OmROn

Sysmac Catalog

One Machine Control

[^0]
System Design Guide

System Configuration
Network Configuration 2
EtherCAT Network Configuration 3
Machine Automation Controller NJ-Series
Features5
Unit Configuration 6
Power Supply Units Current Consumption 11
Dimensions 12
General Specifications. 15
Performance Specifications 16
Function Specifications 18
Version Information 24
Components and Functions 24
Automation software Sysmac Studio Features 25
System Requirements 26
Function Specifications 27
Version Information 36
Web Support Services 36
Applicable Models 37
EtherCAT Slave Terminals NX-Series Features 38
Unit Configuration. 38
Configuration Units 39
Power Supply System Configuration Diagram 40
Power Supply System and Design Concepts 40
Components and Functions 40
Dimensions/Mounting Dimensions 44
General Spesifications 47
EtherCAT Coupler Unit 48
Digital Input Unit. 52
Digital Output Unit 65
Analog Input Unit 79
Analog Output Unit 98
Temperature Input Unit 108
Incremental Encoder Input Unit 126
SSI Input Unit 133
Pulse Output Unit 137
System Unit 141
Safety Control Units NX-series
Features 150
Specifications 151
Specifications of Individual Units 152
Version Information 156
External Interface 157
Dimensions 159
AC Servomotors/Linear Motors/Drives G5-Series
System Configuration 160
AC Servo Drives with Built-in EtherCAT CommunicationsGeneral Specifications164
Performance Specifications 165
EtherCAT Communications Specifications 167
Version Information 167
Components and Functions 168
Dimensions 169
AC Servo Drives with Built-in
EtherCAT Communications Linear Motor Type
General Specifications174
Performance Specifications 175
EtherCAT Communications Specifications 176
Version Information 176
Components and Functions 176
Dimensions 177
AC Servomotors
General Specifications 178
Performance Specification n
Speed Characteristics 179
Encoder Specifications 190
Dimensions 191
Linear Motors
General Specifications 206
Characteristics/Speed - Force Characteristics 207
Dimensions 213
Combination table 219
Inverters
Multi-function Compact Inverter MX2-Series V1 type
Performance Specifications 228
Function Specifications 231
Version Information 232
Components and Functions 233
Connection Diagram 234
Dimensions 235
Related Options 237
High-function General-purpose Inverter
Performance Specifications 238
Function Specifications 240
Components and Functions 241
Connection Diagram 242
Dimensions 243
Communication Unit 246
Related Options 246
Vision/Displacement Sensor
Vision System FH Series
System configuration 247
Specifications 248
Cameras / Cables Connection Table 253
EtherCAT Communications Specifications 253
Version Information 253
Components and Functions 254
Processing Items 255
Dimensions 256
Optical Chart 260
Smart Camera FQ-M-Series
System configuration 265
Specifications 266
EtherCAT Communications Specifications 268
Version Information 268
Components and Functions 269
Dimensions 270
Optical Chart 272
Displacement Sensor ZW Series
System configuration 273
Specifications 274
Characteristic data 276
Dimensions 278
Digital Fiber/Laser Photoelectric/Proximity SensorFiber/Laser Photoelectric Sensors N-SmartSystem Configuration.279
Sensor Communications Unit E3NW 280
Smart Fiber Amplifier Unit E3NX-FA0 282
Smart Laser Amplifier Unit E3NC-LAO 284
Smart Laser Amplifier Unit (CMOS type) E3NC-SAO 286
Fibers/Laser Photoelectric/Proximity Sensor System Configuration 288
Sensor Communications Unit E3X-ECT 289
Standard Fiber Amplifier Unit E3X-HDO 292
Two-channel Fiber Amplifier Unit E3X-MDA0 294
High-functionally Fiber Amplifier Unit E3X-DA0-S 296
Laser Photoelectric Sensor Amplifier Unit E3C-LDAO 298
Proximity Sensor Amplifier Unit E2C-EDA0 300
EtherCAT Remote I/O Terminals GX-Series302
EtherCAT Communications Specifications 303
Version Information 303
Digital I/O Terminal 2-tier Terminal Block Type 304
Digital I/O Terminal 3-tier Terminal Block Type. 310
Digital I/O Terminal e-CON Connector Type 314
Analog I/O Terminal 2-tier Terminal Block Type 322
Encoder Input Terminal 3-tier Terminal Block Type 325
Expansion Units 328

System Configuration

Network Configuration
You can make networks in the following layers with an NJ-Series Controller.

General-purpose CompoNet or OMRON CompoNet
DeviceNet

DeviceNet slaves

Level	Features	Network type	Protocols	Required devices
Information networks	Various communications with host computer	EtherNet/IP	- CIP message communications - FTP server - Socket service - NTP client	Built-in EtherNet/IP port EtherNet/IP Unit *1
Networks between Controllers	High-speed communication between Controllers	EtherNet/IP	- Tag data link communications - CIP message communications - Socket service	
Networks between Controllers and serialcommunications devices	Wide range of protocol selections	Serial Communications	Protocol Macro, No-protocol, CompoWay/F, Modbus, NT Link, and Host Link	Serial Communications Units
Field networks	High-speed, highprecision communications and Safety support with NX I/O units, Servo Drives and generalpurpose slaves	EtherCAT	EtherCAT protocol	Built-in EtherCAT port
	Remote I/O communications for multipoint and multichannel Safety support	DeviceNet	DeviceNet protocol	DeviceNet Master Unit
	High-speed, multi-node connection, remote I/O communications with easy and flexible wiring	CompoNet	CompoNet Protocol	CompoNet Master Unit *2

*1 Supported only by the EtherNet/IP Units with unit version 2.1 or later, CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher
*2 Supported only by the CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.

EtherCAT Network Configuration

With an NJ -Series, you can use an EtherCAT network as a basic system.

Machine Automation Controller
 NJ -Series

Machine Automation Controller NJ-Series

New controller that covers functions and high-speed processing required for machine control and safety, reliability and maintainability that are the features of industrial controllers.

NJ501- $\square \square \square$

Features

- Architecture based on the Intel ${ }^{\circledR}$ Atom ${ }^{\mathrm{TM}}$ processor achieves high-speed processing.
- The user program including the double precision floating point arithmetic instruction that is necessary for the coordinates correction, ST language and Function Blocks is executed fast, as well as the basic instructions and the special instructions.
- Integration of Logic and Motion in one CPU.
- Scalable CPUs for 4, 8, 16, 32 and 64 axes.
- Synchronous control of all machine network devices : vision sensors, servo drives and field devices with the machine control network, EtherCAT.
Synchronize the PLC Engine and the Motion Engine with the EtherCAT control period. Fast and highly-accurate control is possible.
- Standard programming : Conforms IEC 61131-3 standards, variable-based instructions including the PLCopen ${ }^{\circledR}$ Motion function blocks
- Complete and robust machine automation: fast control performance and basic functions and reliability of industrial controllers.
- Fan-free operation in ambient temperature between 0 to $55^{\circ} \mathrm{C}$.
- Complete RAS functions: Transmission frame error check, timeout, bus diagnosis, Watchdog (WDT), memory check, and topology check, etc.
- KC Registration
- The Controller can be directly connected to a database. No special Unit, software, nor middleware is required. (NJ501-1 $\square 20$)

Machine Automation Controller NJ-Series

Unit Configuration

Basic System

Configuration Units

CJ1 Basic I/O Units			
8-point Units	16-point Units	32-point Units	64-point Units
Input Units			
DC Input Unit CJ1W-ID201 - AC Input Unit CJ1W-IA201	- DC Input Unit CJ1W-ID211 CJ1W-ID212 Hilgh-speed tipe - AC Input Unit CJ1W-IA111	- DC Input Unit CJ1W-ID231 CJ1W-ID232 CJ1W-ID233	- DC Input Unit CJ1W-ID261 CJ1W-ID262
Output Units			
- Relay Contact Output Unit (independent commons) CJ1W-OC201 Triac Output Unit CJ1W-OA201 - Transistor Output Units CJ1W-OD201 CJ1W-OD203 CJ1W-OD202 CJ1W-OD204	- Relay Contact Output Unit CJ1W-OC211 - Transistor Output Units CJ1W-OD211 CJ1W-OD213 CJ1W-OD212	- Transistor Output Units CJ1W-OD231 CJ1W-OD233 CJ1W-OD234 High-speed type CJ1W-OD232	Transistor Output Units CJ1W-OD261 CJ1W-OD263 CJ1W-OD262
I/O Units			
---	---	(16 inputs, 16 outputs) DC Input/Transistor Output Units CJ1W-MD231 CJ1W-MD233 CJ1W-MD232	32 inputs, 32 outputs - DC Input/Transistor Output Units CJ1W-MD261 CJ1W-MD263 32 inputs, 32 outputs - TTL I/O Unit CJ1W-MD563
Other Units			
---	- Quick-response Input Unit CJ1W-IDP01	---	- B7A Interface Units (64 inputs) CJ1W-B7A14 (64 outputs) CJ1W-B7A04 (32 inputs, 32 outputs) CJ1W-B7A22

CJ1 Special I/O Units and CPU Bus Units			
Process I/O Units - Isolated-type Units with Universal Inputs CJ1W-PH41U CJ1W-AD04U - Isolated-type DC Input Unit CJ1W-PDC15 - Analog I/O Units - Analog Input Units CJ1W-AD042 High:-speedttpe CJ1W-AD081-V1 CJ1W-AD041-V1 - Analog Output Units CJ1W-DA042V Hilgh-speedippe CJ1W-DA08V CJ1W-DA08C CJ1W-DA041 CJ1W-DA021 - Analog I/O Units CJ1W-MAD42 Temperature Control Units CJ1W-TC003, CJ1W-TC004 CJ1W-TC103, CJ1W-TC104	High-speed Counter Units CJ1W-CT021		■ ID Sensor Units CJ1W-V680C11 CJ1W-V680C12

*1. Supported only by the EtherNet/IP Units with unit version 2.1 or later, CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.
*2. Supported only by the CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.

NJ-Series CPU Racks

A NJ-Series CPU Rack consists of a CPU Unit, Power Supply Unit, Configuration Units (Basic I/O Units, Special I/O Units, and CPU Bus Units), and an End Cover.

Even though the NJ-Series Controllers do not have Backplanes, the term "slot" still used to refer to the location of Units. Slot numbers are assigned in order to Units from left to right on the CPU Rack (slot 0, slot 1, slot 2, etc.).

- Required Units

Rack	Unit name	
CPU Rack	NJ-Series Power Supply Unit	1
	NJ-Series CPU Unit	1
	I/O Control Unit	Required only for mounting to an Expansion Rack. Mount the I/O Control Unit immediately to the right of the CPU Unit.
	Number of Configuration Units	10 max. (Same for all models of CPU Unit.) (The number of Basic I/O Units, Special I/O Units, and CPU Bus Units can be varied. The number does not include the I/O Control Unit.)
	End Cover	1 (Included with CPU Unit.)
	NJ-Series SD Memory Card	Install as required.

- Types of Configuration Units

In the NJ-Series, Configuration Units are classified into the following three types. The number of Racks differs depending on the type.

Type	Appearance (example)	Description	Unit recognition method	Max. Units mountable per CPU Unit
Basic I/O Units		Units with contact inputs and contact outputs.	Recognized by the CPU Unit according to the position of the Rack and slot.	A maximum of 40 Units can be mounted.
Special I/O Units		Special I/O Units provide more advanced functions than do Basic I/O Units, including I/O other than contact inputs and contact outputs. Examples of Special I/O Units are Analog I/O Units and High-speed Counter Units. They differ from CPU Bus Units (including Network Communications Units) in having a smaller area for exchanging data with the CPU Unit.	Recognized by the CPU Unit according to the unit number (0 to 95) set with the rotary switches on the front panel.	A maximum of 40 Units can be connected. (Multiple unit numbers are allocated per Unit, depending on the model and settings.)
CPU Bus Units		CPU Bus Units exchange data with the CPU Unit via the CPU Bus. Examples of CPU Bus Units are Network Communications Units and Serial Communications Units. They differ from Special I/O Units in having a larger area for exchanging data with the CPU Unit.	Recognized by the CPU Unit according to the unit number (0 to F) set with the rotary switch on the front panel.	A maximum of 16 Units can be mounted.

NJ-Series Expansion Racks

A NJ-Series Expansion Rack consists of a Power Supply Unit, an I/O Interface Unit, Configuration Units (Basic I/O Units, Special I/O Units, and CPU Bus Units), and an End Cover.

- Required Units

Rack	Unit name	Required number of Units
CPU Rack	I/O Control Unit	One Unit. Required only when an Expansion Rack is used. Mount the I/O Control Unit immediately to the right of the CPU Unit. *1
	Power Supply Unit	One Unit
	I/O Interface Unit	One Unit. Mount the I/O Interface Unit immediately to the right of the Power Supply Unit. *2
*1 Mounting the I/O Control Unit in any other location may cause faulty operation. *2 Mounting the I/O Interface Unit in any other location may cause faulty operation.		

Configuration Units

- Maximum Number of Configuration Units That Can Be Mounted

CPU Unit	Model	Total Units	No. of Units on CPU Rack	No. of Expansion Racks
NJ-Series CPU Unit	NJ501- $\square \square \square \square$	40	10 per Rack	3 Racks $\times 10$ Units
	NJ301- $\square \square \square$			

Note: It may not be possible to mount the maximum number of configuration Units depending on the specific Units that are mounted. Refer to the next page for details.

- Number of mountable units per Configuration Unit

Basic I/O Units, Special I/O Units, and CPU Bus Units of the CJ-Series are used as Configuration Units of the NJ-Series. All Basic I/O Units are useable. Not all Special I/O Units and CPU Bus Units can be used. Units that can be used are shown in the list. In addition, note that the number of units that can be connected to one CPU vary depending on the units.

Machine Automation Controller NJ-Series

CJ-Series Special I/O Units

Type	Name	Specifications	Model	Unit No.	Number of words allocated	Words allocated in DM Area	Number of mountabl e Units	Current consumption (A)		Weight
								5 VDC	24 VDC	
Special I/O Units	Generalpurpose Universal Analog Input Unit	4 inputs, fully universal	CJ1W-AD04U	0 to 95	10 words	100 words	40 Units	0.32	---	150 g max.
	Analog Input Units	8 inputs (4 to $20 \mathrm{~mA}, 1$ to 5 V , etc.)	CJ1W-AD081-V1	0 to 95	10 words	100 words	40 Units	0.42	---	140 g max.
		4 inputs (4 to $20 \mathrm{~mA}, 1$ to 5 V , etc.)	CJ1W-AD041-V1	0 to 95	10 words	100 words	40 Units	0.42	---	140 g max.
		4 inputs (4 to $20 \mathrm{~mA}, 1$ to 5 V , etc.)	CJ1W-AD042	0 to 95	10 words	100 words	40 Units	0.52	---	150 g max.
	Analog Output Units	4 outputs (1 to $5 \mathrm{~V}, 4$ to 20 mA , etc.)	CJ1W-DA041	0 to 95	10 words	100 words	40 Units	0.12	---	150 g max.
		2 outputs (1 to $5 \mathrm{~V}, 4$ to 20 mA , etc.)	CJ1W-DA021	0 to 95	10 words	100 words	40 Units	0.12	---	150 g max.
		8 outputs (1 to $5 \mathrm{~V}, 0$ to 10 V , etc.)	CJ1W-DA08V	0 to 95	10 words	100 words	40 Units	0.14	---	150 g max.
		8 outputs (4 to 20 mA)	CJ1W-DA08C	0 to 95	10 words	100 words	40 Units	0.14	---	150 g max.
		4 outputs (1 to $5 \mathrm{~V}, 0$ to 10 V , etc.)	CJ1W-DA042V	0 to 95	10 words	100 words	40 Units	0.40	---	150 g max.
	Analog I/O Unit	4 inputs (1 to $5 \mathrm{~V}, 4$ to 20 mA , etc.) 2 outputs (1 to $5 \mathrm{~V}, 4$ to 20 mA , etc.)	CJ1W-MAD42	0 to 95	10 words	100 words	40 Units	0.58	---	150 g max.
	Isolated-type Highresolution Universal Input Unit	4 inputs, fully universal Resolution: 1/256,000, 1/64,000, 1/16,000	CJ1W-PH41U	0 to 95	10 words	100 words	40 Units	0.30	---	150 g max.
	Direct Current Input Unit	DC voltage or DC current, 2 inputs	CJ1W-PDC15	0 to 95	10 words	100 words	40 Units	0.18	---	150 g max.
	Temperature Control Units	2 control loops, thermocouple inputs, NPN outputs, heater burnout detection	CJ1W-TC003	0 to 94 (uses words for 2 unit numbers)	20 words	200 words	40 Units	0.25	---	150 g max.
		2 control loops, thermocouple inputs, PNP outputs, heater burnout detection	CJ1W-TC004	0 to 94 (uses words for 2 unit numbers)	20 words	200 words	40 Units	0.25	---	150 g max.
		2 control loops, temperatureresistance thermometer inputs, NPN outputs, heater burnout detection	CJ1W-TC103	0 to 94 (uses words for 2 unit numbers)	20 words	200 words	40 Units	0.25	---	150 g max.
		2 control loops, temperatureresistance thermometer inputs, PNP outputs, heater burnout detection	CJ1W-TC104	0 to 94 (uses words for 2 unit numbers)	20 words	200 words	40 Units	0.25	---	150 g max.
	ID Sensor Units	V680-Series single-head type	CJ1W-V680C11	0 to 95	10 words	100 words	40 Units	0.26	0.13	120 g max.
		V680-Series two-head type	CJ1W-V680C12	0 to 94 (uses words for 2 unit numbers)	20 words	200 words	40 Units	0.32	0.26	130 g max .
	High-speed Counter Unit	Number of counter channels: 2, Maximum input frequency: 500 kHz , line driver compatible	CJ1W-CT021	0 to 92 (uses words for 4 unit numbers)	40 words	400 words	24 Units	0.28	---	100 g max.
	CompoNet Master Unit	CompoNet remote I/O Communications mode No. 0 : 128 inputs/ 128 outputs for Word Slaves	CJ1W-CRM21*1	0 to 94 (uses words for 2 unit numbers)	None	20 words	40 Units	0.40	---	130 g max .
		Communications mode No. 1: 256 inputs/ 256 outputs for Word Slaves		0 to 92 (uses words for 4 unit numbers)	None	40 words	24 Units	0.40	---	
		Communications mode No. 2: 512 inputs/ 512 outputs for Word Slaves		0 to 88 (uses words for 8 unit numbers)	None	80 words	12 Units	0.40	---	
		Communications mode No. 3: 256 inputs/ 256 outputs for Word Slaves and 128 inputs/ 128 outputs for Bit Slaves		0 to 88 (uses words for 8 unit numbers)	None	80 words	12 Units	0.40	---	
		Communications mode No. 8: 1,024 inputs/ 1,024 outputs for Word Slaves and 256 inputs/ 256 outputs for Bit Slaves maximum		0 to 95 uses words for 1 unit number)	Depends on setting	$\begin{aligned} & 10 \text { words } \\ & \text { *2 } \end{aligned}$	40 Units	0.40	---	

[^1]
CJ-Series CPU Bus Units

Type	Name	Specifications	Model	Unit No.	Number of words allocated	Maximum number of Units	Current consumption (A)		Weight
							5 VDC	24 VDC	
CPU Bus Units	Serial Communications Units	Two RS-232C ports High-speed models	CJ1W-SCU22	0 to F	25 words	16 Units	0.29 *1	---	160 g max.
		Two RS-422A/485 ports Highspeed models	CJ1W-SCU32				0.46		120 g max .
		One RS-232C port and one RS422A/485 port High-speed models	CJ1W-SCU42				0.38 *1		140 g max .
	EtherNet/IP Unit	Tag data links, CIP message communications, FTP server, etc.	CJ1W-EIP21 *2	0 to F	25 words	4 Units	0.41	---	94 g max .
	DeviceNet Unit	DeviceNet remote I/O, 2,048 points; Both Master and Slave functions, Automatic allocation possible without Configurator	CJ1W-DRM21	0 to F	25 words	16 Units	0.29	---	118 g max. *3

*1 Increases by 0.15 A/Unit when an NT-AL001 RS-232C/RS-422A Link Adapter is used. Increases by 0.04 A/Unit when a CJ1W-CIF11 RS-422A Converter is used. Increases by 0.20 A/Unit when an NV3W-M $\square 20 L$ Programmable Terminal is used.
*2 Supported only by the EtherNet/IP Units with unit version 2.1 or later, CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.
*3 Includes the weight of accessory connectors.

Power Supply Units Current Consumption

Checking Current Consumption and Power Consumption

After selecting a Power Supply Unit based on considerations such as the power supply voltage, calculate the current and power requirements for each Rack.

Condition 1: Current Requirements
There are two voltage groups for internal power consumption: 5 V and 24 V .
Current consumption at 5 V (internal logic power supply)
Current consumption at 24 V (relay driving power supply)
Condition 2: Power Requirements
For each Rack, the upper limits are determined for the current and power that can be provided to the mounted Units. Design the system so that the total current consumption for all the mounted Units does not exceed the maximum total power or the maximum current supplied for the voltage groups shown in the following tables.
The maximum current and total power supplied for CPU Racks and Expansion Racks according to the Power Supply Unit model are shown below
Note: 1. For CPU Racks, include the CPU Unit current and power consumption in the calculations. When expanding, also include the current and power consumption of the I/O Control Unit in the calculations.
2. For Expansion Racks, include the I/O Interface Unit current and power consumption in the calculations.

