I criemental en	
MHMD042G33N	MHMD with reduction gear 400 W Incremental encoder	
MHMD042G34N	MHMD with reduction gear 400 W Incremental encoder	
MD042G	MHMD with reduction gear 400 W Incremental enco	
MHMD042G42N	MHMD with reaucion gear 400 W	
HMD042G43N	MHMD with reduction gear 400 W Incremental enco	
G44N	MHMD with reduction gear 400 W Incremental encoder	
MHMD042S31N	MHMD with reduction gear 400 W Absolute encoder	
D042	MHMD with reduction gear 400 W Absolute encoder	
MHMD042S33N	MHMD with reduction gear 400 W Absolute encoder	
MD042S	MHMD with reduction gear 400 W Absolute encoder	
MHMD042S41N	MD with reduction gear 400 W Absolut e encoder	
MMD042S42	MHMD with reduction gear 400 W Absolute encoder	
D04	MHMD with reduction gear 400 W Absolute encoder	
MHMD042S4	MHMD with reduction gear 400 W Absolute encoder	
MHMD082G3	MHMD with reducioo gear 750 W Incremental encod	
MHMD082G32N	MHMD with reduction gear 750 W Incremental enco	
MHMD082G33N	MHMD with reduction gear 750 W Incremental enco	
MHMD082G34N	MHMD with reduction gear 750 W Incremental encood	
MHMD082G4	MHMD with reduction gear 750 W Incremental enco	
HMD08	MHMD with reduction gear 750 W Incremental enco	
MHMD082G43N	MHMD with reduction gear 750 W Incremental enc	
MHMDO	MHMD with reduction gear 750 W I cremenenal encode	
MHMD082S31N	MHMD with reducioo gear 750 W Absolute encoder	
MHMD082S3	MHMD with reduction gear 750 W Absolute encoder	
MD082	MHMD with reduction gear 750 W Absolute encoder	
MHMD082S34N	MHMD with reduction gear 750 W Absolute encoder	
MHMD082S41N	MHMD with reduction gear 750 W Absolute encoder	
MHMD082S42N	MHMD with reduction gear 750 W Absolute encoder	
MHMD082S43N	MHMD with reduction gear 750 W Absolute encoder	
MHMD082S44N	MHMD with reduction gear 750 W Absolute encoder	

MHME (High inertia)		
Part No.	Title	Page
MHME102G1C	MHME 1.0 kW Incremental encoder	97
MHME102G1D	MHME 1.0 kW Incremental encoder	
MHME102G1G	MHME 1.0 kW Incremental encode	97
MHME102G1H	MHME 1.0 kW Incremental encoder	97
MHME102GCC	MHME 1.0 kW Incremental encoder	97
MHME102GCCM	MHME 1.0 kW Incremental encoder	176
MHME102GCD	MHME 1.0 kW Incremental encoder	
MHME102GCDM	MHME 1.0 kW Incremental encode	176
MHME102GCG	MHME 1.0 kW Incremental encoder	97
MHME102GCGM	MHME 1.0 kW Incremental encoder	176
MHME102GCH	MHME 1.0 kW Incremental encode	97
MHME102GCHM	MHME 1.0 kW Incremental encoder	
MHME102S1C	MHME 1.0 kW Absolute encoder	97
MHME102S1D	MHME 1.0 kW Absolute encoder	
MHME102S1G	MHME 1.0 kW Absolute encoder	
MHME102S1H	MHME 1.0 kW Absolute encoder	
MHME102SCC	MHME 1.0 kW Absolute encoder	
MHME102SCCM	MHME 1.0 kW Absolute encoder	
MHME102SCD	MHME 1.0 kW Absolute encoder	
MHME102SCDM	MHME 1.0 kW Absolute encoder	176
MHME102SCG	MHME 1.0 kW Absolute encoder	
MHME 102 SC	MHME 1.0 kW Absolute enc	
MHME102SCH	MHME 1.0 kW Absolute encoder	
MHME102SCHM	MHME 1.0 kW Absolute encoder	
MHM	MHME 1.0 kW Incremental encod	130
MHME104G1D	MHME 1.0 kW Incremental encoder	
MHME104G1G	MHME 1.0 kW Incremental encoder	
MHME104G1H	MHME 1.0 kW Incremental encoder	130
MHME104GCC	MHME 1.0 kW Incremental encoder	130
MHME104GCD	MHME 1.0 kW Incremental encoder	130
MHME104GCG	MHME 1.0 kW Incremental encoder	
MHME104GCH	MHME 1.0 kW Incremental encoder	130
MHME104S1C	MHME 1.0 kW Absolute encoder	
MHME104S1D	MHME 1.0 kW Absolute encoder	130
MHME104S1G	MHME 1.0 kW Absolute encoder	130
MHME104S	E 1.0	

MHME (High inertia)		
Part No.	Title	Page
MHME104SCC	MHME 1.0 kW Absolute encoder	130
MHME104SCD	MHME 1.0 kW Absolute encoder	130
MHME104S	MHME 1.0 kW Absolute encoder	130
MHME104SCH	MHME 1.0 kW Absolute encoder	130
MHME152G1C	MHME 1.5 kW Incremental encoder	
MHME152G1D	MHME 1.5 kW Incremental encoder	98
MHME152G1G	MHME 1.5 kW Incremental encoder	98
MHME152G1H	MHME 1.5 kW Incremental encoder	
MHME152GCC	MHME 1.5 kW Incremental encoder	98
MHME152GCCM	MHME 1.5 kW Incremental encoder	
MHME152GCD	MHME 1.5 kW Incremental encoder	98
MHME152GCDM	MHME 1.5 kW Incremental encoder	177
MHME152GCG	MHME 1.5 kW Incremental encoder	98
MHME152GCGM	MHME 1.5 kW Incremental encoder	177
MHME152GCH	MHME 1.5 kW Incremental encoder	
MHME152GCHM	MHME 1.5 kW Incremental encoder	177
MHME152S1C	MHME 1.5 kW Absolute encoder	
MHME152S1D	MHME 1.5 KW Absolute encoder	98
MHME152S1G	MHME 1.5 kW Absolute encoder	98
MHME152S1H	MHME 1.5 kW Absolute encoder	
MHME152SCC	MHME 1.5 kW Absolute encoder	98
MHME152SCCM	MHME 1.5 kW Absolute encoder	
MHME152SCD	MHME 1.5 kW Absolute encoder	98
MHME152SCDM	MHME 1.5 kW Absolute encoder	177
MHME152SCG	MHME 1.5 kW Absolute encoder	98
MHME152SCGM	MHME 1.5 kW Absolute encoder	177
MHME152SCH	MHME 1.5 kW Absolute encoder	
MHME152SCHM	MHME 1.5 KW Absolute encoder	77
MHME154G1C	MHME 1.5 kW Incremental encoder	131
MHME154G1D	MHME 1.5 kW Incremental encoder	
MHME154G1G	MHME 1.5 kW Incremental encoder	31
MHME154G1H	MHME 1.5 kW Incremental encoder	131
MHME154GCC	MHME 1.5 kW Incremental encoder	131
MHME154GCD	MHME 1.5 kW Incremental encoder	131
MHME154GCG	MHME 1.5 kW Incremental encoder	131
MHME154GCH	MHME 1.5 kW Incremental encoder	
MHME154S1C	MHME 1.5 kW Absolute encoder	131
MHME154S1D	MHME 1.5 kW Absolute encoder	31
MHME154S1G	MHME 1.5 kW Absolute encoder	
MHME154S1H	MHME 1.5 kW Absolute encoder	131
MHME154SCC	MHME 1.5 KW Absolute encoder	131
MHME154SCD	MHME 1.5 kW Absolute encoder	
MHME154SCG	MHME 1.5 kW Absolute encoder	131
MHME154SCH	MHME 1.5 KW Absolute encoder	
MHME202G1C	MHME 2.0 kW Incremental encoder	99
MHME202G1D	MHME 2.0 kW Incremental encoder	99
MHME202G1G	MHME 2.0 kW Incremental encoder	
MHME202G1H	MHME 2.0 kW Incremental encoder	99
MHME202GCC	MHME 2.0 kW Incremental encoder	
MHME202GCCM	MHME 2.0 kW Incremental encoder	178
MHME202GCD	MHME 2.0 kW Incremental encoder	
MHME202GCDM	MHME 2.0 kW Incremental encoder	178
MHME202GCG	MHME 2.0 kW Incremental encoder	99
MHME202GCGM	MHME 2.0 kW Incremental encoder	178
MHME202GCH	MHME 2.0 kW Incremental encoder	99
MHME202GCHM	MHME 2.0 kW Incremental encoder	178
MHME202S1C	MHME 2.0 kW Absolute encoder	99
MHME202S1D	MHME 2.0 kW Absolute encoder	99
MHME202S1G	MHME 2.0 kW Absolute encoder	99
MHME202S1H	MHME 2.0 kW Absolute encoder	99
MHME202SCC	MHME 2.0 kW Absolute encoder	99
MHME202SCCM	MHME 2.0 kW Absolute encoder	178
MHME202SCD	MHME 2.0 kW Absolute encoder	99
MHME202SCDM	MHME 2.0 kW Absolute encoder	178
MHME202SCG	MHME 2.0 kW Absolute encoder	99
MHME202SCGM	MHME 2.0 kW Absolute encoder	178
MHME202SCH	MHME 2.0 kW Absolute encoder	99
MHME202SCHM	MHME 2.0 kW Absolute encoder	178
MHME204G1C	MHME 2.0 kW Incremental encoder	132
MHME204G1D	MHME 2.0 kW Incremental encoder	132
MHME204G1G	MHME 2.0 kW Incremental encoder	132
MHME204G1H	MHME 2.0 kW Incremental encoder	

ME (High inertia)		
Part No.	Title	Page
MHME754S1C	MHME 7.5 kW Absolute encoder	136
MHME754S1D	MHME 7.5 kW Absolute encoder	136
MHME754S1G	MHME 7.5 kW Absolute encoder	136
MHME754S1H	MHME 7.5 kW Absolute encoder	36

\section*{| MHMJ (High inertia) | | |
| :--- | :--- | :--- |
| Part | | |
| Title | Page | |
| MHMJo2 | | 173 |}

