RFbeam Microwave GmbH

data sheet

Features

Applications

Description

- 24 GHz K-band miniature transceiver
- Dual 1 patch circular polarized antenna
- Dual balanced mixer with 50 MHz bandwidth
- Excellent noise cancelling ability through I/Q technology
- Wide beam aperture 138°/132°
- 10 dBm EIRP output power
- 25×25 mm² surface, < 6 mm thickness
- Low cost design
- Direction sensitive movement detectors
- Security systems
- Simple ranging detection using FSK
- Ceiling and wall mount surveillance system
- Industrial sensors

K-LC4 is a 2 patch Doppler module with a nearly symmetrical wide beam for low cost short distance applications.

Typical applications are movement sensors for security, lighting and building automation applications. This module may be an alternative or a complementary sensor for infrared PIR or AIR systems thanks to its outstanding performance/cost ratio.

The module is extremely small and lightweight. With an IF bandwidth from DC to 50 MHz it opens many new applications.

The unique RFbeam circular polarized antenna form allows much wider acquisition fields than the traditional linear polarized patch antenna.

A powerful starterkit with signal conditioning and visualization is available from RFbeam. Find more informations on www.rfbeam.ch.

Figure 1: Blockdiagram

Block Diagram

CHARACTERISTICS

Parameter	Conditions/Notes	Symbol	Min	Тур	Max	Unit
Operating Conditions						
Supply voltage		V _{CC}	4.75	5	5.25	V
Supply current		Icc		35	65	mA
VCO input voltage		U _{vco}	-0.5		2.0	V
VCO pin resistance	Driving voltage source Note 1	R _{vco}		570		Ω
Operating temperature		Т _{ор}	-20		+85	°C
Storage temperature		T _{st}	-20		+105	°C
ransmitter						
Transmitter frequency	T _{amb} = -20 °C +85 °C	f _{TX}	24.05	24.125	24.25	GHz
Frequency drift vs temperature	$V_{CC} = 5.0$ V, -20 °C +85 °C Note 2	Δf_{TX}		-0.9		MHz/°C
Frequency tuning range		Δf_{VCO}		140		MHz
VCO sensitivity		Svco		-55		MHz/V
VCO Modulation Bandwidth	$\Delta f = 20 \text{ MHz}$	B _{vco}		3		MHz
Output power	EIRP	P _{TX}		+10		dBm
Spurious emission		P _{spur}		-30		dBm
Turn-on time	Until oscillator stable, $\Delta f_{\text{TX}} < 5\text{MHz}$	t _{on}		1		μs
Receiver						
Mixer Conversion loss	$f_{IF} = 1 \text{ kHz}, \text{ IF load} = 1 \text{ k}\Omega$	D _{mixer1}		-6		dB
	$f_{\text{IF}} = 20 \text{ MHz}, \text{ IF load} = 50 \Omega$	D _{mixer2}		-11		dB
Antenna Gain	$F_{TX} = 24.125 \text{ GHz} \text{ Note } 3$	G _{Ant}		4.8		dB
Receiver sensitivity	$f_{IF} = 500 \text{ Hz}, B = 1 \text{ kHz}, R_{IF} = 1 \text{ k}\Omega, \text{ S/N} = 6 \text{ dB}$	P _{RX1}		-93		dBm
	$f_{IF} = 1 \text{ MHz}, B = 20 \text{ MHz}, R_{IF} = 50 \Omega, S/N = 6 \text{ dB}$	P _{RX1}		-81		dBm
Overall sensitivity	$f_{IF}=500Hz,B=1kHz,R_{IF}=1k\Omega,S/N{=}6dB$	D _{system}		-103		dBc
F output						
IF resistance		R _{IF}		50		Ω
IF frequency range	-3dB Bandwidth, IF load = 50Ω	f _{IF}	0		50	MHz
IF noise power	$f_{\text{IF}} = 500 \text{ Hz}, \text{ IF load} = 50 \Omega$	P _{IFnoise1}		-134		dBm/Hz
	$f_{IF} = 1M Hz$, IF load = 50 Ω	P _{IFnoise2}		-164		dBm/Hz
IF noise voltage	$f_{IF} = 500 \text{ Hz}, \text{ IF load} = 1 \text{ k}\Omega$	U _{IFnoise1}		-147		dBV/Hz
	$f_{\text{IF}} = 500 \text{ Hz}, \text{ IF load} = 1 \text{ k}\Omega$	U _{IFnoise1}		45		nV/√Hz
IF output offset voltage	no object in range	U _{IF}	-200		200	mV
I/Q amplitude balance	$f_{IF} = 500 \text{ Hz}, \text{ U}_{IF} = 1 \text{ mVpp}$	$\Delta U_{\rm IF}$		3		dB
I/Q phase shift	$f_{IF} = 1 Hz - 20 \text{ kHz}$	φ	80	90	100	0
Supply rejection	Rejection supply pins to IF output	D _{supply}		26		dB
Antenna						
Antenna type	Right hand circular polarized	RHCP				
Horizontal -3 dB beamwidth	E-Plane	W _φ		138		0
Vertical -3 dB beamwidth	H-Plane	W _{\varphi}		132		0
Horiz. sidelobe suppression		D_{φ}		-12		dB
Vertical sidelobe suppression		Φ D _φ		-12		dB
Body						
Outline Dimensions				25 × 25 ×	6	mm ³
Weight				4.5	-	g
Connector	5 pin single row jumper			1.0		9
ESD rating						
Electrostatic discharge	Human body model class 0	V _{ESD}			250	V