Power Supply Units	Max. current supplied			(C) (A) 5-VDC CPU Racks*
NJ-PA3001	6.0 A	(A)5-VDC Expansion Rack	(B) 24 VDC	(B)
NJ-PD3001	6.0 A	6.0 A	1.0 A	30 W

Conditions 1 and 2 below must be satisfied.
Condition 1: Maximum Current
(1) Total Unit current consumption at $5 \mathrm{~V} \leq$ (A) value
(2) Total Unit current consumption at $24 \mathrm{~V} \leq$ (B) value Condition 2: Maximum Power
(1) $\times 5 \mathrm{~V}+(2) \times 24 \mathrm{~V} \leq(\mathrm{C})$ value

* Including supply to the CPU Unit.

Example: Calculating Total Current and Power Consumption
Example: When the Following Units are Mounted to a NJ-Series CPU Rack Using a NJ-PA3001 Power Supply Unit

Unit type	Model	Quantity	Voltage group	
			5 V	24 V
CPU Unit	NJ501-1500	1	1.90 A	---
I/O Control Unit	CJ1W-IC101	1	0.02 A	---
Basic I/O Units (Input Units)	CJ1W-ID211	2	0.08 A	---
	CJ1W-ID231	2	0.09 A	---
Basic I/O Units (Output Units)	CJ1W-OC201	2	0.09 A	0.048 A
Special I/O Unit	CJ1W-DA041	1	0.12 A	---
CPU Bus Unit	CJ1W-SCU22	1	0.29 A	---
Current consumption	Total		$\begin{gathered} 1.9 \mathrm{~A}+0.02 \mathrm{~A}+0.08 \mathrm{~A} \times \\ 2+0.09 \mathrm{~A} \times 2+0.09 \mathrm{~A} \times \\ 2+0.12 \mathrm{~A}+0.29 \end{gathered}$	0.048 A $\times 2$
	Result		$2.85 \mathrm{~A}(\leq 6.0 \mathrm{~A})$	$0.096 \mathrm{~A}(\leq 1.0 \mathrm{~A})$
Power consumption	Total		$2.85 \mathrm{~A} \times 5 \mathrm{~V}=14.25 \mathrm{~W}$	$0.096 \mathrm{~A} \times 24 \mathrm{~V}=2.3 \mathrm{~W}$
	Result		$14.25 \mathrm{~W}+2.3 \mathrm{~W}=16.5 \mathrm{~W}(\leq 30 \mathrm{~W})$	

Note: For details on Unit current consumption, refer to Ordering Information.

Using the Sysmac Studio to Display Current Consumption and Width

CPU Rack and Expansion Rack current consumption and width can be displayed by selecting CPU/Expansion Racks from the Configurations and Setup in the Multiview Explorer. If the capacity of the Power Supply Unit is exceeded, an error icon is displayed in the power supply unit of a corresponding rack. For details, refer to Symac Studio Version 1 Operation manual (W504).

Dimensions

Note: Units are in mm unless specified otherwise.

Product Dimensions

- Dimensions

Example Rack Widths using NJ-PA3001 Power Supply Unit (AC)

No. of Units mounted with 31-mm width	Rack width (mm)
	With NJ501-1500
$\mathbf{2}$	205.7
$\mathbf{3}$	236.7
$\mathbf{4}$	267.7
$\mathbf{5}$	298.7
$\mathbf{6}$	329.7
$\mathbf{7}$	360.7
$\mathbf{8}$	391.7
$\mathbf{9}$	422.7
$\mathbf{1 0}$	453.7

- Power Supply Units, CPU Units, and End Covers

- Units of Width 20 mm

- Units of Width 31 mm

Unit	Model	Width
I/O Interface Unit	CJ1W-II101	31
8/16-point Basic I/O Units	CJ1W-ID201 CJ1W-ID211/212 CJ1W-IA111/201 CJ1W-OD20 \square CJ1W-OD211/212/213 CJ1W-OC201/211 CJ1W-OA201	
32-point Basic I/O Units	CJ1W-MD231 CJ1W-MD232/233	
64-point Basic I/O Units	CJ1W-ID261 CJ1W-OD261 CJ1W-MD261	
	CJ1W-ID262 CJ1W-OD262/263 CJ1W-MD263 CJ1W-MD563	
Quick-response Input Unit	CJ1W-IDP01	
Analog I/O Units	$\begin{aligned} & \text { CJ1W-AD } \square \square \square \text { (-V1) } \\ & \text { CJ1W-DA } \square \square \text { (} \square) \\ & \text { CJ1W-MAD42 } \end{aligned}$	
Process Input Units	CJ1W-PH41U CJ1W-AD04U CJ1W-PDC15	
Temperature Control Units	CJ1W-TC $\square \square$	
High-speed Counter Unit	CJ1W-CT021	
ID Sensor Units	CJ1W-V680C11 CJ1W-V680C12	
Serial Communications Units	CJ1W-SCU22 CJ1W-SCU32 CJ1W-SCU42	
EtherNet/IP Unit	CJ1W-EIP21	
DeviceNet Unit	CJ1W-DRM21	
CompoNet Master Unit	CJ1W-CRM21	

- I/O Interface Unit

- 64-point Basic I/O Units and 32-point Basic I/O Units (CJ1W-MD23■)

- Special I/O Units and CPU Bus Units
2.7

Mounting Dimensions

(Units:mm)

DIN Track model number	A
PFP-100N2	16 mm
PFP-100N	7.3 mm
FPP-50N	7.3 mm

Mounting Height

With a height of 90.0 mm , the CPU Unit is the highest component in an NJ-Series CPU Rack. It is also higher than any Units on an Expansion Rack. When a cable is connected (such as a connecting cable to Support Software), however, even greater height is required. Allow sufficient depth in the control panel containing the Controller.

Note: Consider the following points when expanding the configuration:
The total length of I/O Connecting Cable must not exceed 12 m . I/O Connecting Cables require the bending radius indicated below.

Expansion Cable

Note: Outer diameter of cable: 8.6 mm .

General Specifications

* Supported only by the CPU Units with unit version 1.01 or later.

Machine Automation Controller NJ-Series

Performance Specifications

Item				NJ501-			NJ301-	
				15 \square	$14 \square 0$	$13 \square 0$	1200	1100
Processing Time	Instruction Execution Times	Ladder Diagram Instructions (LD, AND, OR, and OUT)		1.9 ns or more			3.0 ns or more	
		Math Instructions (for Long Real Data)		26 ns or more			42 ns or more	
Programming	Program capacity*1	Size		20 MB			5 MB	
		Number	POU definition	3,000			750	
			POU instance	Using Sysmac Studio Ver. 1.05 or lower : 6,000 Using Sysmac Studio Ver. 1.06 or higher : 9,000			Using Sysmac Studio Ver. 1.04 or lower: 1,500 Using Sysmac Studio Ver. 1.05 or higher : 3,000	
	Variables capacity	No Retain Attribute*2	Size	4 MB			2 MB	
			Number	90,000			22,500	
		Retain Attribute*3	Size	2 MB			0.5 MB	
			Number	10,000			Using Sysmac Studio Ver. 1.04 or lower : 2,500 Using Sysmac Studio Ver. 1.05 or higher : 5,000	
	Data type	Number		2000			1,000	
	Memory for CJ-Series Units (Can be Specified with AT Specifications for Variables.)	CIO Area		6,144 words (CIO 0 to ClO 6143)				
		Work Area		512 words (W0 to W511)				
		Holding Area		1,536 words (H0 to H1535)				
		DM Area		32,768 words (D0 to D32767)				
		EM Area		32,768 words $\times 25$ banks (E0_00000 to E18_32767)*4			32,768 words $\times 4$ banks (E0_00000 to E3_32767)	
Unit Configuration	Maximum Number of Connectable Units	Maximum per CPU Rack or Expansion Rack		10 Units				
		Entire Controller		40 Units				
	Maximum number of Expansion Racks			3 max.				
	I/O Capacity	Maximum number of I/O Points on CJ-series Units		2,560 points max.				
	Power Supply Unit for CPU Rack and Expansion Racks	Model		NJ-P $\square 3001$				
		Power OFF Detection Time	AC Power Supply	30 to 45 ms				
			DC Power Supply	22 to 25 ms				
Motion Control	Number of Controlled Axes	Maximum Number of Controlled Axes *5		64 axes	32 axes	16 axes	15 axes	15 axes
		Maximum number of used real axes *6		64 axes	32 axes	16 axes	8 axes	4 axes
		Maximum Number of Axes for Single-axis Control *7		64 axes max.	32 axes max	16 axes max.	15 axes max.	15 axes max.
		Maximum Number of Axes for Linear Interpolation Axis Control		4 axes per axes group				
		Number of Axes for Circular Interpolation Axis Control		2 axes per axes group				
	Maximum Number of Axes Groups			32 groups				
	Motion Control Period			The same control period as that is used for the process data communications cycle for EtherCAT.				
	Cams	Number of Cam Data Points	Maximum Points per Cam Table	65,535 points				
			Maximum Points for All Cam Tables	1,048,560 point			262,140 points	
		Maximum Number of Cam Tables		640 tables			160 tables	
	Position Units			Pulses, millimeters, micrometers, nanometers, degrees or inches				
	Override Factors			0.00\% or 0.01\% to 500.00\%				
PeripheralUSB Port	Supported Services			Sysmac Studio connection				
	Physical Layer			USB 2.0-compliant B-type connector				
	Transmission Distance between Hub and Node			5 m max.				

*1 This is the capacity for the execution objects and variable tables (including variable names).
*2 Words for CJ-series Units in the Holding, DM, and EM Areas are not included.
*3 Words for CJ-series Units in the CIO and Work Areas are not included.
*4 When the Spool function is enabled, the DB Connection Service uses E9_0 to E18_32767.
*5 This is the total for all axis types.
The Maximum number of TCP socket service of the CPU Unit version 1.05 or earlier is 8 axes ($\mathrm{NJ} 301-1200$), 4 axes ($\mathrm{NJ} 301-1100$).
*6 This is the total number of axes that are set as servo axes or encoder axes and are also set as used axes.
*7 The Maximum Number of Axes for Single-axis Control of the CPU Unit version 1.05 or earlier is 8 axes ($\mathrm{NJ} 301-1200$), 4 axes (NJ301-1100).

Machine Automation Controller NJ-Series

Machine Automation Controller NJ-Series

Function Specifications

Item				NJ501- \square]	NJ301- \square -
Tasks	Function			I/O refreshing and the user Tasks are used to specify e	units that are called tasks. xecution priority.
		Periodically Executed Tasks	Maximum Number of Primary Periodic Tasks	1	
			Maximum Number of Periodic Tasks	3	
		Conditionally executed tasks *1	Maximum number of event tasks	32	
			Execution conditions	When Activate Event Task instruction is executed or when condition expression for variable is met.	
	Setup	System Service Monitoring Settings		The execution interval and the percentage of the total user program execution time are monitored for the system services (processes that are executed by the CPU Unit separate from task execution).	
Programming	POU (program organization units)	Programs		POUs that are assigned to tasks.	
		Function Blocks		POUs that are used to create objects with specific conditions.	
		Functions		POUs that are used to create an object that determine unique outputs for the inputs, such as for data processing.	
	Programming Languages	Types		Ladder diagrams *2 and structured text (ST)	
	Namespaces *3			A concept that is used to group identifiers for POU definitions.	
	Variables	External Access of Variables	Network Variables	The function which allows access from the HMI , host computers, or other Controllers	
	Data Types	Basic Data Types	Boolean	BOOL	
			Bit Strings	BYTE, WORD, DWORD, LWORD	
			Integers	INT, SINT, DINT,LINT, UINT, USINT, UDINT, ULINT	
			Real Numbers	REAL, LREAL	
			Durations	TIME	
			Dates	DATE	
			Times of Day	TIME_OF_DAY	
			Date and Time	DATE_AND_TIME	
			Text Strings	STRING	
		Derivative Data Types		Structures, unions, enumerations	
		Structures	Function	A derivative data type that groups together data with different variable types.	
			Maximum Number of Members	2048	
			Nesting Maximum Levels	8	
			Member Data Types	Basic data types, structures, unions, enumerations, array variables	
			Specifying Member Offsets	You can use member offsets to place structure members at any memory locations.*3	
		Unions	Function	A derivative data type that groups together data with different variable types.	
			Maximum Number of Members	4	
			Member Data Types	BOOL, BYTE, WORD, DWORD, LWORD	
		Enumerations	Function	A derivative data type that uses text strings called enumerators to express variable values.	
	Data Type Attributes	Array Specifications	Function	An array is a group of elements with the same data type. You specify the number (subscript) of the element from the first element to specify the element.	
			Maximum Number of Dimensions	3	
			Maximum Number of Elements	65535	
			Array Specifications for FB Instances	Supported.	
		Range Specifications		You can specify a range for a data type in advance. The data type can take only values that are in the specified range.	
		Libraries		User libraries	

[^2]
Machine Automation Controller NJ-Series

*1. Supported only by the CPU Units with unit version 1.03 or later. *4. Supported only by the CPU Units with unit version 1.06 or later. *5. Supported only by the CPU Units with unit version 1.05 or later.

Machine Automation Controller NJ-Series

Item				NJ501-प	NJ301- $\square \square \square \square$
	Axes Groups	Multi-axes Coordinated Control	Absolute Linear Interpolation	Linear interpolation is performed to a specified absolute position.	
			Relative Linear Interpolation	Linear interpolation is performed to a specified relative position.	
			Circular 2D Interpolation	Circular interpolation is performed for two axes.	
			Axes Group Cyclic Synchronous Absolute Positioning	A positioning command is output each control period in Position Control Mode.*3	
		Auxiliary Functions for Multi-axes Coordinated Control	Resetting Axes Group Errors	Axes group errors and axis errors are cleared.	
			Enabling Axes Groups	Motion of an axes group is enabled.	
			Disabling Axes Groups	Motion of an axes group is disabled.	
			Stopping Axes Groups	All axes in interpolated motion are decelerated to a stop.	
			Immediately Stopping Axes Groups	All axes in interpolated motion are stopped immediately.	
			Setting Axes Group Override Factors	The blended target velocity is changed during interpolated motion.	
			Reading Axes Group Positions	The command current positions and actual current positions of an axes group can be read.*3	
			Changing the Axes in an Axes Group	The Composition Axes parameter in the axes group parameters can be overwritten temporarily.*3	
	Common Items	Cams	Setting Cam Table Properties	The end point index of the cam table that is specified in the input parameter is changed.	
			Saving Cam Tables	The cam table that is specified with the input parameter is saved in non-volatile memory in the CPU Unit.	
		Parameters	Writing MC Settings	Some of the axis parameters or axes group parameters are overwritten temporarily.	
	Auxiliary Functions	Count Modes		You can select either Linear Mode (finite length) or Rotary Mode (infinite length).	
		Unit Conversions		You can set the display unit for each axis according to the machine.	
Motion Control		Acceleration/ Deceleration Control	Automatic Acceleration/ Deceleration Control	Jerk is set for the acceleration/deceleration curve for an axis motion or axes group motion.	
			Changing the Acceleration and Deceleration Rates	You can change the acceleration or deceleration rate even during acceleration or deceleration.	
		In-position Check		You can set an in-position range and in-position check time to confirm when positioning is completed.	
		Stop Method		You can set the stop method to the immediate stop input signal or limit input signal.	
		Re-execution of Motion Control Instructions		You can change the input variables for a motion control instruction during execution and execute the instruction again to change the target values during operation.	
		Multi-execution of Motion Control Instructions (Buffer Mode)		You can specify when to start execution and how to connect the velocities between operations when another motion control instruction is executed during operation.	
		Continuous Axes Group Motions (Transition Mode)		You can specify the Transition Mode for multi-execution of instructions for axes group operation.	
		Monitoring Functions	Software Limits	The movement range of an axis is monitored.	
			Following Error	The error between the command current value and the actual current value is monitored for an axis.	
			Velocity, Acceleration Rate, Deceleration Rate, Torque, Interpolation Velocity, Interpolation Acceleration Rate, And Interpolation Deceleration Rate	You can set warning values	xes group to monitor them.
		Absolute Encoder Support		You can use an OMRON G5-Series Servomotor with an Absolute Encoder to eliminate the need to perform homing at startup.	
		Input signal logic inversion *5		You can inverse the logic of immediate stop input signal, positive limit input signal, negative limit input signal, or home proximity input signal.	
	External Interface Signals			The Servo Drive input signals listed on the right are used. Home signal, home proximity signal, positive limit signal, negative limit signal, immediate stop signal, and interrupt input signal	

*3 Supported only by the CPU Units with unit version 1.01 or later.
*5 Supported only by the CPU Units with unit version 1.05 or later.

Machine Automation Controller NJ-Series

Item				NJ501-पด	NJ301- \square -
Unit (I/O) Management	EtherCAT Slaves	Maximum Number of Slaves		192	
		Basic I/O Units	Chattering and Noise Countermeasures	Input response times are set.	
	NX Units *5			You can use NX Units through the Communcations Coupler Unit.	
	CJ-Series Units	Maximum number of Units		40	
		Basic I/O Units	Chattering and Noise Countermeasures	Input response times are set.	
			Load Short-circuit Protection and I/O Disconnection Detection	Alarm information for Basic I/O Units is read.	
	Peripheral USB Port			A port for communications with various kinds of Support Software running on a personal computer.	
	EtherNet/IP Port	Communications protocol		TCP/IP, UDP/IP	
		CIP Communications Service	Tag Data Links	Programless cyclic data exchange is performed with the devices on the EtherNet/ IP network.	
			Message Communications	CIP commands are sent to or received from the devices on the EtherNet/IP network.	
		TCP/IP Applications	Socket Services	Data is sent to and received from any node on Ethernet using the UDP or TCP protocol. Socket communications instructions are used.	
			FTP Server	Files can be read from or written to the SD Memory Card in the CPU Unit from computers at other Ethernet nodes.	
			Automatic Clock Adjustment	Clock information is read from the NTP server at the specified time or at a specified interval after the power supply to the CPU Unit is turned ON. The internal clock time in the CPU Unit is updated with the read time.	
			SNMP Agent	Built-in EtherNet/IP port internal status information is provided to network management software that uses an SNMP manager.	
	EtherCAT Port	Supported Services	Process Data Communications	Control information is exchanged in cyclic communications between the EtherCAT master and slaves.	
Communications			SDO Communications	Control information is exchanged in noncyclic event communications between the EtherCAT master and slaves. SDO communications that are defined in the CANopen standard are used.	
		Network Scanning		Information is read from connected slave devices and the slave configuration is automatically generated.	
		DC (Distributed Clock)		Time is synchronized by sharing the EtherCAT system time among all EtherCAT devices (including the master).	
		Packet Monitoring		The frames that are sent by the master and the frames that are received by the master can be saved.The data that is saved can be viewed with WireShark or other applications.	---
		Enable/disable Settings for Slaves		The slaves can be enabled or disabled as communications targets.	
		Disconnecting/Connecting Slaves		Temporarily disconnects a slave from the EtherCAT network for maintenance, such as for replacement of the slave, and then connects the slave again.	
		Supported Application Protocol	CoE	SDO messages that conform to the CAN EtherCAT.	rd can be sent to slaves via
	Communications Instructions			The following instructions are supported. CIP communications instructions, socket communications instructions, SDO message instructions, no-protocol communications instructions, and protocol macro instructions	
Operation Management	RUN Output Contacts			The output on the NJ-P $\square 3001$ Power Supply Unit turns ON in RUN mode.	

[^3]Machine Automation Controller NJ-Series

Item				NJ501-प]	NJ301-
System Management	Event Logs	Categories		Events are recorded in the following logs. System event log Access event log User-defined event log	
		Maximum Number of Events per Event Log		1,024	512
Debugging	Online Editing	Single		Programs, function blocks, functions, and global variables can be changed online. Different operators can change different POUs across a network.	
	Forced Refreshing			The user can force specific variables to TRUE or FALSE.	
		Maximum Number of Forced Variables	Device Variables for EtherCAT Slaves	64	
			Device Variables for CJseries Units and Variables with AT Specifications	64	
	MC Test Run			Motor operation and wiring can be checked from the Sysmac Studio.	
	Synchronizing			The project file in the Sysmac Studio and the data in the CPU Unit can be made the same when online.	
	Differentiation monitoring *1			Rising/falling edge of contacts can be monitored.	
		Maximum number of contacts *1		8	
	Data Tracing	Types	Single Triggered Trace	When the trigger condition is met, the specified number of samples are taken and then tracing stops automatically.	
			Continuous Trace	Data tracing is executed continuously and the trace data is collected by the Sysmac Studio.	
		Maximum Number of Simultaneous Data Trace		4	2
		Maximum Number of Records		10,000	
		Sampling	Maximum Number of Sampled Variables	192 variables	48 variables
		Timing of Sampling		Sampling is performed for the specified task period, at the specified time, or when a sampling instruction is executed.	
		Triggered Traces		Trigger conditions are set to record data before and after an event.	
			Trigger Conditions	When BOOL variable chang variable with a constant Comparison Method: Equals Less Than (<), Less than or	or FALSE Comparison of non-BOOL than $(>)$, Greater than or equals (\geq), Not equal (\neq)
			Delay	Trigger position setting: A slid and after the trigger conditio	o set the percentage of sampling before
	Simulation			The operation of the CPU Unit is emulated in the Sysmac Studio.	
Maintenance	Connectionsto HMIs	Connected Port		Built-in EtherNet/IP port	
	Sysmac Studio Connection	Connected Port		Peripheral USB port or built-in EtherNet/IP port	
Reliability Functions	Self-diagnosis	Controller Errors	Levels	Major fault, partial fault, minor fault, observation, and information	
		User-defined errors		User-defined errors are registered in advance and then records are created by executing instructions.	
			Levels	8 levels	
Security	Protecting Software Assets and Preventing Operating Mistakes	CPU Unit Names and Serial IDs		When going online to a CPU Unit from the Sysmac Studio, the CPU Unit name in the project is compared to the name of the CPU Unit being connected to.	
		Protection	User Program Transfer with No Restoration Information	You can prevent reading data in the CPU Unit from the Sysmac Studio.	
			CPU Unit Write Protection	You can prevent writing data to the CPU Unit from the Sysmac Studio or SD Memory Card.	
			Overall Project File Protection	You can use passwords to protect .smc files from unauthorized opening on the Sysmac Studio.	
			Data Protection	You can use passwords to protect POUs on the Sysmac Studio.*3	
		Verification of Operation Authority		Online operations can be restricted by operation rights to prevent damage to equipment or injuries that may be caused by operating mistakes.	
			Number of Groups	5 * 6	
		Verification of User Program Execution ID		The user program cannot be executed without entering a user program execution ID from the Sysmac Studio for the specific hardware (CPU Unit).	