MHMJO22G1A	MHMJ 200 W Incremental encoder	173
MHMJ022G1B	MHMJ 200 W Incremental encoder	173
MHMJO22G1C	MHMJ 200 W Incremental encoder	173
MHMJ022G1D	MHMJ 200 W Incremental encoder	173

| MHMJO22G1D | MHMJ 200 W Incremental encoder | 173 |
| :--- | :--- | :--- | :--- |
| MHMJO22G1S | MHMJ 200 W Incremental encoder | 173 |
| MHMJJO22G1T | MHMJ 200 W Incremental encoder | 173 |

MHMJO22G1T	MHMJ 200 W Incremental encoder	3
MHMJ022G1U	MHMJ 200 W Incremental encoder	3
MHMJ022G1V	MHMJ 200 W Incremental encoder	173

MHMJO22SS1A	MHMM 200 W A Asolutut encoder	173
MHMJJ22S1B	MHM 200 W Absolute encoder	173
MHMJO22S1C	MHMJ 200 W Absolute encoder	173

| | MHMJ042G1U | MHMJ 400 W Incremental encoder |
| :--- | :--- | :--- | | MHMJJ042GSV | MHMM 400 W Incremental encoder |
| :--- | :--- |
| MHMJ042S1A | MHMJ 400 W Absolute encoder | | MHMJO42S1B | MHMJ 400 W Absolute encoder |
| :--- | :--- |
| MHMJO42S1C | MHMJ 400 W Absolute encoder | $\begin{array}{lll}\text { MHMMO2SSLD } & \text { MHMJ } 400 \mathrm{~W} \text { Absolute encoder } \\ \text { MHMJ042S1S } & \end{array}$ $\begin{array}{lll}\text { MHMJ042S1S } & \text { MHMJ } 400 \text { W Absolute encoder } \\ \text { MHMJO42STTT } & \text { MHMJ } 400 \text { W Absolute encode }\end{array}$ | MHMJO42S1U | MHMJ 400 W Absolute encoder |
| :--- | :--- |
| MHMJO42S1V Absite encoder | MHMJ 400 W Absolute encoder | | MHMJ042S1V | MHMJ 400 W Absolute encoder |
| :--- | :--- | :--- |
| MHMJO82G1A | MHMJ 750 W Incremental enco | MHMJ082G1B MHMJ 750 W Incremental encooder | MHMJ082G1C | MHMJ 750 W Incremental encoder |
| :--- | :--- | :--- |
| MHMJ082G1D | MHMJ 750 W | | MHMJO22GID | MHMJ 750 W Incremental encoder |
| :--- | :--- | :--- |
| MHMJ082G1S | MHMJ 750 W Incremental encoder | | MHMJJ82G1T | MHMJ 750 W Incremental encocoder |
| :--- | :--- |
| MHMJO82G1U | MHMJ 750 W Incremental encoder | | MHMJJO82GTV | MHMJ 750 W Incremenial encooder |
| :--- | :--- | :--- | | MHMJO82STA | MHMJ 750 W Absolute encoder |
| :--- | :--- |
| MHMJO82S1B | MHMJ 750 W Absolute | | MHMJJ822S B | MHMJ 750 W Absolute encoder |
| :--- | :--- | :--- |
| MHMJO82S1C | MHMJ 750 W Absolute encoder | MHMJ082S1D MHMJ 750 W Absolute encoder | MHMJO82S1S | MHMJ 750 W Absolute encoder |
| :--- | :--- | :--- |
| MHMJO82S1T | MHM. 750 W Asol | | MHMJJ82SIT | MHMJ 750 W Absolute encoder |
| :--- | :--- |
| MHMJO82S1U | MHMJ 750 W Absolute encoder |

MLDET		
Part No.	Title	Page
MLDET2110P	E series Driver: L-frame	223,226
MLDET2210P	E series Driver: L-frame	223,226
MLDET2310P	E series Driver: L-frame	223,2
MLDET2510P	E series Driver: L-frame	223,226

MSMD (Low inertia)		
Part No.	Title	Page
MSMD011G1A	MSMD 100 W Incremental encoder	51
MSMD011G1B	MSMD 100 W Incremental encoder	51
MSMD011G1C	MSMD 100 W Incremental encooder	51
MSMD011G1D	MSMD 100 W Incremental encoder	51
MSMD011G1N	MSMD 100 W Incremental encoder	51
MSMD011G1P	MSMD 100 W Incremental encoder	51
MSMD011G1Q	MSMD 100 W Incremental encoder	51
MSMD011G1R	MSMD 100 W Incremental encoder	51
MSMD011G1S	MSMD 100 W Incremental encoder	51
MSMD011G1T	MSMD 100 W Incremental encoder	51
MSMD011G1U	MSMD 100 W Incremental encoder	51
MSMD011G1V	MSMD 100 W Incremental encoder	51
MSMD011STA	MSMD 100 W Absolute encoder	51
MSMD011S1B	MSMD 100 W Absolute encoder	51
MSMD011STC	MSMD 100 W Absolute encoder	51
MSMD011S1D	MSMD 100 W Absolute encoder	51
MSMD011S1N	MSMD 100 W Absolute encoder	51
MSMD011STP	MSMD 100 W Absolute encoder	51
MSMD011S1Q	MSMD 100 W Absolute encoder	51
MSMD011S1R	MSMD 100 W Absolute encoder	51
MSMD011S1S	MSMD 100 W Absolute encoder	51
MSMD011STIT	MSMD 100 W Absolute encoder	51
MSMD011STU	MSMD 100 W Absolute encoder	51
MSMD011STV	MSMD 100 W Absolute encoder	51
MSMD012G1A	MSMD 100 W Incremental encooder	52
MSMD012G1B	MSMD 100 W Incremental encoder	52
MSMD012G1C	MSMD 100 W Incremental encoder	52
MSMD012G1D	MSMD 100 W Incremental encoder	52
MSMD012G1N	MSMD 100 W Incremental encoder	52
MSMD012G1P	MSMD 100 W Incremental encoder	52
MSMD012G1Q	MSMD 100 W Incremental encooder	52
MSMD012G1R	MSMD 100 W Incremental encoder	52
MSMD012G1S	MSMD 100 W Incremental encoder	52
MSMD012G1T	MSMD 100 W Incremental encoder	52
MSMD012G1U	MSMD 100 W Incremental encoder	52
MSMD012G1V	MSMD 100 W Incremental encooder	52
MSMD012S1A	MSMD 100 W Absolute encoder	52
MSMD012S1B	MSMD 100 W Absolute encoder	52
MSMD012S1C	MSMD 100 W Absolute encoder	52
MSMD012S1D	MSMD 100 W Absolute encoder	52
MSMD012SIN	MSMD 100 W Absolute encoder	52
MSMD012S1P	MSMD 100 W Absolute encoder	52
MSMD012S1Q	MSMD 100 W Absolute encoder	52
MSMD012S1R	MSMD 100 W Absolute encoder	52
MSMD012S1S	MSMD 100 W Absolute encoder	52
MSMD012STT	MSMD 100 W Absolute encoder	52
MSMD012STU	MSMD 100 W Absolute encoder	52
MSMD012S1V	MSMD 100 W Absolute encoder	52
MSMD021G1A	MSMD 200 W Incremental encoder	53
MSMD021G1B	MSMD 200 W Incremental encoder	53
MSMD021G1C	MSMD 200 W Incremental encoder	53
MSMD021G1D	MSMD 200 W Incremental encoder	53
MSMD021G1N	MSMD 200 W Incremental encoder	53
MSMD021G1P	MSMD 200 W Incremental encoder	53
MSMD021G1Q	MSMD 200 W Incremental encoder	53
MSMD021G1R	MSMD 200 W Incremental encoder	53
MSMD021G1S	MSMD 200 W Incremental encoder	53
MSMD021G1T	MSMD 200 W Incremental encoder	53
MSMD021G1U	MSMD 200 W Incremental encoder	53
MSMD021G1V	MSMD 200 W Incremental encoder	53
MSMD021S1A	MSMD 200 W Absolute encoder	53
MSMD021S1B	MSMD 200 W Absolute encoder	53
MSMD021S1C	MSMD 200 W Absolute encoder	53
MSMD021S1D	MSMD 200 W Absolute encoder	53
MSMD021S1N	MSMD 200 W Absolute encoder	53
MSMD021S1P	MSMD 200 W Absolute encoder	53
MSMD021S1Q	MSMD 200 W Absolute encoder	53
MSMD021S1R	MSMD 200 W Absolute encoder	53
MSMD021S1S	MSMD 200 W Absolute encoder	53
MSMD021S1T	MSMD 200 W Absolute encoder	53
MSMD021S1U	MSMD 200 W Absolute encoder	53
MSMD021S1V	MSMD 200 W Absolute encoder	53