Note 1 The VCO input has an internal voltage source with approx. 0.9VDC. For driving this pin it is necessary to source and sink current

Note 2 Transmit frequency stays within 24.050 to 24.250GHz over the specified temperature range

Note 3 Theoretical value, given by Design

TABLE OF CONTENTS

Product Information	1
Features	1
Applications	1
Description	1
Block Diagram	1
Characteristics	2
Antenna System Diagram	4
Pin Configuration and Functions	4
Outline Dimensions	4
Application Notes	5
Sensitivity and Maximum Range.	5
Datasheet Revision History	5

ANTENNA SYSTEM DIAGRAM

This diagram shows module sensitivity in both azimuth and elevation directions. It incorporates both transmitter and receiver antenna characteristics.

Figure 2: System diagram

PIN CONFIGURATION AND FUNCTIONS

0.64

Table 1: Pin function description

Pin No.	Name	Description
1	IF Q output	load 1 k Ω
2	VCC	5 VDC supply
3	IF I output	load 1 k Ω
4	GND	ground
5	VCO in	Open = f_{TX}

Figure 3: Pin configuration

OUTLINE DIMENSIONS

Figure 3: Mechanical data

APPLICATION NOTES

Sensitivity and Maximum Range

The values indicated here are intended to give you a 'feeling' of the attainable detection range with this module. It is not possible to define an exact RCS (radar cross section) value of real objects because reflectivity depends on many parameters. The RCS variations however influence the maximum range only by $\sqrt[4]{\sigma}$.

Maximum range for Doppler movement depends mainly on:

- Module sensitivity
 S: -103 dBc (@0.5 kHz IF Bandwidth)
- Carrier frequency
 f₀: 24.125 GHz
- Radar cross section RCS "reflectivity" of the object
 - σ^{1} : 1 m² approx. for a moving person > 50 m² for a moving car

note ¹⁾ RCS indications are very inaccurate and may vary by factors of 10 and more.

The famous "Radar Equation" may be reduced for our K-band module to the following relation:

$$r = 0.0167 \cdot 10^{\frac{-s}{40}} \cdot \sqrt[4]{\sigma}$$

Using this formula, you get an indicative detection range of: - 6 meters for a moving person. - > 15 meters for a moving car

Please note, that range values also highly depend on the performance of signal processing, environment conditions (i.e. rain, fog), housing of the module and other factors.

For simple detection purposes (security applications e.g.) without the need of speed measurements, range may be enhanced by further reducing the IF bandwidth. With 250 Hz bandwidth and a simple comparator, we get already a 15 m frontal detection range.

DATASHEET REVISION HISTORY

01/2018 – Revision A: 02/2020 – Revision B:

Initial version Added ESD information, changed spurious

RFbeam does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and RFbeam reserves the right at any time without notice to change said circuitry and specifications.