*1 Supported only by the CPU Units with unit version 1.03 or later.
*3 Supported only by the CPU Units with unit version 1.01 or later.
*6 When the NJ501 CPU Units with unit version 1.00 is used, this value becomes two.

Machine Automation Controller NJ-Series

Item				NJ501-प]	NJ301-प
SD Memory Card Functions	Storage Type			SD Memory Card (2 GB max.), SDHC Memory Card	
	Application	Automatic transfer from SD Memory Card *1		The data in the autoload folder on an SD Memory Card is automatically loaded when the power supply to the Controller is turned ON.	
		SD Memory Card Operation Instructions		You can access SD Memory Cards from instructions in the user program.	
		File Operations from the Sysmac Studio		You can perform file operations for Controller files in the SD Memory Card and read/write standard document files on the computer.	
		SD Memory Card Life Expiration Detection		Notification of the expiration of the life of the SD Memory Card is provided in a systemdefined variable and event log.	
Backup functions *1	SD Memory Card backup functions	Operation	Using front switch	You can use front switch to backup, compare, or restore data.	
			Using system-defined variables	You can use system-defined variables to backup or compare data.	
			Memory Card Operations Dialog Box on Sysmac Studio	Backup and verification operations can be performed from the SD Memory Card Operations Dialog Box on the Sysmac Studio.	
		Protection	Prohibiting backing up data to the SD Memory Card	Prohibit SD Memory Card backup functions.	
	Sysmac Studio Controller backup functions			Backup, restore, and verification operations for Units can be performed from the Sysmac Studio.	

*1 Supported only by the CPU Units with unit version 1.03 or later.

Function Specifications of DB Connection Function

Besides functions of the NJ501- $\square \square \square \square$, functions supported by the NJ501-1 $\square 20$ are as follows.

Item		Description
Supported port		Built-in EtherNet/IP port
Supported DB		Microsoft Corporation: SQL Server 2008/2008 R2/2012 Oracle Corporation: Oracle Database $10 \mathrm{~g} / 11 \mathrm{~g}$
Number of DB Connections (Number of databases that can be connected at the same time)		3 connections max. *1
Instruction	Supported operations	The following operations can be performed by executing DB Connection Instructions in the NJ -series CPU Units. Inserting records (INSERT), Updating records (UPDATE), Retrieving records (SELECT), and Deleting records (DELETE)
	Number of columns in an INSERT operation	SQL Server: 1,024 columns max. Oracle: 1,000 columns max.
	Number of columns in an UPDATE operation	SQL Server: 1,024 columns max. Oracle: 1,000 columns max.
	Number of columns in a SELECT operation	SQL Server: 1,024 columns max. Oracle: 1,000 columns max.
	Number of records in the output of a SELECT operation	65,535 elements max., 4 MB max.
Run mode of the DB Connection Service		Operation Mode or Test Mode - Operation Mode: When each instruction is executed, the service actually accesses the DB. - Test Mode: When each instruction is executed, the service ends the instruction normally without accessing the DB actually.
Spool function		Used to store SQL statements when an error occurred and resend the statements when the communications are recovered from the error. Spool capacity: $1 \mathrm{MB} * 2$
Operation Log function		The following three types of logs can be recorded. - Execution Log: Log for tracing the executions of the DB Connection Service. - Debug Log: Detailed log for SQL statement executions of the DB Connection Service. - SQL Execution Failure Log: Log for execution failures of SQL statements in the DB.
DB Connection Service shutdown function		Used to shut down the DB Connection Service after automatically saving the Operation Log files into the SD Memory Card.

[^4]
Machine Automation Controller NJ-Series

Version Information

Unit Versions

Units	Models	Unit Version
NJ501 CPU Units	NJ501-पПП	Unit version 1.07 Unit version 1.06 Unit version 1.05 Unit version 1.04 Unit version 1.03 Unit version 1.02 Unit version 1.01 Unit version 1.00
NJ-series Database Connection CPU Units	NJ501-1■20	Unit version 1.07 Unit version 1.05
NJ301 CPU Units	NJ301- $\square \square \square \square$	Unit version 1.07 Unit version 1.06 Unit version 1.05 Unit version 1.04 Unit version 1.03 Unit version 1.02 Unit version 1.01

Unit Versions and Programming Devices

The following tables show the relationship between unit versions and Sysmac Studio versions. Unit Versions and Programming Devices

Unit Version of CPU Unit	Corresponding version of Sysmac Studio
1.07	1.08
1.06	1.07
1.05	1.06
1.04	1.05
1.03	1.04
1.02	1.03
$1.00 *$	1.02

* There is no NJ301- $\square \square \square \square$ CPU Unit with unit version 1.00. Therefore, you cannot use an NJ301- $\square \square \square \square$ CPU Unit with Sysmac Studio version 1.01 or lower.

Note: If you use a lower version of the Sysmac Studio, you can use only the functions of the unit version of the CPU Unit that corresponds to the Sysmac Studio version.
If you use a CPU Unit with an earlier version, select the unit version of the connected CPU Unit or an earlier unit version in the Select Device Area of the Project Properties Dialog Box on the Sysmac Studio. You can use only the functions that are supported by the unit version of the connected CPU Unit.

Components and Functions

NJ501/NJ301 CPU Unit

Power Supply Unit
 NJ-PA3001

NJ-PD3001

Automation Software

Sysmac Studio

Sysmac Studio for machine creators

The Sysmac Studio provides an integrated development environment to set up, program, debug, and maintain NJ-series Controllers and other Machine Automation Controllers, as well as EtherCAT slaves.

Sysmac Studio Version 1.0

Features

- One software for motion, drives and vision
- Fully compliant with open standard IEC 61131-3
- Supports Ladder, Structured Text and Function Block programming with a rich instruction set
- CAM editor for easy programming of complex motion profiles
- One simulation tool for sequence and motion in a 3D environment
- Advanced security function with 32 digit security password

Automation Software Sysmac Studio

System Requirements

Item	\quad Requirement
Operating system (OS) $* 1 * 2$	Windows XP (Service Pack 3 or higher, 32-bit version)/Vista(32-bit version)/7(32-bit/64-bit version)
CPU	Windows computers with Celeron 540 (1.8 GHz) or faster CPU. Core i5 M520 (2.4 GHz) or equivalent or faster recommended
Main memory $* 3$	2 GB min.
Recommended video memory / video card for using 3D motion trace	Video memory: 512 MB min. Video card: Either of the following video cards: \bullet NVIIIA GeForce ${ }^{\oplus}$ 200 Series or higher \bullet ATI RadeonHD5000 Series or higher
Hard disk	At least 1.6 GB of available space
Display	XGA 1024 $\times 768,16$ million colors. WXGA 1280 $\times 800$ min. recommended
Disk drive	DVD-ROM drive
Communications ports	USB port corresponded to USB 2.0, or Ethernet port *4
Supported languages $* 5$	Japanese, English, German, French, Italian, Spanish, simplified Chinese, traditional Chinese, Korean

*1. Sysmac Studio Operating System Precaution: System requirements and hard disk space may vary with the system environment.
*2. The following restrictions apply when Sysmac Studio is used with Microsoft Windows Vista or Windows 7.

1) Some Help files cannot be accessed.

The Help files can be accessed if the Help program distributed by Microsoft for Windows (WinHlp32.exe) is installed. Refer to the Microsoft homepage listed below or contact Microsoft for details on installing the file. (The download page is automatically displayed if the Help files are opened while the user is connected to the Internet.)
http://support.microsoft.com/kb/917607/en-us
2) The following restrictions apply to some application operations.

Application	Restriction
CX-Designer	If a new Windows Vista or Windows 7 font (e.g., Meiryo) is used in a project, the font size on labels may be bigger and protrude from the components if the project is transferred from CX-Designer running on a Windows XP or earlier OS to the NS/NSJ.
CX-Integrator/Network Configurator	Although you can install CPS files, EDS files, Expansion Modules, and Interface Modules, the virtual store function of Windows Vista or Windows 7 imposes the following restrictions on the use of the software after installation. - If another user logs in, the applications data will need to be installed again. - The CPS files will not be automatically updated. These restrictions will not exist if application data is installed using Run as Administrator.

*3. The amount of memory required varies with the Support Software used in Sysmac Studio for the following Support Software. Refer to user documentation for individual Support Software for details.
CX-Designer, CX-Protocol, and Network Configurator
*4. Refer to the hardware manual for your CPU unit for hardware connection methods and cables to connect the computer and CPU unit.
*5. Supported only by the Sysmac Studio version 1.01 or higher about German, French, Italian and Spanish.
Supported only by the Sysmac Studio version 1.02 or higher about simplified Chinese, traditional Chinese and Korean.

Automation Software Sysmac Studio

Common Function Specifications

*1. Changing event levels for Controller errors is supported by version 1.04 or higher.

Automation Software Sysmac Studio

Item			Function	Applicable versions
Setting Parameters	Cam Data Settings		The Cam Data Settings are used to create electronic cam data. When you build the project for the Controller, a cam table is created according to the Cam Data Settings.	All versions
		Registering cam data settings	Cam data settings is added to the project.	
		Editing cam data settings	You can set properties and node points for cam data settings.	
		Transferring cam data settings	You can select to transfer all or part of the cam data.	
		Importing cam data settings	You can import cam data settings from a CSV file.	
		Exporting cam data settings	You can export cam data to a CSV file.	
		Exporting cam tables	You can export a cam table to a CSV file.	
		Transferring cam tables from the Controller to files	You can save a cam table in the NJ -series CPU unit to a CSV file.	
		Transferring cam tables from files to the Controller	You can transfer a cam table that is saved in a CSV file to update the contents of a cam table that is already in the NJ -series CPU unit.	
		Superimposing Cam Table	You can superimpose the cam table from a CSV file on the cam profile curve position graph that is currently displayed.	
	Task Setup		Programs are executed in tasks in an NJ -series CPU Unit. The Task Settings define the execution period, the execution timing, the programs executed by the task, the I/ O refreshing performed by the task, and which variables to share between tasks.	All versions
		Registering tasks	The tasks, which are used to execute programs, are registered.	
		Setting task I/O	The task I/O settings define what Units the task should perform I/O refreshing for.	
		Assigning programs	Program assignments define what programs a task will execute.	
		Setting exclusive control of variables in tasks	You can specify if a task can write to its own values (known as a refreshing task) or if it can only access them (an accessing task) for global variables. This ensures concurrency for global variable values from all tasks that reference them.	
	I/O Map Settings		The I/O ports that correspond to the registered EtherCAT slaves and to the registered Units on the CPU Rack and Expansion Racks are displayed. The I/O Map is edited to assign variables to I/O ports. The variables are used in the user program.	All versions
		Displaying I/O ports	I/O ports are displayed based on the configuration information of the devices (slaves and Units).	
		Assigning variables	Variables are assigned to I/O ports.	
		Creating device variables	Device variables are created in the I/O Map. You can either automatically create a device variable or manually enter the device variable to create.	
		Checking I/O assignments	The assignments of external I/O devices and variables are checked.	
	Vision Sensor Settings		You can set and calibrate Vision Sensors. Refer to "Function Specifications of Vision Sensor Functions".	Ver.1.01 or higher
	Displacement Sensor Settings		You can set and calibrate Displacement Sensors. Refer to "Function Specifications of Displacement Sensor Functions".	Ver. 1.05 or higher
	DB Connection Function Settings		You can set and transfer the DB connection function settings. Refer to "Function Specifications of DB Connection Function".	Ver. 1.06 or higher with the NJ501-1 $\square 20$ selected
Programming	Instruction list (Toolbox)		A hierarchy of the instructions that you can use is displayed in the Toolbox. You can drag the required instruction to a program in the Ladder Editor to insert the instruction.	All versions
	Programming ladder diagrams		Ladder diagram programming involves connecting rung components with connecting lines to build algorithms. Rung components and connecting lines are entered in the Ladder Editor.	All versions
		Starting the Ladder Editor	The Ladder Editor for the program is started.	
		Adding and deleting sections	You can divide your ladder diagrams into smaller units for easier management. These units of division are called sections.	
		Inserting rung components	You insert rung components in the Ladder Editor to create an algorithm.	
		Inserting and deleting function blocks	You can insert a function block instruction or user-defined function block into the Ladder Editor.	
		Inserting and deleting functions	You can insert a function instruction or user-defined function into the Ladder Editor.	
		Inserting and deleting inline ST	You can insert a rung component in a ladder diagram to enable programming in ST. This allows you to include ST in a ladder diagram.	
		Editing rung components	You can copy and past rung components.	
		Inserting and deleting jump labels and jumps	You can insert a jump label in the rung to jump to and then specify that jump label when you insert a jump.	
		Inserting and deleting bookmarks	You can add bookmarks to the beginning of rungs and move between them.	
		Rung comments	You can add comments to rungs.	
		Displaying rung errors	When you enter a rung component, the format is always checked and any mistakes are displayed as errors. If there are any errors, a red line is displayed between the rung number and the left bus bar.	
		Entry assistance	When you enter instructions or parameters, each character that you enter from the keyboard narrows the list of candidates that is displayed for selection.	
		Displaying variable comments $* 2$	A specified variable comment can be displayed with each variable of rung components on the ladder diagrams. You can change the length of the displayed variable comments to make them easier to read. $* 3$	Ver.1.01 or higher

*2. Displaying comments for members of arrays, structures, and unions and displaying long comments for variables (up to five lines) are supported by version 1.04 or higher. *3. Changing the length of the displayed variable comments is supported by version 1.05 or higher.

Automation Software Sysmac Studio

Item			Function	Applicable versions
Programming	Programming structured text		You combine different ST statements to build algorithms.	All versions
		Starting the ST Editor	The ST Editor for programs or for functions/function blocks is started.	
		Editing ST	You combine different ST statements to build algorithms.	
		Entering calls to functions and function blocks	You can enter the first character of the instance name of the function or the function block in the ST Editor to call and enter a function or function block.	
		Entering constants	You can enter constants in the ST Editor.	
		Entering comments	Enter "(*" at the beginning and "*)" at the end of any text to be treated as a comment in the ST Editor. If you only want to comment out a single line, enter a double forward slash $(/ /)$ at the beginning of the line.	
		Copying, pasting, and deleting ST elements	You can copy, paste, and delete text strings.	
		Indenting	You can indent nested statements to make them easier to read.	
		Moving to a specified line	You can specify a line number to jump directly to that line.	
		Bookmarks	You can add bookmarks to any lines and move between them.	
		Entry assistance	When you enter instructions or parameters, each character that you enter from the keyboard narrows the list of candidates that is displayed for selection.	
	Variable Manager		A list of the variables in the global and local variable tables is displayed in a separate window. You can display variable usage, sort and filter the variables, edit and delete variables, or move variables while displaying another editing view.	Ver.1.04 or higher
	Changing variable comments and data type comments		You can globally change variable comments and data type comments to other comments. You can change the comments to different language for users in a different country.	
	Searching and replacing		You can search for and replace strings in the data of a project.	All versions
	Retrace searching		You can search for the program inputs and the input parameters to functions or function blocks that use the selected variable if the selected variable is used as a program output or as the output parameter of a function or function block. Also, you can search for the program outputs and the output parameters to functions or function blocks that use the selected variable if the selected variable is used as a program input or as the input parameter of a function or function block.	Ver.1.01 or higher
	Jumping		You can jump to the specified rung number or line number in the program.	All versions
	Building	Building	The programs in the project are converted into a format that is executable in the NJ series CPU unit.	
		Rebuilding	A rebuild is used to build project programs that have already been built.	
		Aborting a build operation	You can abort a build operation.	
Reuse Functions	Library		You can create functions, function block definitions, programs $* 4$, and data types in a library file to use them as objects in other projects.	Ver. 1.02 or higher
		Creating libraries	You can create library files to enable using functions, function block definitions, and data types in other projects.	
		Using libraries	You can access and reuse objects from library files that were created in other projects.	
File Operations	File operations	Creating a project file	A project file is created.	All versions
		Opening a project file	A project file is opened.	
		Saving the project file	The project file is saved.	
		Saving a project file under a different name	A project file is saved under a different name.	
		Project update history management	You can assign numbers to projects to manage the project history.	Ver.1.03 or higher
		Exporting a project file	You can export a project to an .smc2 or .csm2 project file $* 7$. You can also export a project to a previous project file format, i.e., .smc or .csm.*3.	All versions
		Importing a project file	You can import a project from an .smc2 $* 7$. csm2 $* 7$, .smc, or .csm $* 5$ project file.	
		Importing a ST project file	Import of ST program files created by the Simulink ${ }^{\circledR}$ PLC Coder ${ }^{\text {TM }}$ (version R2013a or higher) from MathWorks ${ }^{\circledR}$ Inc.	Ver.1.04 or higher
		Offline comparison	You can compare the data for an open project with the data for a project file and display the results. You can also compare the open project with an exported .smc2 *7 or .smc project file. Or, you can merge detailed comparison results. *6	Ver.1.02 or higher
	Cutting, copying, and pasting		You can cut, copy, or paste items that are selected in the Multiview Explorer or any of the editors.	All versions
	Synchronize		The project file in the computer is compared with the data in the online NJ -series CPU Unit and any differences are displayed. You can specify the transfer direction for any type of data and transfer all of the data.	
	Printing		You can print various data. You can select the items to print.	
	Clear All Memory		The Clear All Memory Menu command is used to initialize the user program, Controller Configurations and Setup, and variables in the CPU Unit to the defaults from the Sysmac Studio.	

*4. Creating programs in a library file is supported by version 1.06 or higher.
$* 5$. The .csm format is supported by version 1.04 or higher. The size of a csm file is smaller than the size of the smc file.
*6. Merging detailed comparison results is supported by version 1.03 or higher.
*7. Supported only by the Sysmac Studio version 1.08 or higher.

Automation Software Sysmac Studio

Item		Function	Applicable versions
File Operations	SD Memory Cards	The following procedures are used to execute file operations for the SD Memory Card mounted in the NJ -series CPU unit and to copy files between the SD Memory Card and computer.	All versions
	Formatting the SD Memory Card	The SD Memory Card is formatted.	
	Displaying properties	The properties of the selected file or folder in the SD Memory Card are displayed.	
	Copying files and folders in the SD Memory Card	The selected file or folder in the SD Memory Card is copied to the SD Memory Card.	
	Copying files and folders between the SD Memory Card and the computer	The selected file or folder in the SD Memory Card is copied to the computer. Or, the selected file or folder in the computer is copied to the SD Memory Card.	
Debugging	Monitoring	Variables are monitored during ladder program execution. You can monitor the TRUE/ FALSE status of inputs and outputs and the present values of variables in the NJ-series CPU unit. You can monitor operation on the Ladder Editor, ST Editor, Watch Tab Page, or I/O Map.	
	Differential monitoring	You can detect the number of times the specified BOOL variable or BOOL member changes to TRUE or FALSE and display the count in the Differential Monitor Window. You can check if bits turn ON and OFF and the number of times that they turn ON and OFF.	Ver. 1.04 or higher
	Changing present values and TRUE/ FALSE	You can change the values of variables that are used in the user program and settings to any desired value, and you can change program inputs and outputs to TRUE or FALSE. This allows you to check the operation of the user program and settings.	All versions
	Changing the present values of variables $* 8$	You can change the present values of user-defined variables, system-defined variables, and device variables as required. You can do this in the Ladder Editor, ST Editor, Watch Tab Page or I/O Map.	
	Forced refreshing	Forced refreshing allows the user to refresh external inputs and outputs with userspecified values from the Sysmac Studio. The specified value is retained even if the value of the variable is overwritten from the user program. You can use forced refreshing to force BOOL variables to TRUE or FALSE in the Ladder Editor, Watch Tab Page, or I/O Map.	
	Online editing	Online editing allows you to edit programs on systems that are currently in operation. Online editing can be used to edit only POUs and global variables. User-defined data types cannot be edited with online editing.	
	Cross Reference Tab Page	Cross references allow you to see the programs and locations where program elements (variables, data types, I/O ports, functions, or function blocks) are used. You can view all locations where an element is used from this list.	
	Data tracing	Data tracing allows you to sample the specified variables and store the values of the variables in trace memory without any programming. You can choose between two continuous trace methods: a triggered trace, where you set a trigger condition and data is saved before and after that condition is met, or a continuous trace, in which continuous sampling is performed without any trigger and the results are stored in a file on your computer. However, you can still display data retrieved on the Sysmac Studio and save those results to a file even if you use a triggered trace. These same functions can be used with the Simulator as well.	All versions
	Setting sampling intervals	The interval to perform sampling on the target data is set. Sampling is performed for the specified task period, at the specified time, or when a trace sampling instruction is executed.	
	Setting triggers	To perform a triggered trace, you set a condition to trigger sampling. A suitable trigger condition is set to record data before and after an event.	
	Setting a continuous trace	The method to save the data traced during a continuous trace is set.	
	Setting variables to sample	The variables to store in trace memory are registered. The sampling intervals can also be set.	
	Starting and stopping tracing	The data trace settings are transferred to the NJ -series CPU unit and the tracing starts. If you selected Trigger (Single) as the trace type, tracing waits for the trigger to begin sampling. If you selected Continuous, sampling begins immediately and all traced data is transferred to the computer as it is gathered and saved to a file.	
	Displaying trace results	You view the results of the traced data in either a chart or in 3D Motion Trace Display Mode. After sampling begins, sample data is immediately transferred and drawn on the graph. The trace target variable table shows the maximum, minimum, and average values for each variable. You can change the line colors on the graph. *9 You can consecutively read and display continuous trace results from more than one file. *10	
	Exporting/ Importing trace results	Trace results are saved within your project automatically when you save the project on the Sysmac Studio. If you want to save this data as a separate file, you can export the data to a CSV file.You can import trace results that you have exported.	
	Printing trace results	You can print out data trace settings along with digital and analog charts.	
	Debugging Vision Sensors	You can debug the Vision Sensor offline. Refer to "Function Specifications of Vision Sensor Functions".	Ver. 1.01 or higher
	Debugging Displacement Sensors	You can debug Displacement Sensors offline. Refer to "Function Specifications of Displacement Sensor Functions".	Ver. 1.05 or higher

*8. Changing present values in the Ladder Editor or ST Editor is supported by version 1.03 or higher.
*9. Changing the colors of graph lines is supported by version 1.01 or higher.
*10.Consecutively reading and displaying continuous trace results from more than one file is supported by version 1.05 or higher.