MSMD (Low inertia)		
Part No.	Title	Page
MSMD022G1A	MSMD 200 W Incremental encoder	54
MSMD022G1B	MSMD 200 W Incremental encoder	54
MSMD022G1C	MSMD 200 W Incremental encoder	54
MSMD022G1D	MSMD 200 W Incremental encoder	54
MSMD022G1N	MSMD 200 W Incremental encoder	54
MSMD022G1P	MSMD 200 W Incremental encoder	54
MSMD022G1Q	MSMD 200 W Incremental encoder	54
MSMD022G1R	MSMD 200 W Incremental encoder	54
MSMDO22G1S	MSMD 200 W Incremental encoder	54
MSMD022G1T	MSMD 200 W Incremental encoder	54
MSMD022G1U	MSMD 200 W Incremental encoder	54
MSMD022G1V	MSMD 200 W Incremental encoder	54
MSMD022S1A	MSMD 200 W Absolute encoder	54
MSMD022S1B	MSMD 200 W Absolute encoder	54
MSMD022S1C	MSMD 200 W Absolute encoder	54
MSMD022S1D	MSMD 200 W Absolute encoder	54
MSMD022S1N	MSMD 200 W Absolute encoder	54
MSMD022S1P	MSMD 200 W Absolute encoder	54
MSMD022S1Q	MSMD 200 W Absolute encoder	54
MSMD022S1R	MSMD 200 W Absolute encoder	54
MSMD022S1S	MSMD 200 W Absolute encoder	54
MSMD022S1T	MSMD 200 W Absolute encoder	54
MSMD022S1U	MSMD 200 W Absolute encoder	54
MSMD022S1V	MSMD 200 W Absolute encoder	54
MSMD041G1A	MSMD 400 W Incremental encoder	55
MSMD041G1B	MSMD 400 W Incremental encoder	55
MSMD041G1C	MSMD 400 W Incremental encoder	55
MSMD041G1D	MSMD 400 W Incremental encoder	55
MSMD041G1N	MSMD 400 W Incremental encoder	55
MSMD041G1P	MSMD 400 W Incremental encoder	
MSMD041G1Q	MSMD 400 W Incremental encoder	55
MSMD041G1R	MSMD 400 W Incremental encoder	55
MSMD041G1S	MSMD 400 W Incremental encoder	55
MSMD041G1T	MSMD 400 W Incremental encoder	55
MSMD041G1U	MSMD 400 W Incremental encoder	
MSMD041G1V	MSMD 400 W Incremental encoder	55
MSMD041S1A	MSMD 400 W Absolute encoder	55
MSMD041S1B	MSMD 400 W Absolute encoder	55
MSMD041S1C	MSMD 400 W Absolute encoder	55
MSMD041S1D	MSMD 400 W Absolute encoder	
MSMD041S1N	MSMD 400 W Absolute encoder	55
MSMD041S1P	MSMD 400 W Absolute encoder	55
MSMD041S1Q	MSMD 400 W Absolute encoder	55
MSMD041S1R	MSMD 400 W Absolute encoder	55
MSMD041S1S	MSMD 400 W Absolute encoder	55
MSMD041S1T	MSMD 400 W Absolute encoder	55
MSMD041S1U	MSMD 400 W Absolute encoder	55
MSMD041S1V	MSMD 400 W Absolute encoder	55
MSMD042G1A	MSMD 400 W Incremental encoder	56
MSMD042G1B	MSMD 400 W Incremental encoder	56
MSMD042G1C	MSMD 400 W Incremental encoder	56
MSMD042G1D	MSMD 400 W Incremental encoder	56
MSMD042G1N	MSMD 400 W Incremental encoder	56
MSMD042G1P	MSMD 400 W Incremental encoder	56
MSMD042G1Q	MSMD 400 W Incremental encoder	56
MSMD042G1R	MSMD 400 W Incremental encoder	56
MSMD042G1S	MSMD 400 W Incremental encoder	56
MSMD042G1T	MSMD 400 W Incremental encoder	56
MSMD042G1U	MSMD 400 W Incremental encoder	56
MSMD042G1V	MSMD 400 W Incremental encoder	56
MSMD042S1A	MSMD 400 W Absolute encoder	56
MSMD042S1B	MSMD 400 W Absolute encoder	56
MSMD042S1C	MSMD 400 W Absolute encoder	56
MSMD042S1D	MSMD 400 W Absolute encoder	56
MSMD042S1N	MSMD 400 W Absolute encoder	56
MSMD042S1P	MSMD 400 W Absolute encoder	56
MSMD042S1Q	MSMD 400 W Absolute encoder	56
MSMD042S1R	MSMD 400 W Absolute encoder	56
MSMD042S1S	MSMD 400 W Absolute encoder	56
MSMD042S1T	MSMD 400 W Absolute encoder	56
MSMD042S1U	MSMD 400 W Absolute encoder	56
MSMD042S1V	MSMD 400 W Absolute encoder	56

Index
(Alphabetical Order)

MSMD (Low inertia)			MSMD with Gear Reducer (Low inertia)		
Part No.	Title	Page	Part No.	Title	Page
MD	MSMD 750 W Incremental encoder	57		MSMD with reduction gear 100 W Incremental encoder	
MSMD082G1B	MSMD 750 W Incremental encoder	57	MSMD012G43N	MSMD with reduction gear 100 W Incremental encoder	141,14
MSMD082G1C	MSMD 750 W Incremental encoder	57	MSMD012G44N	MSMD with reduction gear 100 W Incremental encoder	
MSMD082G1D	MSMD 750 W Incremental encoder	57	MSMD012S31N	MSMD with reduction gear 100 W Absolut e encoder	141,148
MSMD082G1N	MSMD 750 W Incremental encoder	57	MSMD012S32N	MSMD with reduction gear 100 W Absolute encoder	141,
MSMD082G1P	MSMD 750 W Incremental encoder	57	MSMD012S33N	MSMD with reduction gear 100 W Absolut e encoder	
D082G1	SMD 750 W Incremental enco	57	UD012	MSMD with reduction gear 100 W Absolute encoder	141,148
MSMD082G1R	MSMD 750 W Incremental encoder	57	MSMD012S41	MSMD with reduction gear 100 W Absolute encoder	
MSMD082G1S	MSMD 750 W Incremental encoder	57	MSMD012S42	MSMD with reduction gear 100 W Absolute encoder	141,148
MSMD082G1T	MSMD 750 W Incremental encoder	57	MSMD012S43N	MSMD with reduction gear 100 W Absolute encoder	141,148
MSMD082G1U	MSMD 750 W Incremental encoder	57	MSMD012S44N	MSMD with reduction gear 100 W Absolute encoder	
D082G	MD 750 W Incremental enco	57	MD021G	MSMD with reduction gear 200 W Incremental en	141,14
MSMD082S1A	MSMD 750 W Absolute encoder	57	MSMD021G32N	MSMD with reduction gear 200 W Incremental encoder	
MSMD082S1B	MSMD 750 W Absolute encoder	57	MSMD021G33N	MSMD with reduction gear 200 W Incremental encoder	141,148
MSMD082S	MSMD 750 W Absolute encoder	57	MSMD021G34N	MSMD with reduction gear 200 W Incremental encoder	141,148
MSMD082S1D	MSMD 750 W Absolute encoder	57	MSMD021G41N	MSMD with reduction gear 200 W Incremental encoder	
MSMD082S1N	MSMD 750 W Absolute encoder	57	MSMD021G42N	MSMD with reduction gear 200 W Incremental encoder	141,148
MSMD082S	MSMD 750 W Absolute enco	57	MSMD021	MSMD with reduction gear 200 W Incremental encoder	
MSMD082S1Q	MSMD 750 W Absolute encoder	57	MSMD021G4	MSMD with reduction gear 200 W Incremental encoder	141,148
MSMD082S1R	MSMD 750 W Absolute enc	57	MSMD021531N	MSMD with reduction gear 200 W Absolute encoder	
MSMD082S1S	MSMD 750 W Absolute encoder	57	MSMD021S32	MSMD with reduction gear 200 W Absolute encoder	
SMD082S1T	MSMD 750 W Absolute encoder	57	MSMD021S3	MSMD with reduction gear 200 W Absolute encoder	141,148
MSMD082S1U	MSMD 750 W Absolute enco	57	MSMD021S34N	MSMD with reduction gear 200 W Absolute encoder	
MSMD082SIV	MSMD 750 W Absolute encoder	57	MSMD021S4	MSMD with reduction gear 200 W Absolute encoder	141,148
MSMD5AZG1A	MSMD 50 W Incremental encoder	49,50	MSMD021S42	MSMD with reduction gear 200 W Absolute encoder	
MSMD5AZG1B	MSMD 50 W Incremental encoder	50	MSMD021S43N	MSMD with reduction gear 200 W Absolute encoder	
MSMDSAZG1C	MSMD 50 W Incremental encoder	49,50	MSMD021544N	MSMD with reduction gear 200 W Absolute encoder	
MSmD5AZG1D	MSMD 50 W Incremental encoder	49,50	MSMD022G31N	MSMD with reduction gear 200 W Incremental encoder	
MSMDSAZG1N	MSMD 50 W Incremental enco	49,50	MSMD022G32	MSMD with reduction gear 200 W Incremental encoder	
M	MSMD 50 W Incremental en	49,50	MSMD022G33N	MSMD with reduction gear 200 W Incremental encoder	
MSMD5AZG1Q	MSMD 50 W Incremental encoder	50	MSMD022G34N	MSMD with reduction gear 200 W Incremental encoder	
AZG1R	MSMD 50 W Incremental encoder	49,50	MSMD022G	MSMD with reduction gear 200 W Incremental encoder	
MSMD5AZG1S	MSMD 50 W Incremental encoder	50	MSMD022G42N	MSMD with reduction gear 200 W Incremental encoder	
MSMD5AZG1T	MSMD 50 W Incremental encoder	49,5	MSMD022G43N	MSMD with reduction gear 200 W Incremental encoder	
msmbsazaiu	W Incremental en	49,50	MSMD022G4	MSMD with reduction gear 200 W Incremental encoder	
MSMDSAZGiv	MSMD 50 W Incremental encoder	50	MSMDO22S31N	MSMD with reduction gear 200 W Absolute encoder	
MSMD5AZS1A	MSMD 50 W Absolute encoder	49,50	MSMD022S32	MSMD with reduction gear 200 W Absolute encoder	
MD5AZS1B	MSMD 50 W Absolute encoder	49,50	MSMD022S33	MSMD with reduction gear 200 W Absolute encoder	
MSMDSAZS1C	MSMD 50 W Absolute encoder	49,50	MSMDO22S34N	MSMD with reduction gear 200 W Absolute encoder	
MSMD5AZS1D	MSMD 50 W Absolute encoder	49,50	MSMD022S41N	MSMD with reduction gear 200 W Absolute encoder	
MSMDSAZS1N	MSMD 50 W Absolut encoder	50	MSMD022S42	MSMD with reduction gear 200 W Absolute encoder	
MSMD5AZSIP	MSMD 50 W Absolute encoder	49,50	MSMD022S43	MSMD with reduction gear 200 W Absolute encoder	
MSMD5AZS1Q	MSMD 50 W Absolute encoder	49,50	MSMD022S44N	MSMD with reduction gear 200 W Absolut e encoder	141,148
MSMDSAZS1R	MSMD 50 W Absolute encoder	50	MSMD041G31N	MSMD with reduction gear 400 W Incremental encoder	
MD	MD 50 W Absolute enco	49,50	MSMD041	MSMD with reduction gear 400 W Incremental encoder	
MSMD5AZS1T	MSMD 50 W Absolut encoder	,	MSMD041G33	MSMD with reduction gear 400 W Incremental encoder	
MSMD5AZSIU	MSMD 50 W Absolut encoder	49,50	MSMD041G34N	MSMD with reduction gear 400 W Incremental encoder	
mD5AZs	SMD 50 W Absolute encoder	9,50	MSMD041G4	MSMD with reduction gear 400 W Incremental encoder	
			MSMD041G42N	MSMD with reduction gear 400 W Incremental encoder	
MSMD with Gear Reducer (Low inertia)			MSMD041G43N	MSMD with reduction gear 400 W Incremental encoder	
Part No.	Title	Page	MSMD041G4	MSMD with reduction gear 400 W Incremental encoder	141,148
MSMD011G31N	MSMD with recuction gear 100 W Incremental encoder	141,148	MSMD041S31	MSMD with reduction gear 400 W Absolute encoder	
MSMD011G32N	MSMD with recuction gear 100 W Incremental encoder	141,148	MSMD041S32N	MSMD with reduction gear 400 W Absolute encoder	141,148
MSMD011	MSMD with reduction gear 100 W Incremental encoder	141,148	MSMD041S33N	MSMD with reduction gear 400 W Absolute encoder	
MSMD011G34N	MSMD with recuction gear 100 W Incremental encoder	141,148	MSMD041S34N	MSMD with reduction gear 400 W Absolute encoder	
MSMD011G41N	MSMD with reduction gear 100 W Incremental encoder	141,148	MSMD041S41N	MSMD with reduction gear 400 W Absolute encoder	
MSMD011G42	MSMD with reduction gear 100 W Incremental encoder	141,148	MSMD041S42N	MSMD with reduction gear 400 W Absolute encoder	41,
MSMD011G43N	MSMD with recuction gear 100 W Incremental encoder	141,148	MSMD041S43N	MSMD with reduction gear 400 W Absolute encoder	
MSMD011G44N	MSMD with reduction gear 100 W Incremental encoder	141,148	MSMD041S44N	MSMD with reduction gear 400 W Absolute encoder	141,
MSMD011531N	MSMD with reduction gear 100 W Absolute encoder	141,148	MSMD042G31N	MSMD with reduction gear 400 W Incremental encoder	
MSMD011S32N	MSMD with reduction gear 100 W Absolute encoder	141,148	MSMD042G32N	MSMD with reduction gear 400 W Incremental encoder	141,148
MSMD011S33N	MSMD with reduction gear 100 W Absolut e encoder	141,148	MSMD042G33	MSMD with reduction gear 400 W Incremental encoder	41,
MSMD011534N	MSMD with reduction gear 100 W Absolut encoder	141,148	MSMD042G34N	MSMD with reduction gear 400 W Incremental encoder	
MSMD011S41N	MSMD with reduction gear 100 W Absolute encoder	141,148	MSMD042G41N	MSMD with reduction gear 400 W Incremental encoder	141,
MSMD011S42N	MSMD with reduction gear 100 W Absolute encoder	141,148	MSMD042G42N	MSMD with reduction gear 400 W Incremental encoder	141
MSMD011S43N	MSMD with reduction gear 100 W Absolut e encoder	141,148	MSMD042G43N	MSMD with reduction gear 400 W Incremental encoder	141,148
MSMD011S44N	MSMD with reduction gear 100 W Absolute encoder	141,148	N	MSMD with reduction gear 400 W Incremental encoder	141,14
MSMD012G31N	MSMD with reduction gear 100 W Incremental encoder	141,	MSMD042S31N	MSMD with reduction gear 400 W Absolute encoder	
MSMD012G32N	MSMD with recuction gear 100 W Incremental encoder	141,148	MSMD042S32	MSMD with reduction gear 400 W Absolute encoder	141,1
MSM	MSMD with recuction gear 100 W Incremental encoder	141,148	MSMD042S33N	MSMD with reduction gear 400 W Absolute encoder	
MSMD012G34N	MSMD with reduction gear 100 W Incremental encoder	141,	MSMD042S34N	MSMD with reduction gear 400 W Absolut e encoder	141,148
MSMD012G41N	MSMD with reduction gear 100 W Incremental encoder	141,148	MSMD042S41	MSMD with reduction gear 400 W Absolute encoder	