Automation Software Sysmac Studio

Automation Software Sysmac Studio

Item			Function	Applicable versions
Security Measures	Prevention of incorrect connections	Confirming NJ-series CPU unit names and serial IDs	If the name or the serial ID is different between the project and the NJ-series CPU unit when an online connection is established, a confirmation dialog box is displayed.	All versions
	Prevention of incorrect operation	Operation authority verification	You can set five operation authorities (Administrator, Planning Engineer, Maintainer, Operator, and Observer) to restrict the operations that can be performed according to the operation authority of the user.	
		Write protection of the CPU Unit	You can prevent rewriting of data in the CPU Unit from the Sysmac Studio.	
	Prevention of the theft of assets	Authentication of user program execution IDs	You can ensure that a user program cannot be operated on another CPU Unit even if copied.	
		User program transfer with no restoration information	The program source code is not transferred. If this option is selected, programs are not displayed even if uploaded from another computer. However, variables and settings are transferred even if this option is selected.	
		Password protection for project files	You can place a password on the file to protect your assets.	
		Data protection	You can set passwords for individual POUs (programs, functions, and function block definitions) to prohibit displaying, changing, and copying them.	Ver.1.02 or higher
Online Help	Sysmac Studio help system		You can access Sysmac Studio operating procedures.	All versions
	Instructions reference		Information is provided on how to use the instructions that are supported by the NJseries CPU Units.	
	System-defined variable reference		You can display a list of descriptions of the system-defined variables that you can use on the Sysmac Studio.	
	Keyboard mapping reference		You can display a list of convenient shortcut keys that you can use on the Sysmac Studio.	

Function Specifications of DB Connection Function

Item
Setting parameters
\qquadDBMS settings Function Run mode setting of the DB connection service The database to connect is selected. Spooling settings The Operation Mode is selected to send SQL statements when DB connection instructions are executed or Test Mode is selected to not send SQL statements when DB connection instructions are executed. Operation log settings You can set the service so that SQL statements are spooled when problems occur and resent when operation is restored. Database connection service shutdown settings Settings are made for the execution log for execution of the DB connection service, the debug log for execution of SQL statements for the DB connection service, and the SQL execution failure log for SQL execution failures. Settings are made to control operation in order to end the DB connection service after automatically storing the operation log files on an SD Memory Card. You can use the following DB connection instructions to write the user program for controlling the data in the database. DB_Insert (Insert DB Record), DB_Select (Retrieve DB Record), DB_Update (Update DB Record), and DB_Delete (Delete DB Record) Monitoring information DB connection instructions Monitoring the DB connection service The status of the DB connection service is monitored. Monitoring the DB connections The status of each DB connection is monitored. Displaying the operation logs The contents of the execution log, debug log, and SQL execution failure log are displayed.

Note: The DB connection service can be used if the NJ501-1 $\square 20$ is selected with Sysmac Studio version 1.06 or higher.

Automation Software Sysmac Studio

Function Specifications of Safety Control Units

Item			Function
Setting Parameters	Safety l/O Settings		You make a setting for safety process data communications and connection with safety I/O devices.
		Safety Process Data Communications Settings	You select Safety I/O Units to perform safety process data communications (FSoE communications) and make necessary settings.
		Safety Device Allocation Settings	You set the connection between Safety I/O Units and safety devices.
	Slave I/O Settings Sale	Exposed Variable Settings	You set whether to expose global variables of the Safety CPU Unit. The values of exposed variables can be referenced from NJ -series CPU Units.
	Safety Task Settings		You define the execution cycle and timing of the safety task and programs to be executed in the task.
		Assigning Programs	You assign safety programs to execute to the task.
	I/O Map Settings		The ports of Safety I/O Units used in safety process data communications are displayed. You assign device variables used in safety programs to the I/O ports.
Creating Safety Programs	Instruction List (Toolbox)		A hierarchy of the functions and function blocks that you can use is displayed in the Toolbox. You can drag the required functions and function blocks onto the FBD editor to insert it to a safety program.
	FBD Programming		You connect variables, functions, and function blocks with connecting lines to build networks. The FBD editor is used to enter them.
		Adding FBD Networks	You create FBD networks on the FBD editor to create algorithms.
		Inserting and Deleting Functions and Function blocks	You insert and delete functions and function blocks on the FBD editor.
		Entry Assistance	When you enter functions, function blocks, or parameters, each character that you enter from the keyboard narrows the list of candidates that is displayed for selection.
		Commenting Out FBD Networks	You can comment out each FBD network. When a network is commented out, it is no longer executed.
Creating Safety Programs	Creating Variables		You create variables used in safety programs in the global or local variable table.
	Creating Function Blocks		You create user-defined function blocks.
	Searching and Replacing		You can search for and replace strings in the variable tables, programs, and function blocks of a Safety CPU Unit.
Debugging	Monitoring		Variables are monitored during safety program execution. You can monitor the present values of device variables assigned to Safety I/O Units and user-defined variables. The values can be monitored on the FBD editor or Watch Tab Page.
	Changing the Present Values of Variables		You can change the present values of user-defined variables and device variables as required. You can do this on the FBD editor or Watch Tab Page.
	Forced Refreshing		The inputs from external devices and outputs to external devices are refreshed with a specified value on the Sysmac Studio. The specified value is retained even if the value of the variable is overwritten from the user program. You can use forced refreshing on the FBD editor or Watch Tab Page.
	Offline Debugging		You can check if the control program logic works as designed in advance using a special debugging function for the Simulator without connecting online with the Safety CPU Unit.
Safety	Safety Validation		You append the "safety-validated" information to a safety program when you can ensure safety of the program after you complete debugging.
	Changing Operating Mode		There are four operating modes; PROGRAM mode, DEBUG mode (STOPPED), DEBUG mode (RUN), and RUN mode. The RUN mode can be selected only for the validated safety programs.
Security Measures	Prevention of Incorrect Connections	Setting the Node Name	You set a unique name for each Safety CPU Unit to confirm that you operate the correct Safety CPU Unit.
	Prevention of Incorrect Operation	Safety Password	You can prevent unauthorized access to safety functions of Safety CPU Units by setting a safety password for online operations that affect the safety functions.

Note: Supported only by the Sysmac Studio version 1.07 or higher.

Automation Software Sysmac Studio

Function Specifications of Vision Sensor Functions

FQ-M-series Vision Sensors

Item		Function
Setting Parameters		-
Main Edit	General Settings	Displays and sets basic information of the sensor.
	Sensor connection	Changes the connection status of the Sensor, and sets the conditions for communications with the Sensor.
	Sensor control in online	Performs various controls for the sensor mode change, data transfer/save, and monitoring.
	Sensor error history	Displays and clears the error history of an online Sensor.
	Tool	Restarts and initializes the sensor, updates the firmware of the sensor, reads sensor data from a file, saves sensor data to a file, prints the sensor parameters, and displays help.
Scene data Edit	Image condition Settings	Adjusts the image condition.
	Specifies the calibration pattern	Sets a registered calibration pattern.
	Registers inspection item	Registers the inspection item to use in the measurement. You can select from the following inspection items: Edge position, Search, Labeling, Shape search
	Calculation Settings	Makes a setting for basic arithmetic operations and function operations using inspection item judgment results and measurement data.
	Logging Settings	Makes a setting for logging measurement results of inspection items and calculation results.
	Output Settings	Makes a setting for data to output to external devices.
	Run Settings	Switch Sensor modes or monitors measurement results.
Sensor system data Edit	Trigger condition Settings	Sets the trigger type and image timing.
	I/O Settings	Sets the conditions of output signals. You can check the status of I/O signal while online.
	Encoder Settings	Make settings for the encoder such as common encoder settings, ring counter settings, and encoder trigger settings.
	Ethernet communication Settings	Makes Ethernet communication settings. You can select data communication from no-protocol data, PLC link data, and programmable no-protocol data.
	EtherCAT communication Settings	Makes the EtherCAT communication settings according to the communication settings of the EtherCAT master.
	Logging condition Settings	Sets the conditions to log to the internal memory of sensor.
	Sensor Settings	Makes the settings for startup scene control function, password setting function, and adjustment judgment function.
Calibration Scene Data Settings		Calculates, views, and edits the calibration parameters. The Vision Sensor supports general-purpose calibration and calibration for conveyor tracking.
Debugging	Offline debugging of sensor operation	Simulates measurements offline without connecting to the Vision Sensor. You can use external image files and perform measurements under the conditions set in the offline settings, then display the results of those measurements.
	Offline debugging of the sensor control program and sensor operation	Performs a linked simulation between the sequence control of an NJ -series Controller and the operation of an FQ-M Sensor in EtherCAT configuration systems. This allows you to debug operation offline from when measurements and other processing are performed for control signals such as measurement triggers through the output of processing results.

Note: Supported only by the Sysmac Studio version 1.01 or higher.

Automation Software Sysmac Studio

FH-series Vision Sensors

Item		Function
Setting Parameters		-
Main Edit	Sensor Information	Displays and sets basic information of the sensor.
	Online	Changes the connection status of the sensor, and performs various controls such as sensor restart and initialization.
Line Edit	Operation View	Monitors the measurement images of the sensor and detailed results of each process unit.
	Scene Maintenance View	Edits, manages, and saves the scene groups and scenes.
Scene Data Edit	Flow Edit	Creates the process flow in combination of user-specified units.
	Process Unit Edit	Edits each process unit.
Sensor System Data Edit	Camera Settings	Checks the camera connection status and sets the camera's imaging timing and communications speed.
	Controller Settings	Makes the system environment settings for the sensor.
	Parallel I/O Settings	Sets the conditions of output signals.
	RS-232C/422 Settings	Makes the RS-232C/422 communications settings.
	Ethernet Communication Settings	Makes the Ethernet communication settings.
	EtherNet/IP Communication Settings	Makes the EtherNet/IP communications settings.
	EtherCAT Communication Settings	Makes the EtherCAT communications settings.
	Encoder Settings	Makes the encoder settings.
Tools	Communication Command Customization Tool	Makes the settings for customized communication commands.
	File Saving Tool	Copies and transfers the files in the sensor memory.
	Calibration Support Tool	Checks the calibration information.
	User Data Tool	Edits the data (user data) that can be shared and used in sensors.
Debugging	Offline Debugging of Sensor Operation	Simulates measurements offline without connecting to the sensor. You can use external image files and perform measurements under the conditions set in the offline settings, then display the results of those measurements.
	Offline Debugging of Sensor Control Program and Sensor Operation *	Simulates the linked operation of the sequence controls in the NJ-series Controller and FH-series Sensor operation for an EtherCAT system. You can debug a series of operations offline to perform the measurement and other processing and output the results when a control signal such as measurement trigger is input to the Sensor.

Note: Supported only by the Sysmac Studio version 1.07 or higher.

* Supported only by the Sysmac Studio version 1.08 or higher.

Automation Software Sysmac Studio

Function Specifications of Displacement Sensor Functions

Item		Function
Setting Parameters		-
Main Editing	General Settings	Displays and sets basic information on the Sensor.
	Sensor Connection	Changes the connection status of the Sensor, and sets the conditions for communications with the Sensor.
	Online Sensor Control	Performs various controls for the Sensor (e.g., changing the mode, controlling internal logging, and monitoring).
	Tools	Restarts and initializes the Sensor, updates the firmware in the Sensor, recovers ROM data, prints the Sensor parameters, and displays help.
Editing Bank Data	Setting Sensing Conditions	Adjusts the light reception conditions for each measurement region.
	Setting Task Conditions	Used to select the measurement items to use in measurements. You can select from the height, thickness, or calculations. The following are set for the measurement items: scaling, filters, holding, zero-resetting, and judgement conditions.
	Setting I/O Conditions	Sets parameters for outputting judgements and analog values to external devices.
Editing Bank Data	Sensor Settings	Sets the following: ZW Sensor Controller's key lock, number of displayed digits below the decimal point, the bank mode, the analog output mode, and timing/reset key inputs.
	Ethernet Communications Settings	Sets up Ethernet communications and field bus parameters.
	RS-232C Communications Settings	Sets up RS-232C communications.
	Data Output Settings	Sets serial output parameters for holding values.
Debugging	Offline Debugging of Sensor Control Programs and Sensor Operation	Performs a linked simulation between the sequence control of an NJ -series Controller and the operation of a ZW Sensor in EtherCAT configuration systems. This allows you to simulate the operation of signals when timing signals and other control signals are input to the Sensor to debug the control logic offline.

Note: Supported only by Sysmac Studio version 1.05 or higher.

Version Information

Please refer to "Change history" in the website at: www.fa.omron.co.jp/ss_rev_e/.

Web Support Services

Category	
Online User Registration	You can register online as a user of Sysmac Studio.
Automatic Update	With the automatic update function of Sysmac Studio, the latest update information for your computer environment can be searched for and applied using the Internet. Your Sysmac Studio can be constantly updated to the latest state.

Applicable Models

Series		Unit version	Model	
CPU Unit	NJ -series	-	$\begin{aligned} & \hline \text { NJ501- } \square \square \square \square^{*} \\ & \text { NJ301- } \square \square \square \square \end{aligned}$	
Servo Drives	G5-series	Servo Drives with unit version 2.1 or higher recommended	$\begin{aligned} & \text { R88D-KN } \square-E C T \\ & \text { R88D-KND-ECT-L } \end{aligned}$	
Inverters	MX2-series	Inverters with version 1.1 or higher *2	$3 \mathrm{G} 3 \mathrm{MX2-A} \mathrm{\square} \mathrm{\square} \mathrm{\square} \mathrm{\square(-V1)}$	
	RX-series	Inverters with version 2.0 or higher *3	3G3RX-A $\square \square \square \square-\mathrm{V} 1$	
Vision Sensors	FQ-series *4	-	$\begin{aligned} & \text { FQ-MS12 } \square \text {-ECT } \\ & \text { FQ-MS12П-M-ECT } \\ & \text { FQ-MS12■ } \\ & \text { FQ-MS12 } \square \text {-M } \end{aligned}$	
	FQ-series *5	-	$\begin{aligned} & \text { FH-1050 } \\ & \text { FH-1050-10 } \\ & \text { FH-1050-20 } \\ & \text { FH-3050 } \\ & \text { FH-3050-10 } \\ & \text { FH-3050-20 } \end{aligned}$	
Displacement Sensors *6	ZW-series	-	$\begin{aligned} & \text { ZW-CE1 } \\ & \text { ZW-CE1 } \\ & \text { ZW-C1 } \\ & \text { ZW-C1 } \end{aligned}$	
Fiber Sensors, Laser Sensors *6 *7	N-Smart E3NX E3NC	-	$\begin{aligned} & \text { E3NX-FAO } \\ & \text { E3NC-LAO/SAO } \end{aligned}$	
Fiber Sensors, Laser Photoelectric Sensors, Proximity Sensors *8 *9	$\begin{aligned} & \text { E3X } \\ & \text { E3C } \\ & \text { E2C } \end{aligned}$	-	$\begin{aligned} & \text { E3X-HDO/MDAO/DAO-S } \\ & \text { E3C-LDA0 } \\ & \text { E2C-EDA0 } \end{aligned}$	
EtherCAT Remote I/O Terminals *10	NX-series	-		
Safety Control Units *5 * 3	NX-series	-	$\begin{aligned} & \text { NX-SL3300 } \\ & \text { NX-SL3500 *12 } \\ & \text { NX-SIH400 } \\ & \text { NX-SID800 } \\ & \text { NX-SOH200 } \\ & \text { NX-SOD400 } \end{aligned}$	
Remote I/O Terminals	GX-series	Remote I/O Terminals with unit version 1.1 or higher recommended	$\begin{aligned} & \text { GX-ID16 } \square 2 / \mathrm{OD} 16 \square 2 / \mathrm{MD} 16 \square 2 \\ & \text { GX-ロD16 } \square 1 / \mathrm{OC} 1601 \\ & \text { GX-AD0471/DA0271 } \\ & \text { GX-EC0211/EC0241 } \end{aligned}$	$\begin{aligned} & \frac{8}{0} \\ & \frac{0}{0} \\ & \frac{2}{0} \\ & \frac{0}{0} \end{aligned}$
HMIs	NS-series	To connect the NJ5 Controller : NS system version 8.5 or higher CX-Designer version 3.3 or higher To connect the NJ3 Controller : NS system version 8.61 or higher CX-Designer version 3.4 or higher	```NS5-MQ11 (B)-V2/-SQ11(B)-V2/-TQ11 (B)-V2 NS8-TV01(B)-V2 NS10-TV01 (B)-V2 NS12-TS01 (B)-V2 NS15-TX01S-V2/-TX01B-V2```	

Note: For the Unit that can be connected, refer to "Unit Configuration" of "Machine Automation Controller NJ-Series" of System Design Guide on the Sysmac Catalogue (Cat. No. P072).
*1. NJ501-1■20 can be used with Sysmac Studio version 1.06 or higher.
*2. A communications unit for connecting to EtherCAT network (3G3AX-MX2-ECT with unit version 1.1 or higher) is additionally required.
*3. A communications unit for connecting to EtherCAT network (3G3AX-RX-ECT) is additionally required.
*4. Supported only by Sysmac Studio version 1.01 or higher.
*5. Supported only by Sysmac Studio version V1.07 or higher.
*6. Supported only by Sysmac Studio version 1.05 or higher.
*7. A communications unit for connecting to EtherCAT network (E3NW-ECT) is additionally required.
*8. Supported only by Sysmac Studio version 1.02 or higher.
$* 9$. A communications unit for connecting to EtherCAT network (E3X-ECT) is additionally required.
*10. Supported only by Sysmac Studio version 1.06 or higher.
*11. When NX-ID3344/3444 and NX-OD2154/2258 are used, a communications unit for connecting to EtherCAT Coupler Unit (NX-ECC201 with unit version 1.1 or higher) is additionally required.
*12. Supported only by Sysmac Studio version 1.08 or higher.
*13. A communications unit for connecting to EtherCAT Coupler Unit (NX-ECC201 with unit version 1.1 or higher) is additionally required.
*14. NX-TS2102/2104/2202/2204/3102/3104/3202 can be used with Sysmac Studio version 1.08 or higher.

High-speed, High-precision Slice Type

- EtherCAT Coupler Unit 4A, 10A
- Digital Input Unit 4, 8, 16 Points
- Digital Output Unit 2, 4, 8, 16 Points
- Analog Input Unit 2, 4, 8 Points
- Analog Output Unit 2, 4 Points
- Temperature Input Unit 2, 4 Points
- Position Interface Unit 1, 2CH
- System Unit
- Safety Control Units Safety CPU Unit Safety Input Unit 4, 8 Points Safety Output Unit 2, 4 Points

Features

- Up to 63 NX-IO Units can be connected to one EtherCAT Coupler Unit. Standard and high-performance units can be mixed. *
- Each Coupler plus its I/O form just a single EtherCAT node on the network.
- I/O control and safety control can be integrated by connecting Units for safety.
- The Coupler supports the EtherCAT Distributed Clock (DC) and propagates this to synchronous I/O units.
- The node address can be fixed by rotary switches, or set by software. Choose the method that best suits your way of engineering.
- Slave configuration by Sysmac Studio can be done centrally via the controller, or on-the-spot using the Coupler's built-in USB port.
* Input per Coupler Unit: Maximum 1024 bytes, Output per Coupler Unit: Maximum 1024 bytes

Unit Configuration

Basic System

Configuration Units

EtherCAT Coupler Unit

Unit	Model	
	4A	10A
EtherCAT Coupler Unit	NX-ECC201	NX-ECC202

I/O Units

Unit	Model			
	2-point Units	4-point Units	8-point Units	16-point Units
Digital Input Unit	-	$\begin{aligned} & \text { NX-ID3317 } \\ & \text { NX-ID3343 } \\ & \text { NX-ID3344 } \\ & \text { NX-ID3417 } \\ & \text { NX-ID3443 } \\ & \text { NX-ID3444 } \\ & \text { NX-IA3117 } \end{aligned}$	$\begin{aligned} & \text { NX-ID4342 } \\ & \text { NX-ID4442 } \end{aligned}$	$\begin{aligned} & \text { NX-ID5342 } \\ & \text { NX-ID5442 } \end{aligned}$
Digital Output Unit	$\begin{aligned} & \text { NX-OD2154 } \\ & \text { NX-OD2258 } \\ & \text { NX-OC2633 } \\ & \text { NX-OC2733 } \end{aligned}$	$\begin{aligned} & \text { NX-OD3121 } \\ & \text { NX-OD3153 } \\ & \text { NX-OD3256 } \\ & \text { NX-OD3257 } \end{aligned}$	$\begin{aligned} & \text { NX-OD4121 } \\ & \text { NX-OD4256 } \end{aligned}$	$\begin{aligned} & \text { NX-OD5121 } \\ & \text { NX-OD5256 } \end{aligned}$
Analog Input Unit	NX-AD2603 NX-AD2604 NX-AD2608 NX-AD2203 NX-AD2204 NX-AD2208	NX-AD3603 NX-AD3604 NX-AD3608 NX-AD3203 NX-AD3204 NX-AD3208	NX-AD4603 NX-AD4604 NX-AD4608 NX-AD4203 NX-AD4204 NX-AD4208	-
Analog Output Unit	$\begin{aligned} & \text { NX-DA2603 } \\ & \text { NX-DA2605 } \\ & \text { NX-DA2203 } \\ & \text { NX-DA2205 } \end{aligned}$	$\begin{aligned} & \text { NX-DA3603 } \\ & \text { NX-DA3605 } \\ & \text { NX-DA3203 } \\ & \text { NX-DA3205 } \end{aligned}$	-	-
Temperature Input Unit	NX-TS2101 NX-TS2102 NX-TS2104 NX-TS2201 NX-TS2202 NX-TS2204	NX-TS3101 NX-TS3102 NX-TS3104 NX-TS3201 NX-TS3202 NX-TS3204	-	-

Position Interface Unit

Unit	Model		
	$\mathbf{1 C H}$	2CH	
Incremental Encoder Input Unit	NX-EC0122 NX-EC0142	NX-EC0222	
SSI Input Unit	NX-ECS112	NX-ECS212	
Pulse Output Unit	NX-PG0122		-

System Units

Unit	Model
Additional NX Unit Power Supply Unit	NX-PD1000
Additional I/O Power Supply Unit	NX-PF0630
	NX-PF0730
I/O Power Supply Connection Unit	NX-PC0010
	NX-PC0020
	NX-PC0030
Shield Connection Unit	NX-TBX01

Safety Control Units

Unit	
Safety CPU Unit	NX-SL3300 Model
SX-SL3500	
Safety Input Unit	NX-SIH400
NX-SID800	
Safety Output Unit	NX-SOH200

Power Supply System Configuration Diagram

Note: Always use separate power supplies for the Unit power supply and the I/O power supply. If you supply power from the same power supply, noise may cause malfunctions.

Power Supply System and Design Concepts

Designing the NX Unit Power Supply System

For designing the NX Unit power supply of the EtherCAT Slave Terminal, refer to EtherCAT Coupler Unit USER'S MANUAL (Cat. W519).

Designing the I/O Power Supply System

For designing the NX Unit power supply of the EtherCAT Slave Terminal, refer to EtherCAT Coupler Unit USER'S MANUAL (Cat. W519).

Components and Functions

EtherCAT Coupler Unit NX-ECC $\square \square$

Symbol	Name	Function
(A)	NX bus connector	This connector is used to connect each Unit.
(B)	Indicators	The indicators show the current operating status of the Unit.
(C)	Communications connectors	These connectors are connected to the communications cables of the EtherCAT network. There are two connectors, one for the input port and one for the output port.
(D)	Peripheral USB port	This port is used to connect to the Sysmac Studio Support Software.
(E)	Terminal block	The terminal block is used to connect external devices. The number of terminals depends on the type of Unit.
(F)	Rotary switches	These rotary switches are used to set the 1s digit and 10s digit of the node address of the EtherCAT Coupler Unit as an EtherCAT slave. The address is set in decimal.
(G)	DIP switch	The DIP switch is used to set the 100s digit of the node address of the EtherCAT Coupler Unit as an EtherCAT slave.

I/O Unit NX- $\square \square \square \square \square$

12mm Width

Symbol	Name	Function
(A)	NX bus connector	This connector is used to connect each Unit.
(B)	Indicators	The indicators show the current operating status of the Unit.
(C)	Terminal block	The terminal block is used to connect external devices. The number of terminals depends on the type of Unit.

24mm Width

Terminal Blocks

12 mm width 8-terminal type

12 mm width
12-terminal type

12 mm width
16-terminal type

24 mm width
12-terminal type $\times 2$

Symbol	Name	Function
(A)	Terminal number indications	Terminal numbers for which A to D indicate the column, and 1 to 8 indicate the line are displayed. The terminal number is a combination of column and line, so A1 to A8 and B1 to B8 are displayed. For models of 12-terminal type x 2 and 16-terminal type x 2, A1 to A8 and B1 to B8 are terminal number of the left terminal block, C1 to C8 and D1 to D8 are terminal numbers of the right terminal block. The terminal number indications are the same regardless of the number of terminals on the terminal block.
(B)	Release holes	Insert a flat-blade screwdriver into these holes to connect and remove the wires.
(C)	Terminal holes	The wires are inserted into these holes.

The following Terminal Blocks can be purchased individually.

Model	No. of terminals	Terminal number indications	Ground terminal mark	Terminal current capacity
NX-TBA082	8	A/B		
NX-TBA122	12	A/B	None	
NX-TBA162	16	A/B		10 A
NX-TBB122	12	C/D		
NX-TBB162	16	C/D		
NX-TBC082	8	A/B	Provided	
NX-TBC062	16	A/B		

Note: Refer to the user's manual of each Unit for the applicable Terminal Blocks.

Applicable Wires

Using Ferrules

If you use ferrules, attach the twisted wires to them.
Observe the application instructions for your ferrules for the wire stripping length when attaching ferrules.
Always use one-pin ferrules. Do not use two-pin ferrules.

The applicable ferrules, wires, and crimping tool are given in the following table.

Terminal types	Manufacturer	Ferrule model number	Applicable wire (mm^{2} (AWG))	Crimping tool
Terminals other than ground terminals	Phoenix Contact	AIO,34-8	0.34 (\#22)	Phoenix Contact (The figure in parentheses is the applicable wire size.) CRIMPFOX 6 (0.25 to $6 \mathrm{~mm}^{2}$, AWG24 to 10)
		Al0,5-8	0.5 (\#20)	
		AI0,5-10		
		AI0,75-8	$0.75 \text { (\#18) }$	
		AIO,75-10		
		Al1,0-8	1.0 (\#18)	
		Al1, 0-10		
		Al1,5-8	1.5 (\#16)	
		Al1,5-10		
Ground terminals		Al2,5-10	2.0 *	
Terminals other than ground terminals	Weidmuller	H0.14/12	0.14 (\#26)	Weidmuller (The figure in parentheses is the applicable wire size.) PZ6 Roto (0.14 to $6 \mathrm{~mm}^{2}$, AWG 26 to 10)
		H0.25/12	0.25 (\#24)	
		H0.34/12	0.34 (\#22)	
		H0.5/14	0.5 (\#20)	
		H0.5/16		
		H0.75/14	0.75 (\#18)	
		H0.75/16		
		H1.0/14	1.0 (\#18)	
		H1.0/16		
		H1.5/14	1.5 (\#16)	
		H1.5/16		

* Some AWG 14 wires exceed $2.0 \mathrm{~mm}^{2}$ and cannot be used in the screwless clamping terminal block.

When you use any ferrules other than those in the above table, crimp them to the twisted wires so that the following processed dimensions are achieved.

Finished Dimensions of Ferrules

Using Twisted Wires/Solid Wires
If you use the twisted wires or the solid wires, the applicable wire range and conductor length (stripping length) are as follows.

Terminal types	Applicable wires	Conductor length (stripping length)
Ground terminals	$2.0 \mathrm{~mm}^{2}$	9 to 10 mm
Terminals other than ground terminals	0.08 to $1.5 \mathrm{~mm}^{2}$ AWG28 to 16	8 to 10 mm

Product Dimensions

EtherCAT Coupler Unit，End Cover

Unit	Model	Width
EtherCAT Coupler Unit	NX－ECC $\square \square$	46
End Cover	NX－END01	12

－EtherCAT Coupler Unit
－End Cover
（Included with EtherCAT Coupler Unit ．）

－Units of Width 12 mm

Unit	Model	Width
Digital Input Unit	NX－ID $\square \square \square \square / \mathrm{IA} \square \square \square$	12
Digital Output Unit	NX－OD $\square \square \square \square / O C \square \square \square \square$	
Analog Input Unit	NX－ADロПロロ	
Analog Output Unit	NX－DA $\square \square \square \square$	
Temperature Input Unit	NX－TS2■ $\square \square$	
Incremental Encoder Input Unit	NX－EC0122／0222	
SSI Input Unit	NX－ECS■ $\square \square$	
Pulse Output Unit	NX－PG0122	
Additional NX Unit Power Supply Unit	NX－PD1000	
Additional I／O Power Supply Unit	NX－PFD $\square^{\text {a }}$	
1／O Power Supply Connection Unit	NX－PCDपด	
Shield Connection Unit	NX－TBX01	

- Units of Width 24mm

Unit	Model	Width
Temperature Input Unit	NX-TS3 $\square \square$	24
Incremental Encoder Input Unit	NX-EC0142	

Mounting Dimensions

Installation Height

The installation height of the EtherCAT Slave Terminal depends on the model of DIN Track and on the models of NX Units that are mounted.Also, additional space is required for the cables that are connected to the Unit. Allow sufficient depth in the control panel and allow extra space when you mount the EtherCAT Slave Terminal.The following figure shows the dimensions from the cables connected to the EtherCAT Coupler Unit to the back of the Unit

*1 This dimension depends on the specifications of the commercially available USB cable. Check the specifications of the USB cable that is used.
*2 Dimension from Back of Unit to Communications Cables

- 100 mm : When an MPS588-C Connector is used.
- 120 mm : When an XS6G-T421-1 Connector is used.

W: Width of EtherCAT Slave Terminal
W+(C)+(C): Width of EtherCAT Slave Terminal including End Plates

DIN Track model number	(A) DIN Track Dimentions	(B)
PFP-100N	7.3 mm	1.5 mm
PFP-50N	7.3 mm	1.5 mm
NS 35/7,5 PERF (PHOENIX CONTACT)	7.5 mm	1.7 mm
NS 35/15 PERF (PHOENIX CONTACT)	15 mm	9.2 mm

End Plate model number	(C) End Plate Dimentions
PFP-M	10 mm
CLIPFIX 35 (PHOENIX CONTACT)	9.5 mm

- Example: Calculating Width of EtherCAT Slave Terminal

- Widths of Units in the Slave Terminal:

Name	Model	Width
EtherCAT Coupler Unit	NX-ECC201	46 mm
NX Units: Digital Input Units	NX-ID3317	$12 \mathrm{~mm} \times 4$ Units
NX Units: Incremental Encoder Input Units	NX-TS3201	$24 \mathrm{~mm} \times 2$ Units
End Cover	NX-END01	12 mm
Total:	$W=46+12 \times 4+24 \times 2+12=154 \mathrm{~mm}$	

General Spesifications

	Item	Specification
Grounding method		Mounted in a panel
Operating environment	Ambient operating temperature	0 to $55^{\circ} \mathrm{C}$
	Ambient operating humidity	10\% to 95\% (with no condensation or icing)
	Atmosphere	Must be free from corrosive gases.
	Ambient storage temperature	-25 to $70^{\circ} \mathrm{C}$ (with no condensation or icing)
	Altitude	2,000 m max.
	Pollution degree	2 or less: Conforms to JIS B3502 and IEC 61131-2.
	Noise immunity	2 kV on power supply line (Conforms to IEC61000-4-4.)
	Overvoltage category	Category II: Conforms to JIS B3502 and IEC 61131-2.
	EMC immunity level	Zone B
	Vibration resistance	Conforms to IEC 60068-2-6. 5 to 8.4 Hz with $3.5-\mathrm{mm}$ amplitude, 8.4 to 150 Hz , acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, 100 min each in X, Y, and Z directions (10 sweeps of 10 min each $=100 \mathrm{~min}$ total)
	Shock resistance	Conforms to IEC 60068-2-27. $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y, and Z directions
Applicable standards		cULus: Listed UL508 and ANSI/ISA 12.12.01 EC: EN 61131-2 and C-Tick3, KC: KC Registration

NX-series EtherCAT Coupler Unit
 NX-ECC

Combine flexibility in Remote I/O configuration with the speed and determinism of EtherCAT.

- The EtherCAT Coupler Unit is the link between the EtherCAT Machine Control network and the NX-series I/O Units. With I/O Units ranging from basic I/O's to high-speed synchronous models, the NX-series is the perfect match for the Sysmac Machine Automation Controllers.

[^5]
Specifications

EtherCAT Coupler Unit NX-ECC201/NX-ECC202

EtherCAT Slave Terminals NX-series
EtherCAT Coupler Unit NX-ECC

Item	Specification				
	Communications Connector For EtherCAT communications. - RJ45 $\times 2$ (shielded) - IN: EtherCAT input data, OUT: EtherCAT output data				
External connection terminals	Screwless Clamping Terminal Block (8 terminals) For Unit power supply, I/O power supply, and grounding. Removable.				
	Peripheral USB Port For Sysmac Studio connection. - Physical layer: USB 2.0-compliant, B-type connector - Transmission distance: 5 m max.				
Dimensions	$46 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$				
Weight	150 g max.				
Installation orientation and restrictions	Installation orientation: 6 possible orientations Restrictions: - Used in the upright installation orientation. - Used in another orientation other than the upright installation orientation.				
Circuit layout					

EtherCAT Communications Specifications

Item	Specification
Communications standard	IEC 61158 Type 12
Physical layer	100BASE-TX (IEEE 802.3)
Modulation	Baseband
Baud rate	100 Mbps
Topology	Depends on the specifications of the EtherCAT master.
Transmission media	Category 5 or higher twisted-pair cable (Recommended cable: double-shielded cable with aluminum tape and braiding)
Transmission distance	Distance between nodes: 100 m or less

Version Information

NX Units		Corresponding unit versions/versions	
Model	Unit Version	NJ-series CPU Units NJ501- $\square \square \square \square /$ NJ301- $\square \square \square$	Sysmac Studio
	Ver.1.2	Version 1.07 or later	Version 1.08 or higher
	Ver.1.1	Version 1.05 or later	Version 1.07 or higher
	VX-ECC202	Version 1.06 or later	Version 1.06 or higher
F	Ver.1.2	Version 1.07 or later	Version 1.08 or higher

[^6]
A Wide Range of Digital Input Units from General Purpose use to HighSpeed Synchronous Control

- Digital Input Units for the NX-series modular I/O system.
- Connect to other NX-series I/O Units and EtherCAT Coupler units using the high-speed NX-bus.
- Synchronous Units update the status of input devices to the controller every EtherCAT cycle.

Features

- High-speed I/O refreshing is possible by connecting with the NX-series EtherCAT Coupler.
- I/O refreshing can be synchronized with the control cycle of the Controller. (Synchronous refreshing)
- ON/OFF response time of the high-speed model is 100 ns max, which enables high-speed, high-precision control.
- The screwless terminal block is detachable for easy commissioning and maintenance.
- Screwless clamp terminal block is detachable for easy commissioning and maintenance.
- Up to 16 digital inputs in a space-saving 12 mm width.
- The lineup includes 4 -point, 8-point, and 16-point types with 3-wire, 2-wire and 1-wire connection methods.
- With input refreshing with input changed time, the Input Unit records the time when the input is changed and the changed time with the input value is read into the Controller.
- Using with the Unit that supports output refreshing with specified time stamp enables high-precision I/O control independent of the control cycle of the Controller.

Digital Input Unit Specifications

DC Input Unit 4 points NX-ID3317

EtherCAT Slave Terminals NX-series
Digital Input Unit NX-ID/IA

DC Input Unit 4 points NX-ID3343

Unit name	DC Input Unit			Model		NX-ID3343
Capacity	4 points			External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing					
Indicators	TS indicator, input indicator$\begin{aligned} & \text { ID3343 } \\ & \square T S \\ & ■ 0 \square 1 \\ & \square 2 \square 3 \end{aligned}$			Internal I/O common		NPN
				Rated input voltage		24 VDC (15 to 28.8 VDC)
				Input current		3.5 mA typical (at 24 VDC), rated current
				ON voltage/ON current		15 VDC min./3 mA min. (between IOV and each signal)
				OFF voltage/OFF current		5 VDC max. $/ 1 \mathrm{~mA}$ max. (between IOV and each signal)
				ON/OFF response time		100 ns max./100 ns max.
				Input filter time		Without filter, $1 \mu \mathrm{~s}, 2 \mu \mathrm{~s}, 4 \mu \mathrm{~s}, 8 \mu \mathrm{~s}$ (factory setting), $16 \mu \mathrm{~s}, 32 \mu \mathrm{~s}, 64 \mu \mathrm{~s}, 128 \mu \mathrm{~s}, 256$ us
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)			Isolation method		Digital isolator isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)			Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus			Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.
NX Unit power consumption	0.55 W max.			I/O current consumption		30 mA max.
Weight	65 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram						
Disconnection/ Short-circuit detection	Not supported.			Protective function		Not supported.

DC Input Unit 4 points NX-ID3344

Unit name	DC Input Unit			Model		NX-ID3344
Capacity	4 points			External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Input refreshing with input changed time					
Indicators	TS indicator, in ID3344 $-2-3$	indicat		Internal I/O common		NPN
				Rated input voltage		24 VDC (15 to 28.8 VDC)
				Input current		3.5 mA typical (at 24 VDC), rated current
				ON voltage/ON current		15 VDC min./3 mA min. (between IOV and each signal)
				OFF voltage/OFF current		5 VDC max./1 mA max. (between IOV and each signal)
				ON/OFF response time		100 ns max./100 ns max.
				Input filter time		No filter
Dimensions	12 (W) x 100 (H) $\times 71$ (D)			Isolation method		Digital isolator isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)			Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus			Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.
NX Unit power consumption	0.55 W max.			I/O current consumption		30 mA max.
Weight	65 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram						
Disconnection/ Short-circuit detection	Not supported.			Protective function		Not supported.

EtherCAT Slave Terminals NX-series
Digital Input Unit NX-ID/IA

DC Input Unit 4 points NX-ID3417

Unit name	DC Input Unit		Model		NX-ID3417
Capacity	4 points		External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing				
Indicators	TS indicator, input indicator$\begin{gathered} \text { ID3417 } \\ \text { ■ TS } \\ =0 \sim 1 \\ =2 \sim 3 \end{gathered}$		Internal I/O common		PNP
			Rated input voltage		12 to 24 VDC (9 to 28.8 VDC)
			Input current		6 mA typical (at 24 VDC), rated current
			ON voltage/ON current		9 VDC min./3 mA min. (between IOG and each signal)
			OFF voltage/OFF current		2 VDC max./1 mA max. (between IOG and each signal)
			ON/OFF response time		20μ s max. $/ 400 \mu \mathrm{~s}$ max.
			Input filter time		Without filter, $0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}$ (factory setting), $2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, $32 \mathrm{~ms}, 64 \mathrm{~ms}, 128 \mathrm{~ms}, 256 \mathrm{~ms}$
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)		Isolation method		Photocoupler isolation
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.
NX Unit power consumption	0.50 W max.		I/O current consumption		No consumption
Weight	65 g max.				
Circuit layout					
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions				
Terminal connection diagram					
Disconnection/ Short-circuit detection	Not supported.		Protective function		Not supported.

DC Input Unit 4 points NX-ID3443

Unit name	DC Input Unit		Model		NX-ID3443
Capacity	4 points		External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing				
Indicators	TS indicator, input indicator		Internal I/O common		PNP
			Rated input voltage		24 VDC (15 to 28.8 VDC)
			Input current		3.5 mA typical (at 24 VDC), rated current
			ON voltage/ON current		15 VDC min./3 mA min. (between IOG and each signal)
			OFF voltage/OFF current		5 VDC max./1 mA max. (between IOG and each signal)
			ON/OFF response time		100 ns max./100 ns max.
			Input filter time		Without filter, $1 \mu \mathrm{~s}, 2 \mu \mathrm{~s}, 4 \mu \mathrm{~s}, 8 \mu \mathrm{~s}$ (factory setting), $16 \mu \mathrm{~s}, 32 \mu \mathrm{~s}, 64 \mu \mathrm{~s}, 128 \mu \mathrm{~s}, 256 \mu \mathrm{~s}$
Dimensions	12 (W) x 100 (H) $\times 71$ (D)		Isolation method		Digital isolator isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.
NX Unit power consumption	0.55 W max.		I/O current consumption		30 mA max.
Weight	65 g max.				
Circuit layout					
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions				
Terminal connection diagram					
Disconnection/ Short-circuit detection	Not supported.		Protective function		Not supported.