MSMD with Gear Reducer (Low inertia)		
Part No.	Title	
MSMD042S42N	MSMD with reduction gear 400 W Absolute encocd	
MSMD042S43N	MSMD with reduction gear 400 W Absolut e encoder	
MSMD042S44N	MSMD with reduction gear 400 W Absolut e encoder	
MSMD082G31N	MSMD with reduction gear 750 W Incremental e	
MD082C	MSMD with reducion gear 750 W Incremental en	
MSMD082G33N	MSMD with reduc	
MSMD082G34	MSMD with reduction gear 750 W Incremental encoder	
MD082G41	MSMD with reduction gear 750 W Incremental enco	
MSMD082G4	MSMD with reduction gear 750 W Incremental enco	
D082G4	MSMD with reduction gear 750 W Incremental enco	
82 G	MSMD with reduction gear 750 W Incremental enco	
MSMD082S3	MSMD with reduction gear 750 W Absolut encoder	
MSMD082S32N	MSMD with reduction gear 750 W Absolut e encoder	
MSMD082S33	MSMD with reduction gear 750 W Absolut e encoder	
MSMD082S3	MSMD with reduction gear 750 W Absolut e encoder	
MSMD082S41N	MSMD with reduction gear 750 W Absolut e encoder	
MSMD082S42N	MSMD with reduction gear 750 W Absolut e encoder	
MSMD082S43N	MSMD with reduction gear 750 W Absolut e encoder	
MSMD082S44N	MSMD with reduction gear 750 W Absolute encood	

MSME (Low inertia)		
Part No.	Title	Page
MSME011G1A	MSME 100 W Incremental encoder	67
MSME011G1B	MSME 100 W Incremental encode	67
MSME011G1C	MSME 100 W Incremental encoder	67
MSME011G1D	MSME 100 W Incremental encoder	67
MSME011G1N	MSME 100 W Incremental encoder	67
MSME011G1P	MSME 100 W Incremental encoder	67
MSME011G1Q	MSME 100 W Incremental encoder	67
MSME011G1R	MSME 100 W Incremental encoder	67
MSME011G1S	MSME 100 W Incremental encoder	67
MSME011G1T	MSME 100 W Incremental encoder	67
MSMEO11G1U	MSME 100 W Incremental encoder	67
MSME011G1V	MSME 100 W Incremental encoder	67
MSME011STA	MSME 100 W Absolute encoder	67
MSME011S1B	MSME 100 W Absolute encoder	67
MSME011S1C	MSME 100 W Absolute encoder	67
MSME011S1D	MSME 100 W Absolute encoder	67
MSME011STN	MSME 100 W Absolute encoder	67
MSME011STP	MSME 100 W Absolute encoder	67
MSME011S1Q	MSME 100 W Absolute encoder	67
MSME011S1R	MSME 100 W Absolute encoder	67
MSME011S1S	MSME 100 W Absolute encoder	67
MSME011S1T	MSME 100 W Absolute encoder	67
MSME011STU	MSME 100 W Absolute encoder	67
MSME011S1V	MSME 100 W Absolute encoder	
MSME012G1A	MSME 100 W Incremental encoder	68
MSME012G1B	MSME 100 W Incremental encoder	68
MSME012G1C	MSME 100 W Incremental encoder	68
MSME012G1D	MSME 100 W Incremental encoder	68
MSME012G1N	MSME 100 W Incremental encoder	68
MSME012G1P	MSME 100 W Incremental encoder	68
MSME012G1Q	MSME 100 W Incremental encoder	68
MSME012G1R	MSME 100 W Incremental encoder	68
MSME012G1S	MSME 100 W Incremental encoder	68
MSME012G1T	MSME 100 W Incremental encoder	68
MSME012G1U	MSME 100 W Incremental encoder	68
MSME012G1V	MSME 100 W Incremental encoder	68
MSME012S1A	MSME 100 W Absolute encoder	68
MSME012S1B	MSME 100 W Absolute encoder	68
MSME012S1C	MSME 100 W Absolute encoder	68
MSME012S1D	MSME 100 W Absolute encoder	68
MSME012SIN	MSME 100 W Absolute encoder	68
MSME012S1P	MSME 100 W Absolute encoder	68
MSME012S1Q	MSME 100 W Absolute encoder	68
MSME012S1R	MSME 100 W Absolute encoder	68
MSME012S1S	MSME 100 W Absolute encoder	68
MSME012S1T	MSME 100 W Absolute encoder	68
MSME012S1U	MSME 100 W Absolute encoder	68
MSME012S1V	MSME 100 W Absolute encoder	68
MSME021G1A	MSME 200 W Incremental encoder	69
MSME021G1B	MSME 200 W Incremental encoder	

Index
(Alphabetical Order)

MSME (Low inertia)			MSME (Low inertia)		
Part No.	Title	Page	Part No.	Title	Page
MSME042G1C	MSME 400 W Incremental encoder	72	MSME102GCH	MSME 1.0 kW Incremental encod	74
MSME042G1D	MSME 400 W Incremental encoder	72	MSME102GCHM	MSME 1.0 kW Incremental encoder	158
MSME042G1N	MSME 400 W Incremental encoder	72	MSME102S1C	MSME 1.0 kW Absolute encoder	74
MSME042G1P	MSME 400 W Incremental encoder	72	MSME102S1D	MSME 1.0 kW Absolute encoder	74
MSME042G1Q	MSME 400 W Incremental encoder	72	MSME102S1G	MSME 1.0 kW Absolute encoder	74
MSME042G1R	MSME 400 W Incremental encoder	72	MSME102S1H	MSME 1.0 kW Absolute encoder	74
MSME042G1S	MSME 400 W Incremental encoder	72	MSME102SCC	MSME 1.0 kW Absolute encoder	74
MSME042G1T	MSME 400 W Incremental encoder	72	MSME102SCCM	MSME 1.0 kW Absolute encoder	158
MSME042G1U	MSME 400 W Incremental encoder	72	MSME102SCD	MSME 1.0 kW Absolute encoder	74
MSME042G1V	MSME 400 W Incremental encoder	72	MSME102SCDM	MSME 1.0 kW Absolute encoder	158
MSME042S1A	MSME 400 W Absolute encoder	72	MSME102SCG	MSME 1.0 kW Absolute encoder	74
MSME042S1B	MSME 400 W Absolute encoder	72	MSME102SCGM	MSME 1.0 kW Absolute encoder	158
MSME042S1C	MSME 400 W Absolute encoder	72	MSME102SCH	MSME 1.0 kW Absolute encoder	74
MSME042S1D	MSME 400 W Absolute encoder	72	MSME102SCHM	MSME 1.0 kW Absolute encoder	158
MSME042S1N	MSME 400 W Absolute encoder	72	MSME104G1C	MSME 1.0 kW Incremental encoder	105
MSME042SIP	MSME 400 W Absolute encoder	72	MSME104G1D	MSME 1.0 kW Incremental encoder	105
MSME042S1Q	MSME 400 W Absolute encoder	72	MSME104G1G	MSME 1.0 kW Incremental encoder	105
MSME042S1R	MSME 400 W Absolute encoder	72	MSME104G1H	MSME 1.0 kW Incremental encoder	105
MSME042S1S	MSME 400 W Absolute encoder	72	MSME104GCC	MSME 1.0 kW Incremental encoder	105
MSME042S1T	MSME 400 W Absolute encoder	72	MSME104GCD	MSME 1.0 kW Incremental encoder	105
MSME042S1U	MSME 400 W Absolute encoder	72	MSME104GCG	MSME 1.0 kW Incremental encoder	105
MSME042SIV	MSME 400 W Absolute encoder	72	MSME104GCH	MSME 1.0 kW Incremental encoder	105
MSME082G1A	MSME 750 W Incremental encoder	73	MSME104S1C	MSME 1.0 kW Absolute encoder	105
MSME082G1B	MSME 750 W Incremental encoder	73	MSME104S1D	MSME 1.0 kW Absolute encoder	105
MSME082G1C	MSME 750 W Incremental encoder	73	MSME104S1G	MSME 1.0 kW Absolute encoder	105
MSME082G1D	MSME 750 W Incremental encoder	73	MSME104S1H	MSME 1.0 kW Absolute encoder	105
MSME082G1N	MSME 750 W Incremental encoder	73	MSME104SCC	MSME 1.0 kW Absolute encoder	105
MSME082G1P	MSME 750 W Incremental encoder	73	MSME104SCD	MSME 1.0 kW Absolute encoder	105
MSME082G1Q	MSME 750 W Incremental encoder	73	MSME104SCG	MSME 1.0 kW Absolute encoder	105
MSME082G1R	MSME 750 W Incremental encoder	73	MSME104SCH	MSME 1.0 kW Absolute encoder	105
MSME082G1S	MSME 750 W Incremental encoder	73	MSME152G1C	MSME 1.5 KW Incremental encoder	75
MSME082G1T	MSME 750 W Incremental encoder	73	MSME152G1D	MSME 1.5 kW Incremental encoder	75
MSME082G1U	MSME 750 W Incremental encoder	73	MSME152G1G	MSME 1.5 kW Incremental encoder	
MSME082G1V	MSME 750 W Incremental encoder	73	MSME152G1H	MSME 1.5 KW Incremental encoder	75
MSME082S1A	MSME 750 W Absolute encoder	73	MSME152GCC	MSME 1.5 kW Incremental encoder	
MSME082S1B	MSME 750 W Absolute encoder	73	MSME152GCCM	MSME 1.5 kW Incremental encoder	159
MSME082S1C	MSME 750 W Absolute encoder	73	MSME152GCD	MSME 1.5 kW Incremental encoder	
MSME082S1D	MSME 750 W Absolute encoder	73	MSME152GCDM	MSME 1.5 kW Incremental encoder	159
MSME082S1N	MSME 750 W Absolute encoder	73	MSME152GCG	MSME 1.5 KW Incremental encoder	
MSME082S1P	MSME 750 W Absolute encoder	73	MSME152GCGM	MSME 1.5 KW Incremental encoder	
MSME082S1Q	MSME 750 W Absolute encoder	73	MSME152GCH	MSME 1.5 kW Incremental encoder	75
MSME082S1R	MSME 750 W Absolute encoder	73	MSME152GCHM	MSME 1.5 KW Incremental encoder	159
MSME082S1S	MSME 750 W Absolute encoder	73	MSME152S1C	MSME 1.5 kW Absolute encoder	75
MSME082SIT	MSME 750 W Absolute encoder	73	MSME152S1D	MSME 1.5 kW Absolute encoder	
MSME082S1U	MSME 750 W Absolute encoder	73	MSME152S1G	MSME 1.5 kW Absolute encoder	
MSME082S1V	MSME 750 W Absolute encoder	73	MSME152S1H	MSME 1.5 kW Absolute encoder	75
MSME084G1C	MSME 750 W Incremental encoder	104	MSME152SCC	MSME 1.5 kW Absolute encoder	75
MSME084G1D	MSME 750 W Incremental encoder	104	MSME152SCCM	MSME 1.5 kW Absolute encoder	159
MSME084G1G	MSME 750 W Incremental encoder	104	MSME152SCD	MSME 1.5 kW Absolute encoder	75
MSME084G1H	MSME 750 W Incremental encoder	104	MSME152SCDM	MSME 1.5 kW Absolute encoder	159
MSME084GCC	MSME 750 W Incremental encoder	104	MSME152SCG	MSME 1.5 kW Absolute encoder	75
MSME084GCD	MSME 750 W Incremental encoder	104	MSME152SCGM	MSME 1.5 kW Absolute encoder	159
MSME084GCG	MSME 750 W Incremental encoder	104	MSME152SCH	MSME 1.5 kW Absolute encoder	75
MSME084GCH	MSME 750 W Incremental encoder	104	MSME152SCHM	MSME 1.5 kW Absolute encoder	159
MSME084S1C	MSME 750 W Absolute encoder	104	MSME154G1C	MSME 1.5 kW Incremental encoder	106
MSME084S1D	MSME 750 W Absolute encoder	104	MSME154G1D	MSME 1.5 kW Incremental encoder	106
MSME084S1G	MSME 750 W Absolute encoder	104	MSME154G1G	MSME 1.5 kW Incremental encoder	106
MSME084S1H	MSME 750 W Absolute encoder	104	MSME154G1H	MSME 1.5 KW Incremental encoder	106
MSME084SCC	MSME 750 W Absolute encoder	104	MSME154GCC	MSME 1.5 KW Incremental encoder	106
MSME084SCD	MSME 750 W Absolute encoder	104	MSME154GCD	MSME 1.5 KW Incremental encoder	106
MSME084SCG	MSME 750 W Absolute encoder	104	MSME154GCG	MSME 1.5 KW Incremental encoder	106
MSME084SCH	MSME 750 W Absolute encoder	104	MSME154GCH	MSME 1.5 kW Incremental encoder	106
MSME102G1C	MSME 1.0 kW Incremental encoder	74	MSME154S1C	MSME 1.5 kW Absolute encoder	106
MSME102G1D	MSME 1.0 kW Incremental encoder	74	MSME154S1D	MSME 1.5 kW Absolute encoder	106
MSME102G1G	MSME 1.0 kW Incremental encoder	74	MSME154S1G	MSME 1.5 kW Absolute encoder	106
MSME102G1H	MSME 1.0 kW Incremental encoder	74	MSME154S1H	MSME 1.5 kW Absolute encoder	106
MSME102GCC	MSME 1.0 kW Incremental encoder	74	MSME154SCC	MSME 1.5 kW Absolute encoder	106
MSME102GCCM	MSME 1.0 kW Incremental encoder	158	MSME154SCD	MSME 1.5 kW Absolute encoder	106
MSME102GCD	MSME 1.0 kW Incremental encoder	74	MSME154SCG	MSME 1.5 kW Absolute encoder	106
MSME102GCDM	MSME 1.0 kW Incremental encoder	158	MSME154SCH	MSME 1.5 kW Absolute encoder	106
MSME102GCG	MSME 1.0 kW Incremental encoder	74	MSME202G1C	MSME 2.0 kW Incremental encoder	76
MSME102GCGM	MSME 1.0 kW Incremental encoder	158	MSME202G1D	MSME 2.0 kW Incremental encoder	76