EtherCAT Slave Terminals NX-series
Digital Input Unit NX-ID/IA

DC Input Unit 4 points NX-ID3444

Unit name	DC Input Unit		Model		NX-ID3444
Capacity	4 points		External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Input refreshing with input changed time				
Indicators	TS indicator, input indicators		Internal I/O common		PNP
			Rated input voltage		24 VDC (15 to 28.8 VDC)
			Input current		3.5 mA typical (at 24 VDC), rated current
			ON voltage/ON current		15 VDC min. $/ 3 \mathrm{~mA}$ min. (between IOG and each signal)
			OFF voltage/OFF current		5 VDC max./1 mA max. (between IOG and each signal)
			ON/OFF response time		100 ns max./100 ns max.
			Input filter time		No filter
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)		Isolation method		
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		Digital isolator isolation
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
NX Unit power consumption	0.55 W max.		I/O current consumption		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.
Weight	65 g max .				
Circuit layout					
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions				
Terminal connection diagram					
Disconnection/ Short-circuit detection	Not supported.		Protective function		Not supported.

DC Input Unit 8 points NX-ID4342

EtherCAT Slave Terminals NX-series
Digital Input Unit NX-ID/IA

DC Input Unit 8 points NX-ID4442

DC Input Unit 16 points NX-ID5342

Unit name	DC Input Unit		Model			NX-ID5342		
Capacity	16 points		External connection terminals			Screwless clamping terminal block (16 terminals)		
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing							
	TS indicator, input indicator		Internal I/O common			NPN		
			Rated input voltage			24 VDC (15 to 28.8 VDC)		
			Input current			2.5 mA typical (at 24 VDC), rated current		
			ON voltage/ON current			15 VDC min./2 mA min. (between IOG and each signal)		
Indicators			OFF voltage/OFF current			5 VDC max. $/ 0.5 \mathrm{~mA}$ max. (between IOG and each signal)		
			ON/OFF response time			$20 \mu \mathrm{~s}$ max. $/ 400 \mu \mathrm{~s}$ max.		
			Input filter time			Without filter, $0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}$ (factory setting), $2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, $32 \mathrm{~ms}, 64 \mathrm{~ms}, 128 \mathrm{~ms}, 256 \mathrm{~ms}$		
Dimensions	12 (W) x 100 (H) $\times 71$ (D)		Isolation method			Photocoupler isolation		
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength			510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.		
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal			Without I/O power supply terminals		
NX Unit power consumption	0.55 W max.		I/O current consumption			No consumption		
Weight	65 g max.							
Circuit layout								
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions							
Terminal connection diagram			Supply Son Unit IOV 101 10 V	1 IO Pow Connectial IOG		DC Inp NX-ID IN0 IN2 IN4 IN6 IN8 IN10 IN12 IN14	\%t Unit	Two-wire sensor Three-wire sensor
Disconnection/ Short-circuit detection	Not supported.		Protective function			Not supported.		

EtherCAT Slave Terminals NX-series
Digital Input Unit NX-ID/IA

DC Input Unit 16 points NX-ID5442

Unit name	DC Input Unit		Model			NX-ID5442		
Capacity	16 points		External connection terminals			Screwless clamping terminal block (16 terminals)		
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing							
	TS indicator, input indicator		Internal I/O common			PNP		
			Rated input voltage			24 VDC (15 to 28.8 VDC)		
			Input current			2.5 mA typical (at 24 VDC), rated current		
			ON voltage/ON current			15 VDC min./2 mA min. (between IOG and each signal)		
Indicators			OFF voltage/OFF current			5 VDC max./0.5 mA max. (between IOG and each signal)		
			ON/OFF response time			20μ s max. $/ 400 \mu$ s max.		
			Input filter time			Without filter, $0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}$ (factory setting), $2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, $32 \mathrm{~ms}, 64 \mathrm{~ms}, 128 \mathrm{~ms}, 256 \mathrm{~ms}$		
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)		Isolation method			Photocoupler isolation		
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)		Dielectric strength			510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.		
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal			Without I/O power supply terminals		
NX Unit power consumption	0.55 W max.		I/O current consumption			No consumption		
Weight	65 g max.							
Circuit layout								
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions							
Terminal connection diagram			Unit	O Powe Connec IOG	Supply	$\substack{\text { DC Inp } \\ \text { NX-ID } \\ \text { a }}$ IN0 IN2 IN4 IN6 IN8 IN10 IN12 IN14	Her Unit	
Disconnection/ Short-circuit detection	Not supported.		Protective function			Not supported.		

AC Input Units (Screwless Clamping Terminal Block, 12 mm Width)

Unit name	AC Input Unit		Model	NX-IA3117
Number of points	4 points, independent contacts		External connection terminals	Screwless clamping terminal block (8 terminals)
Capacity	Free-Run refreshing			
Indicators	TS indicator, input indicator		Internal I/O common	No polarity
			Rated input voltage	$\begin{aligned} & 200 \text { to } 240 \text { VAC, } 50 / 60 \mathrm{~Hz} \text { (170 to } 264 \\ & \text { VAC, } \pm 3 \mathrm{~Hz} \text {) } \end{aligned}$
			Input current	9 mA typical (at $200 \mathrm{VAC}, 50 \mathrm{~Hz}$) 11 mA typical (at $200 \mathrm{VAC}, 60 \mathrm{~Hz}$)
			ON voltage/ON current	120 VAC min. 14 mA min.
			OFF voltage/OFF current	40 VAC max./2 mA max.
			ON/OFF response time	$10 \mathrm{~ms} \mathrm{max}. / 40 \mathrm{~ms} \mathrm{max}$.
			Input filter time	No filter, $0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}$ (default), 2 $\mathrm{ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}, 64 \mathrm{~ms}, 128$ $\mathrm{ms}, 256 \mathrm{~ms}$
Dimensions	12 (W) $\times 100$ (H) x 71 (D)		Isolation method	Photocoupler isolation
Insulation resistance	Between each AC input circuit: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the external terminals and the functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the external terminals and internal circuits: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the internal circuit and the functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (at 100 VDC)		Dielectric strength	Between each AC input circuit: AC3700V VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and functional ground terminal: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and internal circuits: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the internal circuit and the functional ground terminal: 510 VAC for 1 min at a leakage current of 5 mA max.
I/O power supply method	Supplied from external source.		Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	0.5 W max.		I/O current consumption	No consumption
Weight	60 g max.			
Circuit layout				
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions			
Terminal connection diagram				
Disconnection/ Short-circuit detection	Not supported.		Protective function	Not supported.

EtherCAT Slave Terminals NX-series
Digital Input Unit NX-ID/IA

Version Information

NX Units		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202 *	NJ-series CPU Units NJ501- \square /NJ301- \square	Sysmac Studio
NX-ID3317	Ver.1.0	Version 1.0 or later	Version 1.05 or later	gher
NX-ID3343		Version 1.0 or later	Version 1.05 or later	1.06 or higher
NX-ID3344		Version 1.1 or later	Version 1.06 or later	Version 1.07 or higher
NX-ID3417		Version 1.0 or later	Version 1.05 or later	Version 1.06 or higher
NX-ID3443		Version 1.0 or later	Version 1.05 or later	Version 1.06 or higher
NX-ID3444		Version 1.1 or later	Version 1.06 or later	Version 1.07 or higher
NX-ID4342		Version 1.0 or later	Version 1.05 or later	Version 1.06 or higher
NX-ID4442				
NX-ID5342				
NX-ID5442				
NX-IA3117				Version 1.08 or higher

* For the NX-ECC202, there is no unit version of 1.1 or earlier.

NX-series Digital Output Units NX-OD/OC

A Wide Range of Digital Output Units from General Purpose use to HighSpeed Synchronous Control

- Transistor and relay Output Units for the NX-series modular I/O system.
- Connect to other NX-series I/O Units and EtherCAT Coupler units using the high-speed NX-bus.
- Synchronous Units update their output status according to the controller's instructions every EtherCAT cycle.

Features

- High-speed I/O refreshing is possible by connecting with the NX-series EtherCAT Coupler.
- Output refreshing can be synchronized with the control cycle of the Controller. (Synchronous refreshing)
- ON/OFF response time of the high-speed model is 300 ns max, which enables high-speed, high-precision control.
- The screwless terminal block is detachable for easy commissioning and maintenance.
- Screwless clamp terminal block significantly reduces wiring work.
- Up to 16 digital outputs in a space-saving 12 mm width.
- The lineup includies 2-point, 4-point, 8-point, and 16-point types with 3-wire, 2-wire and 1-wire connection methods.
- With output refreshing with specified time stamp, the Output Unit refreshes outputs at the time specified by the program. This enables highprecision output control independent of the control cycle of the Controller.

EthercAT Slave Terminals NX-series
Digital Output Units NX-OD/OC

Digital Output Unit Specifications

Transistor Output Unit 2 points NX-OD2154

EtherCAT Slave Terminals NX-series
 Digital Output Units NX-OD/OC

Transistor Output Unit 2 points NX-OD2258

EthercAT Slave Terminals NX-series
Digital Output Units NX-OD/OC

Transistor Output Unit 4 points NX-OD3121

EtherCAT Slave Terminals NX-series
 Digital Output Units NX-OD/OC

Transistor Output Unit 4 points NX-OD3153

Unit name	Transistor Output Unit		Model		NX-OD3153
Capacity	4 points		External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing				
Indicators	TS indicator, output indicator$\begin{array}{r} 0 D 3153 \\ \square T S \\ \square_{0} \square_{1} \\ \square_{2} \square_{3} \end{array}$		Internal I/O common		NPN
			Rated voltage		24 VDC
			Operating load voltage range		15 to 28.8 VDC
			Maximum value of load current		0.5 A/point, 2 A/NX Unit
			Maximum inrush current		4.0 A/point, 10 ms max .
			Leakage current		0.1 mA max.
			Residual voltage		1.5 V max.
			ON/OFF response time		300 ns max./300 ns max.
Dimensions	12 (W) x 100 (H) $\times 71$ (D)		Isolation method		Digital isolator isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.5 A/terminal max., IOG: 0.5 A/terminal max.
NX Unit power consumption	0.50 W max.		I/O current consumption		30 mA max.
Weight	70 g max.				
Circuit layout	This unit uses a push-pull output circuit.				
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions				
Terminal connection diagram					
Disconnection/ Short-circuit detection	Not supported.		Protective function		Not supported.

EthercAT Slave Terminals NX-series
Digital Output Units NX-OD/OC

Transistor Output Unit 4 points NX-OD3256

EtherCAT Slave Terminals NX-series
 Digital Output Units NX-OD/OC

Transistor Output Unit 4 points NX-OD3257

Unit name	Transistor Output Unit	Model	NX-OD3257
Capacity	4 points	External connection terminals	Screwless clamping terminal block (12 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing		
Indicators	TS indicator, output indicator$\begin{aligned} & \text { OD3257 } \\ & ■ T S \\ &=0 \square 1 \\ &=2-3 \end{aligned}$	Internal I/O common	PNP
		Rated voltage	24 VDC
		Operating load voltage range	15 to 28.8 VDC
		Maximum value of load current	0.5 A/point, 2 A/NX Unit
		Maximum inrush current	4.0 A/point, 10 ms max .
		Leakage current	0.1 mA max.
		Residual voltage	1.5 V max.
		ON/OFF response time	300 ns max./300 ns max.
Dimensions	12 (W) x 100 (H) x 71 (D)	Isolation method	Digital isolator isolation
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus	Current capacity of I/O power supply terminal	IOV: 0.5 A/terminal max., IOG: 0.5 A/terminal max.
NX Unit power consumption	0.50 W max.	I/O current consumption	40 mA max.
Weight	70 g max.		
Circuit layout	This unit uses a push	-pull output circuit.	

Installation orientation
Installation orientation: Possible in 6 orientations.

EthercAT Slave Terminals NX-series
Digital Output Units NX-OD/OC

Transistor Output Unit 8 points NX-OD4121

EtherCAT Slave Terminals NX-series
 Digital Output Units NX-OD/OC

Transistor Output Unit 8 points NX-OD4256

Unit name	Transistor Output Unit		Model		NX-OD4256
Capacity	8 points		External connection terminals		Screwless clamping terminal block (16 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing				
Indicators	TS indicator, output indicator		Internal I/O common		PNP
			Rated voltage		24 VDC
			Operating load voltage range		15 to 28.8 VDC
			Maximum value of load current		0.5 A/point, 4 A/NX Unit
			Maximum inrush current		4.0 A/point, 10 ms max.
			Leakage current		0.1 mA
			Residual voltage		1.5 V max.
			ON/OFF response time		0.5 ms max./1.0 ms max.
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)		Isolation method		Photocoupler isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOG: 0.5 A/terminal max.
NX Unit power consumption	0.65 W max.		I/O current consumption		30 mA max.
Weight	70 g max .				
Circuit layout					
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions				
Terminal connection diagram					
Disconnection/ Short-circuit detection	Not supported.		Protective function		With load short-circuit protection.

EthercAT Slave Terminals NX-series
Digital Output Units NX-OD/OC

Transistor Output Unit 16 points NX-OD5121

Unit name	Transistor Output Unit			Model		NX-OD5121	
Capacity	16 points			External connection terminals		Screwless clamping terminal block (16 terminals)	
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing						
	TS indicator, output indicator OD5121 TS ~0 ■1 ~2 ~3 -4 -5 ■ 6 -7 - 8 ~9 -10 $\boldsymbol{\square 1 1}$ 			Internal I/O common		NPN	
				Rated voltage		12 to 24 VDC	
				Operating load voltage range		10.2 to 28.8 VDC	
Indicators				Maximum value of load current		0.5 A/point, 4 A/NX Unit	
				Maximum inrush current		4.0 A/point, 10 ms max .	
				Leakage current		0.1 mA max.	
				Residual voltage		1.5 V max.	
				ON/OFF response time		0.1 ms max./0.8 ms max.	
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)			Isolation method		Photocoupler isolation	
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)			Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	Supply from the NX bus			Current capacity of I/O power supply terminal		Without I/O power supply terminals	
NX Unit power consumption	0.65 W max.			I/O current consumption		20 mA max.	
Weight	70 g max.						
Circuit layout							
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions						
Terminal connection diagram							
Disconnection/ Short-circuit detection	Not supported.			Protective function		Not supported.	

EtherCAT Slave Terminals NX-series
 Digital Output Units NX-OD/OC

Transistor Output Unit 16 points NX-OD5256

EthercAT Slave Terminals NX-series
Digital Output Units NX-OD/OC

Relay Output Unit 2 points, independent contacts NX-OC2633

Unit name	Relay Output Units	Model	NX-OC2633
Capacity	2 points, independent contacts	External connection terminals	Screwless clamping terminal block (8 terminals)
I/O refreshing method	Free-Run refreshing		
	TS indicator, output indicator	Relay type	N.O. contact
Indicators	$\begin{array}{r} \text { OC2633 } \\ \sim 0 \text { TS } \end{array}$	Maximum switching capacity	$\begin{aligned} & 250 \mathrm{VAC} / 2 \mathrm{~A}(\cos \phi=1), \\ & 250 \mathrm{VAC} / 2 \mathrm{~A}(\cos \phi=0.4), \\ & 24 \mathrm{VDC} / 2 \mathrm{~A}, 4 \mathrm{~A} / \text { Unit } \end{aligned}$
		Minimum switching capacity	$5 \mathrm{VDC}, 1 \mathrm{~mA}$
Relay service life	Electrical: 100,000 operations* Mechanical: 20,000,000 operations	ON/OFF response time	$15 \mathrm{~ms} \mathrm{max}. / 15 \mathrm{~ms} \mathrm{max}$.
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)	Isolation method	Relay isolation
Insulation resistance	Between A1/B1 terminals and $\mathrm{A} 3 / \mathrm{B} 3$ terminals: $20 \mathrm{M} \Omega \mathrm{min}$. (500 VDC) Between the external terminals and internal circuits: $20 \mathrm{M} \Omega \mathrm{min}$. (500 VDC) Between the internal circuit and GR terminal: $20 \mathrm{M} \Omega \min$. (100 VDC) Between the external terminals and GR terminal: $20 \mathrm{M} \Omega \min$. 500 VDC)	Dielectric strength	Between A1/B1 terminals and A3/B3 terminals: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and GR terminal: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and internal circuits: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the internal circuit and GR terminal: 510 VAC for 1 min at a leakage current of 5 mA max.
Vibration resistance	Conforms to IEC60068-2-6. 5 to 8.4 Hz with amplitude of $3.5 \mathrm{~mm}, 8.4$ to 150 Hz , acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ 100 min each in X, Y, and Z directions (10 sweeps of 10 min each $=100 \mathrm{~min}$ total)	Shock resistance	$100 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y, and Z directions
I/O power supply method	Supply from external source	Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	0.80 W max.	I/O current consumption	No consumption
Weight	65 g max.		
Circuit layout			
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions		
Terminal connection diagram			
Disconnection/ Short-circuit detection	Not supported.	Protective function	Not supported.

* Electrical service life will vary depending on the current value. Refer to "NX-series Digital I/O Units User's Manual" for details.

Relay Output Unit 2 points, independent contacts NX-OC2733

Unit name	Relay Output Unit		Model	NX-OC2733
Number of points	2 points, independent contacts		External connection terminals	Screwless clamping terminal block (8 terminals)
Capacity	Free-Run refreshing			
Indicators	TS indicator, output in $0 C 2733$ TS 00		Maximum switching capacity	$\begin{aligned} & 250 \mathrm{VAC} / 2 \mathrm{~A}(\cos \phi=1), \\ & 250 \mathrm{VAC} / 2 \mathrm{~A}(\cos \phi=0.4), \\ & 24 \mathrm{VDC} / 2 \mathrm{~A}, \\ & 4 \mathrm{~A} / \mathrm{NX} \text { Unit } \end{aligned}$
			Minimum switching capacity	$5 \mathrm{VDC}, 10 \mathrm{~mA}$
Relay service life	Electrical: 100,000 operations Mechanical: 20,000,000 operations		ON/OFF response time	$15 \mathrm{~ms} \mathrm{max./15} \mathrm{~ms} \mathrm{max}$.
Dimensions	12 (W) $\times 100$ (H) $\times 71$ (D)		Isolation method	Relay isolation
Insulation resistance	Between $\mathrm{A} 1 / 3, \mathrm{~B} 1 / 3$ terminals and $\mathrm{A} 5 / 7$, $B 5 / 7$ terminals: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the external terminals and functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the external terminals and internal circuits: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the internal circuit and the functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (at 100 VDC)		Dielectric strength	Between A1/3, B1/3 terminals and A5/7, B5/7 terminals: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and the functional ground terminal: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and internal circuits: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the internal circuit and the functional ground terminal: 510 VAC for 1 min at a leakage current of 5 mA max.
I/O power supply method	Supply from external source		Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	0.95 W max.		Current consumption from I/O power supply	No consumption
Weight	70 g max.			
Circuit layout	$\begin{aligned} & \text { NX bus } \\ & \text { connector } \\ & \text { (left) } \end{aligned}\left[\begin{array}{l} \text { I/O power supply + } \\ \text { I/O power supply }- \end{array}\right.$	NO0 and NO1 are normal open contacts, and NC0 and NC1 are normal close contacts. You cannot replace the relay.		
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions			
Terminal connection diagram				
Disconnection/Shortcircuit detection	Not supported.		Protective function	Not supported.

Ethercat Slave Terminals NX-series
Digital Output Units NX-OD/OC

Version Information

NX Units		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202*	NJ-series CPU Units NJ501- \square /NJ301- \square	Sysmac Studio
NX-OD2154	Ver.1.0	Ver 11.1 or later	Ver 1.06 or later	
NX-OD2158		Ver.1.1 or later	Ver.1.06 or later	gher
NX-OD3121		Ver. 1.0 or later	Ver. 1.05 or later	Ver. 1.06 or higher
NX-OD3153				
NX-OD3256				
NX-OD3257				
NX-OD4121				
NX-OD4256				
NX-OD5121				
NX-OD5256				
NX-OC2633				
NX-OC2733				Ver. 1.08 or higher

* For the NX-ECC202, there is no unit version of 1.1 or earlier.

NX-series Analog Input Unit NX-AD

Analog Inputs to meet all machine control needs; from generalpurpose inputs to high-speed synchronous, high-resolution units

- Analog Input Units for the NX-series modular I/O system.
- Connect to other NX-series I/O Units and EtherCAT Coupler units using the high-speed NX-bus.
- Separate modules for voltage- and current inputs.

Features

- Up to eight analog inputs per unit.
- Free-run refreshing or synchronous I/O refreshing can be selected using the NX-series EtherCAT Coupler.
- Input update cycles of 10μ s per channel, and a resolution of $1 / 30000$, ideal for high-speed measurement and, high-precision control.
- All basic models are available as single-ended and differential-input types.
- The screwless terminal block is detachable for easy commissioning and maintenance.
- Screwless push-in terminal block significantly reduces wiring work.
- All models are just 12 mm wide, saving space in your cabinet.