MSME (Low inertia)		
Part No.	Title	Page
MSME202G1G	MSME 2.0 kW Incremental encoder	76
MSME202G1H	MSME 2.0 kW Incremental encoder	76
MSME202GCC	MSME 2.0 kW Incremental encoder	76
MSME202GCCM	MSME 2.0 kW Incremental encoder	160
MSME202GCD	MSME 2.0 kW Incremental encoder	76
MSME202GCDM	MSME 2.0 kW Incremental encoder	160
MSME202GCG	MSME 2.0 kW Incremental encoder	76
MSME202GCGM	MSME 2.0 kW Incremental encoder	160
MSME202GCH	MSME 2.0 kW Incremental encoder	76
MSME202GCHM	MSME 2.0 kW Incremental encoder	160
MSME202S1C	MSME 2.0 kW Absolute encoder	
MSME202S1D	MSME 2.0 kW Absolute encoder	76
MSME202S1G	MSME 2.0 kW Absolute encoder	76
MSME202S1H	MSME 2.0 kW Absolute encoder	76
MSME202SCC	MSME 2.0 kW Absolute encoder	76
MSME202SCCM	MSME 2.0 kW Absolute encoder	160
MSME202SCD	MSME 2.0 kW Absolute encoder	76
MSME202SCDM	MSME 2.0 kW Absolute encoder	160
MSME202SCG	MSME 2.0 kW Absolute encoder	76
MSME202SCGM	MSME 2.0 kW Absolute encoder	160
MSME202SCH	MSME 2.0 kW Absolute encoder	76
MSME202SCHM	MSME 2.0 kW Absolute encoder	160
MSME204G1C	MSME 2.0 kW Incremental encoder	107
MSME204G1D	MSME 2.0 kW Incremental encoder	107
MSME204G1G	MSME 2.0 kW Incremental encoder	07
MSME204G1H	MSME 2.0 kW Incremental encoder	107
MSME204GCC	MSME 2.0 kW Incremental encoder	107
MSME204GCD	MSME 2.0 kW Incremental encoder	107
MSME204GCG	MSME 2.0 kW Incremental encoder	107
MSME204GCH	MSME 2.0 kW Incremental encoder	07
MSME204S1C	MSME 2.0 kW Absolute encoder	07
MSME204S1D	MSME 2.0 kW Absolute encoder	107
MSME204S1G	MSME 2.0 kW Absolute encoder	107
MSME204S1H	MSME 2.0 kW Absolute encoder	107
MSME204SCC	MSME 2.0 kW Absolute encoder	07
MSME204SCD	MSME 2.0 kW Absolute encoder	107
MSME204SCG	MSME 2.0 kW Absolute encoder	107
MSME204SCH	MSME 2.0 kW Absolute encoder	107
MSME302G1C	MSME 3.0 kW Incremental encoder	77
MSME302G1D	MSME 3.0 kW Incremental encoder	77
MSME302G1G	MSME 3.0 kW Incremental encoder	77
MSME302G1H	MSME 3.0 kW Incremental encoder	77
MSME302GCC	MSME 3.0 kW Incremental encoder	77
MSME302GCCM	MSME 3.0 kW Incremental encoder	161
MSME302GCD	MSME 3.0 kW Incremental encoder	77
MSME302GCDM	MSME 3.0 kW Incremental encoder	161
MSME302GCG	MSME 3.0 kW Incremental encoder	77
MSME302GCGM	MSME 3.0 kW Incremental encoder	161
MSME302GCH	MSME 3.0 kW Incremental encoder	77
MSME302GCHM	MSME 3.0 kW Incremental encoder	161
MSME302S1C	MSME 3.0 kW Absolute encoder	77
MSME302S1D	MSME 3.0 kW Absolute encoder	77
MSME302S1G	MSME 3.0 kW Absolute encoder	77
MSME302S1H	MSME 3.0 kW Absolute encoder	77
MSME302SCC	MSME 3.0 kW Absolute encoder	77
MSME302SCCM	MSME 3.0 kW Absolute encoder	161
MSME302SCD	MSME 3.0 kW Absolute encoder	77
MSME302SCDM	MSME 3.0 kW Absolute encoder	161
MSME302SCG	MSME 3.0 kW Absolute encoder	77
MSME302SCGM	MSME 3.0 kW Absolute encoder	161
MSME302SCH	MSME 3.0 kW Absolute encoder	77
MSME302SCHM	MSME 3.0 kW Absolute encoder	161
MSME304G1C	MSME 3.0 kW Incremental encoder	108
MSME304G1D	MSME 3.0 kW Incremental encoder	108
MSME304G1G	MSME 3.0 kW Incremental encoder	108
MSME304G1H	MSME 3.0 kW Incremental encoder	108
MSME304GCC	MSME 3.0 kW Incremental encoder	108
MSME304GCD	MSME 3.0 kW Incremental encoder	108
MSME304GCG	MSME 3.0 kW Incremental encoder	108
MSME304GCH	MSME 3.0 kW Incremental encoder	108
MSME304S1C	MSME 3.0 kW Absolute encoder	108
MSME304S1D	MSME 3.0 kW Absolute encoder	108

Index
(Alphabetical Order)

MSME (Low inertia)		
Part No.	Title	Page
MSME504G1G	MSME 5.0 kW Incremental encoder	110
MSME504G1H	MSME 5.0 kW Incremental encoder	110
MSME504GCC	MSME 5.0 kW Incremental encoder	110
MSME504GCD	MSME 5.0 kW Incremental encoder	110
MSME504GCG	MSME 5.0 kW Incremental encoder	110
MSME504GCH	MSME 5.0 kW Incremental encoder	110
MSME504S1C	MSME 5.0 kW Absolute encoder	110
MSME504S1D	MSME 5.0 kW Absolute encoder	110
MSME504S1G	MSME 5.0 kW Absolute encoder	110
MSME504S1H	MSME 5.0 kW Absolute encoder	110
MSME504SCC	MSME 5.0 kW Absolute encoder	110
MSME504SCD	MSME 5.0 kW Absolute encoder	110
MSME504SCG	MSME 5.0 kW Absolute encoder	110
MSME504SCH	MSME 5.0 kW Absolute encoder	110
MSME5AZG1A	MSME 50 W Incremental encoder	65,66
MSME5AZG1B	MSME 50 W Incremental encoder	65,66
MSME5AZG1C	MSME 50 W Incremental encoder	65,66
MSME5AZG1D	MSME 50 W Incremental encoder	65,66
MSME5AZG1N	MSME 50 W Incremental encoder	65
MSME5AZG1P	MSME 50 W Incremental encoder	65,66
MSME5AZG1Q	MSME 50 W Incremental encoder	
MSME5AZG1R	MSME 50 W Incremental encoder	65,66
MSME5AZG1S	MSME 50 W Incremental encoder	65,66
MSME5AZG1T	MSME 50 W Incremental encoder	65
msme5AzG1u	MSME 50 W Incremental encoder	65,66
MSmE5AZG1V	MSME 50 W Incremental encoder	66
MSME5AZS1A	MSME 50 W Absolute encoder	65,66
MSME5AZS1B	MSME 50 W Absolute encoder	65
MSME5AZS1C	MSME 50 W Absolute encoder	65,
MSME5AZS1D	MSME 50 W Absolute encoder	65,66
MSME5AZSIN	MSME 50 W Absolute encoder	65,66
MSME5AZS1P	MSME 50 W Absolute encoder	65,66
MSME5AZS1Q	MSME 50 W Absolute encoder	65,
MSME5AZS1R	MSME 50 W Absolute encoder	65,
MSME5AZS1S	MSME 50 W Absolute encoder	65,
MSME5AZSIT	MSME 50 W Absolute encoder	
MSME5AZSIU	MSME 50 W Absolute encoder	65,6
MSME5AZS1V	MSME 50 W Absolute encoder	65,6

			MSME041G43N	MSME with reduction gear 400 W Incremental encoder	
Part No.	Title	Page	4 N	MS	
ME011G31/	ear 100 W		MSME041S31N	with reduction	
	E with reduction gear 100		MSME041S32N	with	
MSME011G33N	gear 10	141,14	MSME041533N	MSME with reaucioon gear 400 W Absolute encoder	
MSME011G34N	gear 10				
MSME011G41N	reduction gear 100		MSME041S41	MSME with reduction gear 400 W Absolute encodad	
MSME011G42N	SME with reduction gear 100 W Incremental eno		MSME041S42N	MSME with reduction gear 400 W Absolute enco	
MSMEO	TSME wift reaucion gear 100		MSME041S43N	MSME with reduction 9	
MSME011G44N	SME with reduction gear 100 W Incremental encid	41,14	MSME041 44	MSME with reduction gear 400 W Absolute encoder	
ME011531N	MSME with reduction gear 100 W Absolute encoder	141,14	MSME042G3	ISME wiff reucition gear 400	
MSME011	SME with reduction gear 100 W Absolute encoder		MSME042G3	MSME with reduction gear 400 W Increment	
MSME011S33N	reduction gear 100		MSME042G33N	MSME with reduction gear 400 W Incremental encoder	
MSME011S34N	ME with reduction gear 100 W Absolute encod		MSME042G34N	MSME with reduction gear 400 W Incremental encoder	
	with reduction				
MSME011S42N	reduction gear 100 W Absolute en	41,14	MSME042G42N	MSME with reduction gear 400 W Incremental encoder	
	dsolu				
MSME011544N	h reduction gear 100 W Absolute enc		MSME042G44N	MSME with reduction gear 400 W Incremental encoder	
MSME012G31N	MSME with reduction gear 100 W Incremental encoder		MSME042S3	iong	
	ME with reduction gear 100 W Incremental		MSME042S32N	ion	
12 G	reduction gear 100 W Incremental	141,14	MSME042S33N	ISME with reduction gear 400 W Absolut encod	
MSME012G34N	ar 100 W Incremental	41,112	MSMEO2		
41N	SME with reduction gear 100 W Incremental en		ME0		
MSME012G42N	with reduction gear 100 W Incremental encosider		MSMEO	MSME with reduction	
	E with reduction gear 100 W Incremental e		MSME042S4	MSME with reduction	
MSME012G44N	MSME with reduction gear 100 W Incremental encoder		MSME042S4	MSME with reduction gear 400 W Absolute encoder	
MSME012S31N	ar 100		MSMEO2	MSME with reduction gear 750 W Incremental	
SME012S32N	SME with reduction gear 100 W Absolute encoder	41,14	MSME082G3		
ME01	SME with reduction gear 100 W Absolute encoder		MSME082	MSME with reduction gear 750 W Incremental encoder	
34N	with reduction gear 100 W Absolute		MSME082G34N	MSME with reduction gear 750 W Incremental encoder	
E012S41N	MSME with reduction gear 100 W Absolute encoder		ME0	MSME with reduction gear 750 W Incremental encoder	
MSME012S42N	MSME with reduction gear 100 W Absolut				
MSME012S43N	onge		MSME082G4	MSME with reduction gear 750 W	

MSME with Ge	tia)	
Part No.	Title	Pag
SME082G44N	MSME with reduction gear 750 W Incremental encoder	141,1
MSME082S31N	MSME with reduction gear 750 W Absolute encocd	
MSME082S32N	MSME with reduction gear 750 W Absolut e encoder	
MSME082S33N	MSME with reduction gear 750 W Absolute encoder	
MSME082S34N	MSME with reduction gear 750 W Absolute encocd	
MSME082S41N	MSME with reduction gear 750 W Absolut e encoder	
MSME082S42N	MSME with reduction gear 750 W Absolut e encoder	
MSME082S43N	MSME with reduction gear 750 W Absolute encod	
MSME082S44N	MSME with reduction gear 750 W Absolute encoder	

MSMJ (Low ineriia)

Part No.	Title
MSMJ022G1A	MSMJ 200 W Incremental encoder
mSmjoz2G1B	MSMJ 200 W Incremental encoder
MSMJ022G1C	MSMJ 200 W Incremental encoder
MSMJ022G1D	MSMJ 200 W Incremental encoder
MSMJ022G1S	MSMJ 200 W Incremental encoder
MSMJ022G1T	MSMJ 200 W Incremental encoder
mSmjoz2G1U	MSMJ 200 W Incremental encoder
MSMJo22GiV	MSMJ 200 W Incremental encoder
MSMJ022S1A	MSMJ 200 W Absolute encoder
MSMJ022S1B	MSMJ 200 W Absolute encoder
MSMJ022S1C	MSMJ 200 W Absolute encoder
MSMJ022S1D	MSMJ 200 W Absolute encoder
MSMJ022S1S	MSMJ 200 W Absolute encoder
MSMJ022S1T	MSMJ 200 W Absolute encoder
MSMJ022S1U	MSMJ 200 W Absolute encoder
MSMJ022SiV	MSMJ 200 W Absolute encoder
MSMJ042G1A	MSMJ 400 W Incremental encoder
MSMJ042G1B	MSMJ 400 W Incremental encoder
MSMJ042G1C	MSMJ 400 W Incremental encoder
MSMJ042G1D	MSMJ 400 W Incremental encoder
MSMJ042G1S	MSMJ 400 W Incremental encoder
MSMJ042G1T	MSMJ 400 W Incremental encoder
MSMJ042G1U	MSMJ 400 W Incremental encoder
MSMJ042GiV	MSMJ 400 W Incremental encoder
MSMJ002STA	MSMJ 400 W Absolute encoder
MSMJ042S1B	MSMJ 400 W Absolute encoder
MSMJ042S1C	MSMJ 400 W Absolute encoder
MSMJ042S1D	MSMJ 400 W Absolute encoder
MSMJ042S1S	MSMJ 400 W Absolute encoder
MSMJ042S1T	MSMJ 400 W Absolute encoder
MSMJ002S1U	MSMJ 400 W Absolute encoder
MSMJ042S1V	MSMJ 400 W Absolute encoder
MSMJ082G1A	MSMJ 750 W Incremental encoder
MSMJ082G1B	MSMJ 750 W Incremental encoder
MSMJ082G1C	MSMJ 750 W Incremental encoder
MSMJ082G1D	MSMJ 750 W Incremental encoder
MSMJ082G1S	MSMJ 750 W Incremental encoder
MSMJ082G1T	MSMJ 750 W Incremental encoder
MSMJ082G1U	MSMJ 750 W Incremental encoder
MSMJ082GiV	MSMJ 750 W Incremental encoder
MSMJ082S1A	MSMJ 750 W Absolute encoder
MSMJ082S1B	MSMJ 750 W Absolute encoder
MSMJ082S1C	MSMJ 750 W Absolute encoder
MSMJ082S1D	MSMJ 750 W Absolute encoder
MSMJ082S1S	MSMJ 750 W Absolute encoder
MSMJ082S1T	MSMJ 750 W Absolute encoder
MSMJ082S1U	MSMJ 750 W Absolute encoder
MSMJ082S1V	MSMJ 750 W Absolute encoder

MUMA (Low inertia)
Part No.

Part No.	Title
MUMAOAPPIT	

| MUMA042P1T | MUMA 400 W Incremental encoder |
| :--- | :--- | :--- |
| MUMA5AZP1S | MUMA 50 \mathbf{W} Incremental |

MUMA5AZP1T	MUMA 50 W Incremental encoder	$227,292,22$

MUMA with Gear Reducer (Low inertia)
Part No.
Title

 MUMAOOT11P341N MUMAO11P42N | MUMAO11P44N |
| :--- |
| MUMAO12P31N | MUMAO12P31N

MUMA012P32N MUMA012P34N
 MUMA012P42N MUMA012P44N MUMAOO21P32N MUMAO21P34N MUMA021P41N

MUMAO21P42N \begin{tabular}{l}
MUMA021P42N

\hline MUMAO21P44N

MUMAOO2PP4N

\hline MUMAO22P31N

\hline

 MUMAO22P32N

MUMAO22P34N

\hline MUMAO2PP41N
\end{tabular} MUMA022P41N MUMAO22P42N MUMA042P31N MUMA042P32N MUMAO42P34N

MUMAO42P41N MUMA042P4N MUMA042P44N

MUMA ith reduction gear 100 W Incremental encoder 232,235
MUM with reduction gear 100 W Incremental encoder 232,235

MUMA with reduction gear 200 W Incremental encoder
23223 MUMA with reduction gear 200 W Incremental encoder 232,233 MUMA with reduction gear 200 W Incremental encoder 233,233
MUMA with reduction gear 200 W Incremental encoder 232,235 MUMA with reduction gear 400 W Incremental e encoder 232,235 MUMA with reduction gear 400 W Incremental encoder 232,233 MUMA with reducion gear 400 W Incremental encoder 232,233 UMMA with rededuction gear gear 400 W Incremenenalal encoder 233,23 MMA with reduction gear 400 W Incremental encoder 232,235
\qquad
[Panasonic Sales Office of Motors]

Region	Company Name [Category]	City	Address		TEL
					FAX
U.S.A	Panasonic Industrial Devices Sales Company of America [Sales office]	New Jersey	Two Riverfront Plaza, 7th Floor Newark, NJ 07102-5490 U.S.A		+1-800-228-2350
					-
Brazil	Panasonic do Brazil [Sales office]	Sao Paulo	Avenida do Cafe, 277 Torre A-8 Andar Jabaquara ZIP Code: 04311-900 Sao Paulo SP Brazil		+55-11-3889-4022
					+55-11-3889-4103
Germany	Panasonic Industry Europe GmbH [Sales office] [European Headquarter]	Munich	Robert-Koch-Strasse 100, 85521 Ottobrunn, Germany		+49 89-45354-0
					+49-89-4535-41-550
			e-mail	https://eu.industrial.panasonic.com/about-us/contact-us	
			Web site	https://eu.industrial.panasonic.com/products/motors-compressors-pumps	
	Panasonic Electric Works Europe AG [Sales office] [European Headquarter]	Munich	Robert-Koch-Strasse 100, 85521 Ottobrunn, Germany		+49 (0) 89 45354-1000
					+49 (0) 89 45354-2111
			e-mail	info.peweu@eu.panasonic.com	
			Web site	https://panasonic-electric-works.com/eu/servo-drives-andmotors.htm	
	Panasonic Electric Works Europe AG[Subsidiary] [Subsidiary]	Munich	Robert-Koch-Strasse 100, 85521 Ottobrunn, Germany		+49 (0) 89 45354-1000
					+49 (0) 89 45354-2111
			-mail	info.peweu@eu.panasonic.com	
			Web site	https://panasonic-electric-works.con servomotoren.htm	e/servoantriebe-
	ghv Vertriebs-GmbH [Distributors]	Munich	Am Schammacher Feld 47 D-85567 Grafing b. Munich		+49(0)-80-92/81-89-0
					+49(0)-80-92/81-89-99
			e-mail	info@ghv.de	
			Web site	https://www.ghv.de/	
France	Panasonic Electric Works Sales Western Europe B.V. [Sales office]	Verrières- Le-Buisson	8/10, rue des Petits Ruisseaux 91370 VERRIĖRES LE BUISSON		+33(0)160135757
					+31(0)160135758
			mail	info.pewswef@eu.panasonic.com	
			Web site	https://www.panasonic-electric-works.com/fr/servosystemes-et-servomoteurs.htm	
Italy	Panasonic Electric Works Italia srl [Subsidiary]	Verona	Via del Commercio 3-5 (Z.I.Ferlina), 37012 Bussolengo (VR), Italy		+39-045-6752711
					+39-045-6700444
			e-mail	info.pewit@eu.panasonic.com	
			Web site	https://www.panasonic-electric-works.com/it/ servoazionamenti-e-motori.htm	
	Lenze Italia S.r.I. [Distributors]	Milano	Viale Tibaldi, 720136 Milano		+39-02-270-98-1
					+39-02-270-98-290
			e-mail	mai@Lenzeltalia.it	
			Web site	http://www.lenze.com/it-it	
United Kingdom	Panasonic Electric Works UK Ltd. [Sales office]	Milton Keynes	Sunrise Parkway, Linford Wood Milton Keynes, MK14 6LF United Kingdom		+44(0)1908231 555
					+44(0)1908231599
			e-mail	infouk@eu.panasonic.com	
			Web site	https://www.panasonic-electric-works.com/uk/servo-drives-and-motors.htm	
	Lenze Limited [Distributors]	Bedford	Priory Business Park, Bedford, MK44 3WH.		+44-1234-7532-0
					+44-1234-7532-20
			e-mail	uk.sales@lenze.com	
			Web site	http:/www.lenze.com/en-gb/about-lenz	lenze-in-united-kingdom
Austria	Panasonic Electric Works Austria GmbH [Sales office]	Biedermannsdorf	Josef Madersperger Strasse 2, 2362 Biedermannsdorf (Vienna), Austria		+43(0)2236-26846-7
					+43(0)2236-46133
			e-mail	info.pewat@eu.panasonic.com	
			Web site	https://www.panasonic-electric-work servomotoren.htm	com/at/servoantriebe-
Polska	Panasonic Electric Works Polska sp. z.o.o. [Sales office]	Warszawa	ul. Wołoska 9a, 02-583 Warszawa		+48(0)22338-11-33
					+48(0)22338-12-00
			e-m	info.peweu@eu.panasonic.com	
			Web site	https://www.panasonic-electric-works	com/pl/serwonapedy.htm
Nederland	Panasonic Electric Works Sales Western Europe B.V. [Sales office]	PJ Best	De Rijn 4 (Postbus 211), 5684 PJ Best, Nederland		+31(0)499372727
					+3110)499372185
			e-mail	info.pewswe@eu.panasonic.com	
			Web site	https://panasonic-electric-works.con servomoteurs.htm	e/servosystemes-et-