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit Specifications

Analog Input Unit (voltage input type) 2 points NX-AD2603

Unit name	Analog Input Unit (voltage input type)		Model		NX-AD2603	
Capacity	2 points		External connection terminals		Screwless clamping terminal block (8 terminals)	
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator AD2603		Input method		Single-ended input	
			Input range		-10 to +10 V	
			Input conversion range		-5 to 105\% (full scale)	
			Absolute maximum rating		$\pm 15 \mathrm{~V}$	
			Input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	
			Resolution		1/8000 (full scale)	
			Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)	
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (full scale)		
			Conversion time	$250 \mu \mathrm{~s} /$ point		
Dimensions	$12(\mathrm{~W}) \times 100(\mathrm{H}) \times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.	
NX Unit power consumption	1.05 W max.		I/O current consumption		No consumption	
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram					Input + 24 V (Sensor power supply +) 0 V (Sensor power supply - / Input -) -wire sensor rminal is not connected to the internal circuit.	
Input disconnection detection	Not supported.					

Analog Input Unit (voltage input type) 2 points NX-AD2604

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (voltage input type) 2 points NX-AD2608

Unit name	Analog Input Unit (voltage input type)			Model		NX-AD2608	
Capacity	2 points			External connection terminals		Screwless clamping terminal block (8 terminals)	
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing						
Indicator	$\begin{aligned} & \text { TS indicator } \\ & \hline \text { AD2608 } \end{aligned}$			Input method		Differential Input	
				Input range		-10 to +10 V	
				Input conversion range		-5 to 105\% (full scale)	
				Absolute maximum rating		$\pm 15 \mathrm{~V}$	
				Input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	
				Resolution		1/30000 (full scale)	
				Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.1 \%$ (full scale)	
				0 to $55^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)		
				Conversion time	$10 \mu \mathrm{~s} / \mathrm{point}$		
Dimensions	$12(\mathrm{~W}) \times 100(\mathrm{H}) \times 71$ (D)				Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)			Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	No supply			Current capacity of I/O power supply terminal		Without I/O power supply terminals	
NX Unit power consumption	1.05 W max.			I/O current consumption		No consumption	
Weight	70 g max.						
Circuit layout							
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions						
Terminal connection diagram							
Input disconnection detection	Not supported.						

Analog Input Unit (voltage input type) 4 points NX-AD3603

Unit name	Analog Input Unit (voltage input type)		Model		NX-AD3603	
Capacity	4 points		External connection terminals		Screwless clamping terminal block (12 terminals)	
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator AD3603		Input method		Single-ended input	
			Input range		-10 to +10 V	
			Input conversion range		-5 to 105\% (full scale)	
			Absolute maximum rating		$\pm 15 \mathrm{~V}$	
			Input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	
			Resolution		1/8000 (full scale)	
			Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)	
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (full scale)		
			Conversion time	$250 \mu \mathrm{~s} /$ point		
Dimensions	$12(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.	
NX Unit power consumption	1.10 W max.		I/O current consumption		No consumption	
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram					Input + 24 V (Sensor power supply +) 0 V (Sensor power supply - / Input -) e sensor	
Input disconnection detection	Not supported.					

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (voltage input type) 4 points NX-AD3604

Analog Input Unit (voltage input type) 4 points NX-AD3608

Unit name	Analog Input Unit (voltage input type)			Model		NX-AD3608
Capacity	4 points			External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing					
Indicator	TS indicator AD3608 -TS			Input method		Differential Input
				Input range		-10 to +10 V
				Input conversion range		-5 to 105\% (full scale)
				Absolute maximum rating		$\pm 15 \mathrm{~V}$
				Input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.
				Resolution		1/30000 (full scale)
				Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.1 \%$ (full scale)
					0 to $55^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)
				Conversion time		$10 \mu \mathrm{~s} / \mathrm{point}$
Dimensions	12 (W) x 100 (H) $\times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)			Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply			Current capacity of I/O power supply terminal		Without I/O power supply terminals
NX Unit power consumption	1.10 W max.			I/O current consumption		No consumption
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram	Voltage Input Unit NX-AD3608 A1 Input + Input - AG terminal is connected to 0 V of analog circuit inside the Unit. It is not necessary to wire AG terminal normally.					
Input disconnection detection	Not supported.					

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (voltage input type) 8 points NX-AD4603

Analog Input Unit (voltage input type) 8 points NX-AD4604

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (voltage input type) 8 points NX-AD4608

Analog Input Unit (current input type) 2 points NX-AD2203

Unit name	Analog Input Unit (current input type)		Model		NX-AD2203	
Capacity	2 points		External connection terminals		Screwless clamping terminal block (8 terminals)	
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator DA2203		Input method		Single-ended input	
			Input range		4 to 20 mA	
			Input conversion range		-5 to 105\% (full scale)	
			Absolute maximum rating		$\pm 30 \mathrm{~mA}$	
			Input impedance		250Ω min.	
			Resolution		1/8000 (full scale)	
			Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)	
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (full scale)		
			Conversion time	$250 \mu \mathrm{~s} /$ point		
Dimensions	$12(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.	
NX Unit power consumption	0.90 W max.		I/O current consumption		No consumption	
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram						
Input disconnection detection	Supported.					

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (current input type) 2 points NX-AD2204

| Unit name | Analog Input Unit (current input type) | Model | NX-AD2204 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Capacity | 2 points | External connection
 terminals | Screwless clamping terminal block (8
 terminals) |
| I/O refreshing method | Free-Run refreshing | | |

Analog Input Unit (current input type) 2 points NX-AD2208

Unit name	Analog Input Unit (current input type)			Model		NX-AD2208
Capacity	2 points			External connection terminals		Screwless clamping terminal block (8 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing					
Indicator	TS indicator AD2208 -TS			Input method		Differential Input
				Input range		4 to 20 mA
				Input conversion range		-5 to 105\% (full scale)
				Absolute maximum rating		$\pm 30 \mathrm{~mA}$
				Input impedance		250Ω
				Resolution		1/30000 (full scale)
				Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.1 \%$ (full scale)
					0 to $55^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)
				Conversion time		$10 \mu \mathrm{~s} /$ point
Dimensions	12 (W) x 100 (H) $\times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)			Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply			Current capacity of I/O power supply terminal		Without I/O power supply terminals
NX Unit power consumption	0.90 W max.			I/O current consumption		No consumption
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram						
Input disconnection detection	Supported.					

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (current input type) 4 points NX-AD3203

Unit name	Analog Input Unit (current input type)		Model		NX-AD3203	
Capacity	4 points		External connection terminals		Screwless clamping terminal block (12 terminals)	
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator AD3203 -TS		Input method		Single-ended input	
			Input range		4 to 20 mA	
			Input conversion range		-5 to 105\% (full scale)	
			Absolute maximum rating		$\pm 30 \mathrm{~mA}$	
			Input impedance		$250 \Omega \mathrm{~min}$.	
			Resolution		1/8000 (full scale)	
			Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)	
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (full scale)		
			Conversion time	$250 \mu \mathrm{~s} /$ point		
Dimensions	$12(\mathrm{~W}) \times 100(\mathrm{H}) \times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.	
NX Unit power consumption	0.90 W max.		I/O current consumption		No consumption	
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram					Input + 24 V (Sensor power supply +) 0 V (Sensor power supply - / Input -) e sensor	
Input disconnection detection	Supported.					

Analog Input Unit (current input type) 4 points NX-AD3204

Unit name	Analog Input Unit (current input type)			Model		NX-AD3204
Capacity	4 points			External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator AD3204 -TS			Input method		Differential Input
				Input range		4 to 20 mA
				Input conversion range		-5 to 105\% (full scale)
				Absolute maximum rating		$\pm 30 \mathrm{~mA}$
				Input impedance		250Ω min.
				Resolution		1/8000 (full scale)
				Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)
					0 to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (full scale)
				Conversion time		$250 \mu \mathrm{~s} /$ point
Dimensions	$12(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)			Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply			Current capacity of I/O power supply terminal		Without I/O power supply terminals
NX Unit power consumption	0.90 W max.			I/O current consumption		No consumption
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram						
Input disconnection detection	Supported.					

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (current input type) 4 points NX-AD3208

Analog Input Unit (current input type) 8 points NX-AD4203

EtherCAT Slave Terminals NX-series
Analog Input Unit NX-AD

Analog Input Unit (current input type) 8 points NX-AD4204

Analog Input Unit (current input type) 8 points NX-AD4208

Version Information

NX Unit		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202 *	NJ-series CPU Units NJ501- $\square \square \square /$ NJ301- $\square \square \square \square$	Sysmac Studio

[^7]
NX-series Analog Output Unit NX-DA

Analog Outputs to meet all machine control needs; from general-purpose outputs to high-speed synchronous, high-resolution control outputs

- Analog Output Units for the NX-series modular I/O system.
- Connect to other NX-series I/O Units and EtherCAT

Coupler units using the high-speed NX-bus.

- Separate modules for voltage- and current outputs.

Features

- Up to four analog outputs per unit.
- Free-run refreshing or synchronous I/O refreshing can be selected using the NX-series EtherCAT Coupler.
- Output update cycles of 10μ s per channel, and resolution of $1 / 30000$, ideal for high-speed, high-precision control.
- The screwless terminal block is detachable for easy commissioning and maintenance.
- Screwless push-in terminal block significantly reduces wiring work.
- All models are just 12 mm wide, saving space in your cabinet.

Analog Output Unit Specifications

Analog Output Unit (voltage output type) 2points NX-DA2603

Unit name	Analog Output Unit (voltage output type)		Model		NX-DA2603	
Capacity	2 points		External connection terminals		Screwless clamping terminal block (8 terminals)	
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator AD2603 -TS		Output range		-10 to +10 V	
			Output conversion range		-5 to 105\% (full scale)	
			Allowable load resistance		$5 \mathrm{k} \Omega \mathrm{min}$.	
			Output impedance		0.5Ω max.	
			Resolution		1/8000 (full scale)	
			Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (full scale)	
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.5 \%$ (full scale)		
			Conversion time	$250 \mu \mathrm{~s} /$ point		
Dimensions	12 (W) x 100 (H) $\times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.	
NX Unit power consumption	1.10 W max.		I/O current consumption		No consumption	
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram			Voltage Outpu NX-DA2603		Voltage output + Voltage output -	

EtherCAT Slave Terminals NX-series
Analog Output Unit NX-DA

Analog Output Unit (voltage output type) 2points NX-DA2605

Analog Output Unit (voltage output type) 4points NX-DA3603

Unit name	Analog Output Unit (voltage output type)		Model		NX-DA3603	
Capacity	4 points		External connection terminals		Screwless clamping terminal block (12 terminals)	
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator AD3603 -TS		Output range		-10 to +10 V	
			Output conversion range		-5 to 105\% (full scale)	
			Allowable load resistance		$5 \mathrm{k} \Omega \mathrm{min}$.	
			Output impedance		0.5Ω max.	
			Resolution		1/8000 (full scale)	
			Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (full scale)	
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.5 \%$ (full scale)		
			Conversion time	$250 \mu \mathrm{~s} /$ point		
Dimensions	$12(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)			Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
I/O power supply method	Supply from the NX bus		Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.	
NX Unit power consumption	1.25 W max.		I/O current consumption		No consumption	
Weight	70 g max.					
Circuit layout						
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram			Voltage Output NX-DA3603	Bnit	Voltage output + Voltage output -	

EtherCAT Slave Terminals NX-series
Analog Output Unit NX-DA

Analog Output Unit (voltage output type) 4points NX-DA3605

Analog Output Unit (current output type) 2points NX-DA2203

Installation orientation: Possible in 6 orientations.
Restrictions:
For upright installation: No restrictions
For any installation other than upright: Restricted as shown in the graph below.

EtherCAT Slave Terminals NX-series
Analog Output Unit NX-DA

Analog Output Unit (current output type) 2points NX-DA2205

Terminal connection diagram

Analog Output Unit (current output type) 4points NX-DA3203

Unit name	Analog Output Unit (current output type)	Model		NX-DA3203
Capacity	4 points	External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Free-Run refreshing			
Indicator	TS indicator DA3203 -TS	Output range		4 to 20 mA
		Output conversion range		-5 to 105\% (full scale)
		Allowable load resistance		$350 \Omega \mathrm{~min}$.
		Resolution		1/8000 (full scale)
		Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (full scale)
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.6 \%$ (full scale)
		Conversion time		$250 \mu \mathrm{~s} / \mathrm{point}$
Dimensions	$12(\mathrm{~W}) \times 100(\mathrm{H}) \times 71$ (D)	Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus	Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.
NX Unit power consumption	1.80 W max.	I/O current consumption		No consumption
Weight	70 g max.			
Circuit layout				

Installation orientation: Possible in 6 orientations.
Restrictions:
For upright installation: No restrictions
For any installation other than upright: Restricted as shown in the graph below.

Installation orientation and restrictions

Terminal connection diagram

EtherCAT Slave Terminals NX-series
Analog Output Unit NX-DA

Analog Output Unit (current output type) 4points NX-DA3205

Unit name	Analog Output Unit (current output type)	Model		NX-DA3205
Capacity	4 points	External connection terminals		Screwless clamping terminal block (12 terminals)
I/O refreshing method	Selectable Synchronous I/O refreshing or Free-Run refreshing			
Indicator	TS indicator DA3205	Output range		4 to 20 mA
		Output conversion range		-5 to 105\% (full scale)
		Allowable load resistance		$350 \Omega \mathrm{~min}$.
		Resolution		1/30000 (full scale)
		Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.1 \%$ (full scale)
			0 to $55^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (full scale)
		Conversion time		$10 \mu \mathrm{~s} / \mathrm{point}$
Dimensions	$12(\mathrm{~W}) \times 100(\mathrm{H}) \times 71$ (D)	Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	Supply from the NX bus	Current capacity of I/O power supply terminal		IOV: 0.1 A/terminal max., IOG: 0.1 A/terminal max.
NX Unit power consumption	1.80 W max.	I/O current consumption		No consumption
Weight	70 g max.			
Circuit layout				
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: For upright installation: No restrictions For any installation other than upright: Restricted as shown in the graph below.			
Terminal connection diagram		urrent Output Unit NX-DA3205		urrent output + urrent output -

Version Information

NX Unit		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202 *	NJ-series CPU Units NJ501- $\square \square \square /$ NJ301- $\square \square \square \square$	Sysmac Studio

* For the NX-ECC202, there is no unit version of 1.1 or earlier.

NX-series Temperature Input Unit
 NX-TS

Temperature Input Units for Standard and High-speed, High-precision Temperature measurement and control

- Temperature Input Units for the NX-series modular I/O system.
- Connect to other NX-series I/O Units and EtherCAT Coupler units using the high-speed NX-bus.

NX-TS2101

NX-TS3101

NX-TS2201

NX-TS3201

- Thermocouple and platinum resistance thermometer input models are available.

Features

- Input up to four temperature sensor signals with one Unit.
- Three sampling speeds, $250 \mathrm{~ms}, 60 \mathrm{~ms}$, and 10 ms , are available to cover a wide range from general-purpose application to high-speed, highprecision control.
- Moving average, input sensor disconnection detection function, cold junction compensation enable/disable selection function, and input compensation.
- The screwless terminal block is detachable for easy commissioning and maintenance.
- Screwless push-in terminal block significantly reduces wiring work.

Temperature Input Unit Specifications

Temperature Input Unit (Thermocouple Input type) 2 points NX-TS2101

Unit name	Temperature Input Unit (thermocouple input type)		Model	NX-TS2101
Number of points	2 points		External connection terminals	Screwless clamping terminal block (16 terminals)
I/O refreshing method	Free-Run refreshing			
Indicators	TS indicator TS2101 -TS		Temperature sensor	K, J, T, E, L, U, N, R, S, B, WRe5-26, PLII
			Input conversion range	$\pm 20^{\circ} \mathrm{C}$ of the input range
			Absolute maximum rating	$\pm 130 \mathrm{mV}$
			Input impedance	$20 \mathrm{k} \Omega$ min.
			Resolution	$0.1^{\circ} \mathrm{C}$ max. *1
			Reference accuracy	*2
			Temperature coefficient	*2
			Cold junction compensation error	$\pm 1.2^{\circ} \mathrm{C} * 3$ *
			Input disconnection detection current	Approx. $0.1 \mu \mathrm{~A}$
Warm-up period	30 minutes		Conversion time	$250 \mathrm{~ms} /$ Unit
Dimensions	$12(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)		Isolation method	Between the input and the NX bus: Power = Transformer, Signal = Photocoupler Between inputs: Power = Transformer, Signal = Photocoupler
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply		Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	0.90 W max.		Current consumption from I/O power supply	No consumption
Weight	70 g max.			
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: The cold junction compensation error is restricted according to the installation orientation and the power consumption of adjacent Units. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type.			
Terminal connection diagram				

[^8]*3. The overall accuracy is guaranteed for a set consisting of a cold junction sensor that is mounted on the terminal block and a Temperature Input Unit. Be sure to use the terminal block and the Temperature Input Unit together. A calibration control number is both displayed on the terminal block and the Unit. Make sure to return the terminal block (including a cold junction sensor mounted) and the Unit together for repair.
*4. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type for the specifications for each set of operating conditions.

Temperature Input Unit (Thermocouple Input type) $\mathbf{2}$ points NX-TS2102

Unit name	Temperature Input Unit (thermocouple input type)		Model	NX-TS2102
Number of points	2 points		External connection terminals	Screwless clamping terminal block (16 terminals)
I/O refreshing method	Free-Run refreshing			
Indicators	TS indicator TS2102		Temperature sensor	K, J, T, E, L, U, N, R, S, WRe5-26, PLII
			Input conversion range	$\pm 20^{\circ} \mathrm{C}$ of the input range
			Absolute maximum rating	$\pm 130 \mathrm{mV}$
			Input impedance	$20 \mathrm{k} \Omega \mathrm{min}$.
			Resolution	$0.01^{\circ} \mathrm{C}$ max.
			Reference accuracy	*1
			Temperature coefficient	*1
			Cold junction compensation error	$\pm 1.2^{\circ} \mathrm{C}$ *2 *3
			Input disconnection detection current	Approx. $0.1 \mu \mathrm{~A}$
Warm-up period	45 minutes		Conversion time	$10 \mathrm{~ms} /$ Unit
Dimensions	$12(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)		Isolation method	Between the input and the NX bus: Power = Transformer, Signal = Digital isolator Between inputs: Power = Transformer, Signal = Digital isolator
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)		Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply		Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	0.80 W max.		Current consumption from I/O power supply	No consumption
Weight	70 g max.			
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: The cold junction compensation error is restricted according to the installation orientation and the power consumption of adjacent Units. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type.			
Terminal connection diagram				

[^9]
Temperature Input Unit (Thermocouple Input type) $\mathbf{2}$ points NX-TS2104

Unit name	Temperature Input Unit (thermocouple input type)		Model	NX-TS2104
Number of points	2 points		External connection terminals	Screwless clamping terminal block (16 terminals)
I/O refreshing method	Free-Run refreshing			
Indicators	TS indicator TS2104 -TS		Temperature sensor	K, J, T, E, L, U, N, R, S, WRe5-26, PLII
			Input conversion range	$\pm 20^{\circ} \mathrm{C}$ of the input range
			Absolute maximum rating	$\pm 130 \mathrm{mV}$
			Input impedance	$20 \mathrm{k} \Omega$ min.
			Resolution	$0.001{ }^{\circ} \mathrm{C}$ max.
			Reference accuracy	*1
			Temperature coefficient	*1
			Cold junction compensation error	$\pm 1.2^{\circ} \mathrm{C}$ *2 *3
			Input disconnection detection current	Approx. $0.1 \mu \mathrm{~A}$
Warm-up period	45 minutes		Conversion time	$60 \mathrm{~ms} /$ Unit
Dimensions	$12(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)		Isolation method	Between the input and the NX bus: Power = Transformer, Signal = Digital isolator Between inputs: Power = Transformer, Signal = Digital isolator
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)		Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply		Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	0.80 W max.		Current consumption from I/O power supply	No consumption
Weight	70 g max.			
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: The cold junction compensation error is restricted according to the installation orientation and the power consumption of adjacent Units. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type.			
Terminal connection diagram				

[^10]EtherCAT Slave Terminals NX-series
Temperature Input Unit NX-TS

Temperature Input Unit (Resistance Thermometer Input type) 2 points NX-TS2201

[^11]
Temperature Input Unit (Resistance Thermometer Input type) $\mathbf{2}$ points NX-TS2202

[^12]EtherCAT Slave Terminals NX-series
Temperature Input Unit NX-TS

Temperature Input Unit (Resistance Thermometer Input type) 2 points NX-TS2204

[^13]
Temperature Input Unit (Thermocouple Input type) 4 points NX-TS3101

[^14]EtherCAT Slave Terminals NX-series
Temperature Input Unit NX-TS

Temperature Input Unit (Thermocouple Input type) 4 points NX-TS3102

Unit name	Temperature Input Unit (thermocouple input type)				Model	NX-TS3102
Number of points	4 points				External connection terminals	Screwless clamping terminal block (16 terminals x 2)
I/O refreshing method	Free-Run refreshing					
Indicators	TS indicator TS3102 -TS				Temperature sensor	K, J, T, E, L, U, N, R, S, WRe5-26, PLII
					Input conversion range	$\pm 20^{\circ} \mathrm{C}$ of the input range
					Absolute maximum rating	$\pm 130 \mathrm{mV}$
					Input impedance	$20 \mathrm{k} \Omega$ min.
					Resolution	$0.01^{\circ} \mathrm{C}$ max.
					Reference accuracy	*1
					Temperature coefficient	*1
					Cold junction compensation error	$\pm 1.2^{\circ} \mathrm{C} * 2$ *
					Input disconnection detection current	Approx. $0.1 \mu \mathrm{~A}$
Warm-up period	45 minutes				Conversion time	$10 \mathrm{~ms} /$ Unit
Dimensions	24 (W) $\times 100$ (H) $\times 71$ (D)				Isolation method	Between the input and the NX bus: Power = Transformer, Signal = Digital isolator Between inputs: Power = Transformer, Signal = Digital isolator
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)				Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply				Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	1.10 W max.				Current consumption from I/O power supply	No consumption
Weight	140 g max.					
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: The cold junction compensation error is restricted according to the installation orientation and the power consumption of adjacent Units. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type.					
Terminal connection diagram						

*1. Refer to Reference Accuracy and Temperature Coefficient According to the Input Type and Measurement Temperature.
*2. The overall accuracy is guaranteed for a set consisting of a cold junction sensor that is mounted on the terminal block and a Temperature Input Unit. Be sure to use the terminal block and the Temperature Input Unit together. A calibration control number is both displayed on the terminal block and the Unit. Make sure to return the terminal block (including a cold junction sensor mounted) and the Unit together for repair.
*3. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type for the specifications for each set of operating conditions.