Region	Company Name [Category]	City	Address		TEL		
					FAX		
Czech Republic	Panasonic Electric Works Czech s.r.o. [Sales office]	Brno	Veveři 3163/111, 61600 Brno, Czech		+420(0)541217001		
					+420(0)541217101		
			e-mail	info.pewczs@eu.panasonic.com			
			Web site	https://www.panasonic-electric-works.	.com/cz/servomotory.htm		
Spain	Panasonic Electric Works Espana S.A. [Subsidiary]	Madrid	Barajas Park, San Severo 20, 28042 Madrid, Spain		+34-91-329-0937		
					+34-91-329-2976		
			e-mal	https://www.panasonic-electric-works.com/es/ servoaccionamientos-y-motores.htm			
Romania	C.I.T. Automatizari SRL [Distributors]	Bucuresti	sos. Bucuresti, nr.63, Ciorogirla, Ilfov, RO-077055, ROMANIA		$\xrightarrow{+40-21-255-0543}+40-21-255-0544$		
			e-mail	office@citautomatizari.ro			
			Web site $\mathrm{http} \mathrm{F} / / \mathrm{www} . \mathrm{citautomatizari.ro}$				
Hungary	Panasonic Electric Works Hungary [Sales office]	Budapest	Neumann J. u. 1., 1117 Budapest, Hungary		$\underline{+36(0) 19998926}$		
			e-mail info.peweuh@eu.panasonic.com	info.peweuh@eu.panasonic.com https://www.panasonic-electric-works.com/eu/servo-drives-and-motors.htm			
			Web site				
Switzerland	Panasonic Electric Works Schweiz AG [Sales office]	Rotkreuz	Grundstrasse 8, 6343 Rotkreuz, Schwitzerland		+41(0)417997054		
					+31(0)417997055		
			e-mail	info.pewch@eu.panasonic.com https://www.panasonic-electric-works.com/ch/fr/ servosystemes-et-servomoteurs.htm			
Russia	EFO Ltd. [Distributors]	St.Petersburg	15A Novolitovskaya str., office 44194100 St. Petersburg, Russia		+7-8123278654		
					+7-8123201819		
			e-mail eve@eforu				
			Web site http://www.efo.ru				
Turkey	Savior Kontrol Otomasyon [Distributors]	Istanbul	DES Sanayi Sitesi 102 Sk. B-06 Blok No: 6-8 34776 Yukarı Dudullu Ümraniye ìstanbul Turkey		+90-216-466-3683		
					+90-216-466-3685		
			e-mail info@savior.com.tr	info@savior.com.tr http://www.savior com.tr			
			Web site				
	bostek teknolou gelistirme ve ROBOT SIST.SAN.TIC.A.S [Distributors]	Izmir	10042 SOK.NO:10 A.O.S.B CIGLI-IZMIR, TURKEY		+90232 4338515		
					+90 2324338881		
				sales@bostex.com.r			
China		Hong kong	Suite 301, 3/F., Chinachem Golden Plaza, 77 Mody Road, T.S.T. East, Kowloon, Hong Kong.				
	Panasonic Hong Kong Co., Ltd. Panasonic Industrial Device Sales (HK) Division [Sales office]				+852-2367-0181		
					+852-2865-3697		
	Panasonic Industry (China) Co.,Ltd. (PICN) [Sales office]	Shanghai	Floor 7, China Insurance Building, 166 East Road LuJiaZui PuDong New District, Shanghai, 200120, China		+86-21-3855-2000		
					-		
	Panasonic Industry (China) Co.,Ltd. (PICN) [Sales office]	Shenzhen	10F, Tower D, China Resources Land Building, No. 19 Kefa Road, Nanshan District, Shenzhen, 518057, China		+86-755-22074488		
					+86-755-22074498		
India	Panasonic India Industrial Division (Head Office) [Sales office]	Delhi	12th Floor, Ambience Tower, Ambience Island, NH-8, Gurgaon, Haryana 122002		+91-124-4751300		
					+91-124-4751333		
	Panasonic India Industrial Division (Bangalore Branch) [Sales office]	Bengaluru	J.P Chambers 2nd Floor, \#276/22-1, 46th Cross, 5th Block, Jayanagar, Bengaluru, Karnataka-560041		+91-80-6576-0014		
					-		
	Lubi Electronics	Ahmedabad	Sardar Patel Ring Road, Near Karai Gam Patia, Nana Chiloda, Gandhinagar, Gujarat 382330		+91-79-3984-5300		
					+91-79-3984-5599		
			e-mail	info@lubielectronics.com			
			Web site	http://www.lubielectronics.com			
	Luna Bearings [Distributors]	Mumbai	No.59, 2nd Floor, Moiz Manzil, Bibijan Street, Mumbai, Maharashtra 400003		+91-22-4078-6110		
					+91-22-2342-7773		
			e-mail	sales@lunabearings.com			
			Web site	http://www.lunabearings.com			
	Vashi Electricals [Distributors]	Mumbai	A-6, Shree Ganesh Complex, Behind Gupta Compound, Dapode Road, Mankoli Naka, Bhiwandi, Mumbai, Maharashtra 421305		+91-25-2266-1600		
					+91-25-2266-1620		
			e-mail	buyonline@vashielectricals.com			

Region	Company Name [Category]	City	Address		TEL
					FAX
Korea	Panasonic Industrial Devices Sales Korea Co., Ltd. (PIDSKR) [Sales office]	Seoul	6F DONG-IL Tower 38, Teheran-ro 114-gil, Gangnam-gu, Seoul, 135-851, Korea		+82-2-795-9600
					+82-2-2052-1053
Taiwan	Panasonic Industrial Devices Sales Taiwan Co.,Ltd. [Sales office]	Taipei	12F, No.9, SongGao Rd., Taipei 110, Taiwan, R.O.C.		+886-2-2757-1900
					+886-2-2758-7502
Singapore Malaysia	Panasonic Industrial Devices Sales Asia [Sales office]	Singapore	No. 3 Bedok South Road Singapore 46926		+65-6390-3718
					+65-9435-8844
	Intermech Machinery Pte.Ltd. [Distributors]	Singapore	2 Woodlands Sector 1 \#03-25, Woodlands Spectrum 1 Singapore 738068		+65-6751-5088
					+65-6759-2122
			e-mail	sales@intermech.com.sg	
			Web site	http:/www.intermech.com.sg	
	Panamech (Penang) Sdn. Bhd.[Distributors]	Penang	18, Persiaran Mahsuri $1 / 2$, Sunway Tunas, Penang, 11900		+60-4-645-1635
					+60-4-645-163
			e-mail	sales.pg@panamech.com.my	
			Web site http://panamech.com.my		
	Premier Automation Center Co.,Ltd. [Distributors]	Bangkok	87, Soi Lakrabang 30, Ladkrabang, Ladkrabang, Bangkok 10520		+66-2181-2299
					+66-2181-2288
			e-mail	sales@premier-ac.co.th	
			Web site	http://www.premier-ac.co.th	
	JW Tech Co., Ltd.	Bangkok	697 Soi Senavilla Village, Nawamin RD Klongchan, Bangkapi, Bangkok 10240		+66-2733-7702
					+66-2733-7703
			e-mail	info@jwtech.co.th	
			Web site	http://www.jwtech.co.th	
	Sang Chai Meter Co., Ltd.	Bangkok	888 Phaholyothin Road, Samsennai, Phayathai, Bangkok 10120		+66-2299-3333
					+66-2299-3000
			e-mail	sales@sangchaimeter.com	
			Web site $\mathrm{https://www.sangchaimeter.com}$		
	PT. Handal Yesindo Sejahtera[Distributors]	Surabaya	J. Raya Kutisari 8A, Surabaya 60291		+62-31-843-8844
					+62-31-841-4333
			e-mail	info@handalyesindo.com	
			Web site	http://www.handalyesindo.com	
	PT.Riasarana Electrindo[Distributors]	Jakarta	J. Prof. Dr. Latumenten Grogol Permai blok D No. 8-15 Jakarta 11460		+62-21-564-9178
					+62-21-566-7405
			Web site	htp://www.risacorps.com	
Vietnam	Pavina Corporation [Distributors]	Ho Chi Minh	005 C1 Ly Thuong Kiet Blog, Vinh Vien Street, Ward 07, District 11, Ho Chi Minh		+84-8-39554457
					+84-8-39550033
			e-mail	pavina@sieuthitudong.com	
			Web site	http://sieuthitudong.com	
	$\begin{aligned} & \text { KSMC Co., Ltd. } \\ & \text { [Distributors] } \end{aligned}$	Ha Noi	A10-No 06B, HH6, Viet Hung Urban Area, Long Bien, Ha Noi		+84-4-38771700
					+84-4-38770229
			e-mail	support@ksmc.com.vn	
			Web site	http://ksmc.com.vn	
Philippines	Movaflex Designs Unlimited, Inc. [Distributors]	Manila	136 Calbayog Street, Mandaluyong City, Metro Manila 1552		+63-2-998-3881
					+63-2-633-7526
			e-mail	sales@movaflex.com	
Australia	Motion Technologies Pty. Ltd. [Distributors]	Sydney	24/22-30 Northumberland Road, Caringbah, NSW, 2229		+61-2-9524-4782
					+61-2-9525-3878
			e-mail	web_enquiry@motiontech.com.au	
			Web site	http://www.motiontech.com.au	

[^0]: Please downioad from our web site and use after install to the PC

[^1]: <Caution>

 - Applying fastening torque larger than the maximum value may result in damage to the product.
 - Do not turn on power without tightening all terminal block screws properly, otherwise, loose contacts

[^2]: (a) Encoder connector
 (b) Motor/Brake connector

[^3]: Dotted line represents the torque at 10% less supply voltage

[^4]: <Remarks>

 - For the crimping tools required for cable production, please check the manufacturer's website or contact
 the manufacturer. For manufacturer inquiries, refer to P. 213 "Peripheral Device Manufacturer List".

[^5]: <Remarks>

 - For the crimping tools required for cable production, please check the manufacturer's website or contact

[^6]: At high speeed positioning oction mode
 lamping controo or righn-tunctionality real-time auto- gaine tuning of notch filter,
 mping control or high--tunctionality real-time auto- gain tuning.

[^7]: For motor dimensions, refer to P.231, and for the diver, refer to P. 226

[^8]: Dotted line represents the torque at 10% less supply voltag

[^9]: Note
 ote
 (1) Applicable to liquid pressure. Also applicable to atmospheric pressure of meteorological data, when "bar" is used in international standard

[^10]: If weight ($\mathrm{W}[\mathrm{kg}$) is unknown, calculate it with the following formula:
 Weight $\mathrm{W}[\mathrm{kg}]=$ Density $\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right] \times$ Volume $\mathrm{V}\left[\mathrm{m}^{3}\right]$
 Density of each material
 Iron $\quad \rho=7.9 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
 Aluminum $\rho=2.8 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$