Temperature Input Unit (Thermocouple Input type) 4 points NX-TS3104

Unit name	Temperature Input Unit (thermocouple input type)	Model	NX-TS3104
Number of points	4 points	External connection terminals	Screwless clamping terminal block (16 terminals x 2)
I/O refreshing method	Free-Run refreshing		
Indicators	TS indicator TS3104 -TS	Temperature sensor	K, J, T, E, L, U, N, R, S, WRe5-26, PLII
		Input conversion range	$\pm 20^{\circ} \mathrm{C}$ of the input range
		Absolute maximum rating	$\pm 130 \mathrm{mV}$
		Input impedance	$20 \mathrm{k} \Omega \mathrm{min}$.
		Resolution	$0.001^{\circ} \mathrm{C}$ max.
		Reference accuracy	*1
		Temperature coefficient	*1
		Cold junction compensation error	$\pm 1.2^{\circ} \mathrm{C}$ *2 *3
		Input disconnection detection current	Approx. $0.1 \mu \mathrm{~A}$
Warm-up period	45 minutes	Conversion time	$60 \mathrm{~ms} /$ Unit
Dimensions	$24(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)	Isolation method	Between the input and the NX bus: Power = Transformer, Signal = Digital isolator Between inputs: Power = Transformer, Signal = Digital isolator
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply	Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	1.10 W max.	Current consumption from I/O power supply	No consumption
Weight	140 g max.		
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: The cold junction compensation error is restricted according to the installation orientation and the power consumption of adjacent Units. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type.		

[^15]EtherCAT Slave Terminals NX-series
Temperature Input Unit NX-TS

Temperature Input Unit (Resistance Thermometer Input type) 4 points NX-TS3201

| Unit name | Temperature Input Unit (resistance
 thermometer input type) | Model | NX-TS3201 |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^16]
Temperature Input Unit (Resistance Thermometer Input type) 4 points NX-TS3202

Unit name	Temperature Input Unit (resistance thermometer input type)				Model	NX-TS3202
Capacity	4 points				External connection terminals	Screwless clamping terminal block (16 terminals $\times 2$)
I/O refreshing method	Free-Run refreshing					
Indicator	TS indicator TS3202 -TS				Temperature sensor	Pt100 (three-wire)
					Input conversion range	$\pm 20^{\circ} \mathrm{C}$ of the input range
					Input detection current	Approx. 0.25 mA
					Resolution	$0.01^{\circ} \mathrm{C}$ max.
					Reference accuracy	*
					Temperature coefficient	*
					Effect of conductor resistance	$0.06{ }^{\circ} \mathrm{C} / \Omega \mathrm{max}$. (also 20Ω max.)
Warm-up period	30 minutes				Conversion time	$10 \mathrm{~ms} /$ Unit
Dimensions	$24(\mathrm{~W}) \times 100$ (H) $\times 71$ (D)				Isolation method	Between the input and the NX bus: Power = Transformer, Signal = Digital isolator Between inputs: Power = Transformer, Signal = Digital isolator
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)				Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
I/O power supply method	No supply				Current capacity of I/O power supply terminal	Without I/O power supply terminals
NX Unit power consumption	1.05 W max.				Current consumption from I/O power supply	No consumption
Weight	130 g max.					
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions					
Terminal connection diagram	Temperature Input Unit NX-TS3202 A1 \qquad B1 C1 D1				$\sum^{\text {R }}$ Resistance th	
	NC	NC	NC	NC		
	NC	NC	NC	NC		
	NC	NC	NC	NC		
	NC	NC	NC	NC		
	A2	B2	A4	B4		
	NC	B2	NC	B4		
	A1	B1	A3 ${ }^{\circ}$	B3		rmometer input
	NC	B1	NC	B3		
	A8		8	D8		

[^17]EtherCAT Slave Terminals NX-series
Temperature Input Unit NX-TS

Temperature Input Unit (Resistance Thermometer Input type) 4 points NX-TS3204

| Unit name | Temperature Input Unit (resistance
 thermometer input type) | Model | NX-TS3204 |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^18]- Reference accuracy and temperature coefficient according to the input type and measurement temperature *1

For NX-TS $\square \square 02 / \mathrm{TS} \square \square 04$

Conversion time	Input type		Measurement temperature (${ }^{\circ} \mathbf{C}$)	Reference accuracy ${ }^{\circ} \mathbf{C}$ (\%) *3	Temperature coefficient ${ }^{\circ} \mathbf{C} /{ }^{\circ} \mathrm{C} * 4$ (ppm/ ${ }^{\circ} \mathrm{C} * 5$)
	Input type *2	Temperature range (${ }^{\circ} \mathrm{C}$)			
10/60ms	K	-200 to 1300	Same as the left	\pm 0.75 ($\pm 0.05 \%)$	± 0.08 ($\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
	K	-20 to 600 (High Resolution)	Same as the left	\pm 0.30 ($\pm 0.05 \%)$	$\pm 0.03\left(\pm 48 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	J	-200 to 1200	-200 to 0	\pm 0.70 ($\pm 0.05 \%)$	$\pm 0.13\left(\pm 96 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			0 to 1200		± 0.06 ($\left.\pm 42 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	J	$\begin{aligned} & \hline-20 \text { to } 600 \\ & \text { (High Resolution) } \end{aligned}$	Same as the left	± 0.30 ($\pm 0.05 \%$)	$\pm 0.04\left(\pm 72 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	T	-200 to 400	-200 to -180	\pm 1.30 ($\pm 0.22 \%)$	$\pm 0.05\left(\pm 75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			-180 to 0	± 0.70 ($\pm 0.12 \%$)	
			0 to 400	\pm 0.33 ($\pm 0.055 \%)$	
	E	-200 to 1000	-200 to 0	\pm 0.60 ($\pm 0.05 \%)$	$\pm 0.12\left(\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			0 to 1000		± 0.06 ($\left.\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	L	-200 to 900	Same as the left	\pm 0.50 ($\pm 0.05 \%)$	± 0.04 ($\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
	U	-200 to 600	-200 to -100	\pm 0.70 ($\pm 0.09 \%)$	$\pm 0.06\left(\pm 75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			-100 to 0	± 0.50 ($\pm 0.07 \%$)	
			0 to 600	\pm 0.40 ($\pm 0.05 \%)$	
	N	-200 to 1300	-200 to -150	\pm 1.60 ($\pm 0.11 \%)$	$\pm 0.11\left(\pm 70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			-150 to -100	+0.75 (0.05\%)	
			-100 to 1300	\pm 0.75 ($\pm 0.05 \%)$	$\pm 0.08\left(\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	R	-50 to 1700	-50 to 0	\pm 3.20 ($\pm 0.19 \%)$	$\pm 0.13\left(\pm 77 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			0 to 100	\pm 2.50 ($\pm 0.15 \%)$	$\pm 0.11\left(\pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			100 to 1700	\pm 1.75 ($\pm 0.10 \%)$	
	S	-50 to 1700	-50 to 0	\pm 3.20 ($\pm 0.19 \%)$	± 0.13 ($\pm 77 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
			0 to 100	\pm 2.50 ($\pm 0.15 \%)$	$\pm 0.11\left(\pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			100 to 1700	± 1.75 ($\pm 0.10 \%$)	
	WRe5-26	0 to 2300	0 to 1500	\pm 1.15 ($\pm 0.05 \%)$	$\pm 0.13\left(\pm 58 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			1500 to 2200		$\pm 0.21\left(\pm 91 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			2200 to 2300	± 1.40 ($\pm 0.07 \%$)	
	PL II	0 to 1300	Same as the left	\pm 0.65 ($\pm 0.05 \%)$	$\pm 0.07\left(\pm 57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	Pt100	-200 to 850	-200 to -50	\pm 0.50 ($\pm 0.05 \%)$	± 0.08 ($\left.\pm 78 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			-50 to 150	± 0.21 ($\pm 0.02 \%$)	± 0.03 ($\left.\pm 29 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			150 to 850	\pm 0.50 ($\pm 0.05 \%)$	± 0.08 ($\pm 78 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
	Pt1000	-200 to 850	Same as the left	\pm 0.50 ($\pm 0.05 \%)$	$\pm 0.09\left(\pm 85 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$

EtherCAT Slave Terminals NX-series
Temperature Input Unit NX-TS

For NX-TS $\square 01$

Conversion time	Input type		Measurement temperature (${ }^{\circ} \mathrm{C}$)	Reference accuracy ${ }^{\circ} \mathbf{C}$ (\%) *3	Temperature coefficient ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C} * 4$ (ppm/ ${ }^{\circ} \mathrm{C} * 5$)
	Input type	Temperature range (${ }^{\circ} \mathrm{C}$)			
250 ms	K	-200 to 1300	-200 to -100	\pm 1.5 ($\pm 0.1 \%)$	± 0.15 ($\left.\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			-100 to 400		± 0.30 ($\left.\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			400 to 1300		± 0.38 ($\left.\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	J	-200 to 1200	-200 to 400	\pm 1.4 ($\pm 0.1 \%)$	± 0.14 ($\left.\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			400 to 900	\pm 1.2 ($\pm 0.09 \%)$	± 0.28 ($\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
			900 to 1200		± 0.35 ($\left.\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	T	-200 to 400	-200 to -100	\pm 1.2 ($\pm 0.2 \%)$	± 0.30 ($\left.\pm 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			-100 to 400		± 0.12 ($\left.\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	E	-200 to 1000	-200 to 400	± 1.2 ($\pm 0.1 \%$)	± 0.12 ($\left.\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			400 to 700	\pm 2.0 ($\pm 0.17 \%)$	± 0.24 ($\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
			700 to 1000		± 0.30 ($\left.\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	L	-200 to 900	-200 to 300	\pm 1.1 ($\pm 0.1 \%)$	± 0.11 ($\left.\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			300 to 700	\pm 2.2 ($\pm 0.2 \%)$	± 0.22 ($\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
			700 to 900		± 0.28 ($\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
	U	-200 to 600	-200 to 400	\pm 1.2 ($\pm 0.15 \%)$	$\pm 0.12\left(\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			400 to 600	\pm 1.0 ($\pm 0.13 \%)$	
	N	-200 to 1300	-200 to 400	$\pm 1.5(\pm 0.1 \%)$	± 0.30 ($\left.\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			400 to 1000		
			1000 to 1300		± 0.38 ($\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
	R	-50 to 1700	-50 to 500	\pm 1.75 ($\pm 0.1 \%)$	± 0.44 ($\left.\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			500 to 1200	\pm 2.5 ($\pm 0.15 \%)$	
			1200 to 1700		
	S	-50 to 1700	-50 to 600	\pm 1.75 ($\pm 0.1 \%)$	$\pm 0.44\left(\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			600 to 1100	\pm 2.5 ($\pm 0.15 \%)$	
			1100 to 1700		
	B	0 to 1800	0.0 to 400.0	Reference accuracy does not apply	Reference accuracy does not apply
			400 to 1200	± 3.6 ($\pm 0.2 \%$)	± 0.45 ($\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
			1200 to 1800	\pm 5.0 ($\pm 0.28 \%)$	± 0.54 ($\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
	WRe5-26	0 to 2300	0 to 300	\pm 1.15 ($\pm 0.05 \%)$	± 0.46 ($\left.\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			300 to 800	\pm 2.3 ($\pm 0.1 \%)$	
			800 to 1500	\pm 3.0 ($\pm 0.13 \%)$	
			1500 to 2300		$\pm 0.691\left(\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	PLII	0 to 1300	0 to 400	\pm 1.3 ($\pm 0.1 \%)$	± 0.23 ($\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
			400 to 800	\pm 2.0 ($\pm 0.15 \%)$	$\pm 0.39\left(\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			800 to 1300		± 0.65 ($\left.\pm 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	Pt100	-200 to 850	-200 to 300	± 1.0 ($\pm 0.1 \%$)	$\pm 0.1\left(\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			300 to 700	± 2.0 ($\pm 0.2 \%$)	$\pm 0.2\left(\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			700 to 850	\pm 2.5 ($\pm 0.25 \%)$	± 0.25 ($\left.\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
	Pt1000	-200 to 850	-200 to 300	± 1.0 ($\pm 0.1 \%$)	$\pm 0.1\left(\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			300 to 700	\pm 2.0 ($\pm 0.2 \%)$	$\pm 0.2\left(\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
			700 to 850	\pm 2.5 ($\pm 0.25 \%)$	± 0.25 ($\left.\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$

*1. To convert the temperature unit from Celsius to Fahrenheit, use the following equation.
Fahrenheit temperature $\left({ }^{\circ} \mathrm{F}\right)=$ Celsius temperature $\left({ }^{\circ} \mathrm{C}\right) \times 1.8+32$
*2. If there is more than one input range for the same input type, the one with narrower input range has higher resolution.
*3. For a thermocouple input type Temperature Input Unit, the overall accuracy is guaranteed for a set consisting of a cold junction sensor that is mounted on the terminal block and a Temperature Input Unit. Be sure to use the terminal block and Temperature Input Unit with the same calibration control number together. For the 24 mm wide model, also be sure the left and right terminal blocks are correctly attached.

*4. An error for a measured value when the ambient temperature changes by $1^{\circ} \mathrm{C}$.
The following formula is used to calculate the error of the measured value.
Overall accuracy = Reference accuracy + Temperature characteristic x Change in the ambient temperature + Cold junction compensation error (Calculation example)
Conditions

Item	Description
Ambient temperature	$30^{\circ} \mathrm{C}$
Measured value	$100^{\circ} \mathrm{C}$
NX Unit	NX-TS2101
Thermocouple	K thermocouple

The characteristic values are formulated from the data sheet or reference accuracy and temperature coefficient table under the above conditions

Item	Description
Reference accuracy	-100 to $400^{\circ} \mathrm{C}: \pm 1.5^{\circ} \mathrm{C}$
Temperature coefficient	-100 to $400^{\circ} \mathrm{C}: \pm 0.30^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
Change in the ambient temperature	$25^{\circ} \mathrm{C}->30^{\circ} \mathrm{C} 5 \mathrm{deg}$
Cold junction compensation error	$\pm 1.2^{\circ} \mathrm{C}$

Therefore,
Overall accuracy = Reference accuracy + Temperature characteristic x Change in the ambient temperature + Cold junction compensation error $= \pm 1.5^{\circ} \mathrm{C}+\left(\pm 0.30^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\right) \times 5 \mathrm{deg}+ \pm 1.2^{\circ} \mathrm{C}$
$= \pm 4.2^{\circ} \mathrm{C}$
*5. The ppm value is for the full scale of temperature range.

EtherCAT Slave Terminals NX-series

Temperature Input Unit NX-TS

- Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type

The cold junction compensation error for Units that take a thermocouple input type is restricted as follows according to the installation orientation and the power consumption of adjacent Units *.
(a) For upright installation, when the power consumption is 1.5 W or less for both the left and right adjacent Units

The cold junction compensation error is $\pm 1.2^{\circ} \mathrm{C}$.
However, there are exceptions depending on the input type and temperature. Those conditions and the cold junction compensation error are as in the table below.

Input type and temperature range	Cold junction compensation error
T below $-90^{\circ} \mathrm{C}$	$\pm 3.0^{\circ} \mathrm{C}$
$\mathrm{J}, \mathrm{E}, \mathrm{K}$ and N below $-100^{\circ} \mathrm{C}$	
U, L and PLII	
R and S below $200^{\circ} \mathrm{C}$	Not guaranteed
B below $400^{\circ} \mathrm{C}$	$\pm 3.0^{\circ} \mathrm{C}$
W	

(b) When the power consumption of either the left or the right adjacent Unit is more than 1.5 W but less than 3.9 W . Or for any installation other than upright, when the power consumption of both the left and right adjacent Units is less than 3.9 W

The cold junction compensation error is $\pm 4.0^{\circ} \mathrm{C}$.
However, there are exceptions depending on the input type and temperature. Those conditions and the cold junction compensation error are as in the table below.

Input type and temperature range	Cold junction compensation error
T below $-90^{\circ} \mathrm{C}$	$\pm 7.0^{\circ} \mathrm{C}$
$\mathrm{J}, \mathrm{E}, \mathrm{K}$ and N below $-100^{\circ} \mathrm{C}$	
U, L and PLII	
R and S below $200^{\circ} \mathrm{C}$	$\pm 9.0^{\circ} \mathrm{C}$
B below $400^{\circ} \mathrm{C}$	
W	

(c) When the power consumption exceeds 3.9 W for either the left or right adjacent Unit

Do not use the above condition (c) because the cold junction compensation error is not guaranteed in this condition.

* The power consumption of adjacent Units is the total of the following values.

The power consumption of the NX Unit power supply and I/O power supply for the NX Units adjacent to the Temperature Input Unit. If the adjacent Unit is an Input Unit, it is the total power consumption according to the input current.

Version Information

NX Units		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202 *	NJ-series CPU Units NJ501 \square /NJ301- \square	Sysmac Studio
NX-TS2101	Ver.1.0	Ver. 1.0 or later	Ver.1.05 or later	Ver.1.06 or higher
	Ver.1.1			Ver. 1.08 or higher
NX-TS2102	Ver.1.1			Ver.1.08 or higher
NX-TS2104	Ver.1.1			Ver.1.08 or higher
NX-TS2201	Ver.1.0			Ver.1.06 or higher
	Ver.1.1			Ver.1.08 or higher
NX-TS2202	Ver.1.1			Ver.1.08 or higher
NX-TS2204	Ver.1.1			Ver.1.08 or higher
NX-TS3101	Ver.1.0			Ver.1.06 or higher
	Ver.1.1			Ver.1.08 or higher
NX-TS3102	Ver.1.1			Ver.1.08 or higher
NX-TS3104	Ver.1.1			Ver.1.08 or higher
NX-TS3201	Ver.1.0			Ver.1.06 or higher
	Ver.1.1			Ver.1.08 or higher
NX-TS3202	Ver.1.1			Ver.1.08 or higher
NX-TS3204	Ver.1.1			Ver.1.08 or higher

* For the NX-ECC202, there is no unit version of 1.1 or earlier.

NX-series Incremental Encoder Input Unit NX-ECO $\square \square$

Read position information from incremental encoders, synchronised with the control cycle and EtherCAT Distributed Clock.

- Process encoder input data using the MC Function Modules of the NJ -series Machine Automation Controller.
- The time when the encoder input value is changed can be read. This enables high-precision timing control in combination with time-stamp outputs.*
* Available soon

Features

- Open collector output type and line driver output type Incremental Encoders can be connected.
- Free-Run refreshing or Synchronous I/O refreshing can be selected for refreshing with the NX-series EtherCAT Coupler.
- When the MC Function Modules of the NJ-series Machine Automation Controller are used, the encoder input can be used for motion control instructions as an "axis".
- Latch function (1 internal signal and 2 input signals from external devices)
- Pulse Period Measurement
- 32 bit counters (80000000 to 7FFFFFFF HEX)
- Maximum counting rate: 4 MHz (Line receiver: 4 MHz , Open collector: 500 kHz)
- Input edge time stamps
- The maximum and minimum counter values can be set.

Specification

Incremental Encoder Input Units 1 channel NX-EC0122

Unit name	Incremental Encoder Input Units	Model	NX-EC0122
Number of channels	1 channel	Type of external connections	Screwless push-in terminal block (16 terminals)
I/O refreshing method	Free-Run refreshing or synchronous I/O refreshing *		
Indicators		Input signals	Counter: Phases A, B, and Z External Inputs: 3
Input form	Voltage input (24 V)		
Counting unit	Pulses		
Pulse input method	Phase difference pulse (multiplication $\times 2 / 4$), pulse + direction inputs, or up and down pulse inputs		
Counter range	-2,147,483,648 to 2,147,483,647 pulses		
Counter functions			
Counter type	Ring counter or linear counter		
Counter controls	Gate control, counter reset, and counter preset		
Latch function	Two external input latches and one internal latch		
Measurements	Pulse rate measurement and pulse period measurement		
Voltage input specifications			
Input voltage	20.4 to 28.8 VDC (24 VDC +20\%/-15\%)	ON voltage	19.6 VDC min./3 mA min.
Input current	4.2 mA typical (24 VDC)	OFF voltage	4.0 VDC max./1 mA max.
Maximum response frequency	Phases A and B: Single-phase 500 kHz (phase difference pulse input x4: 125 kHz), Phase Z: 125 kHz		
Internal I/O common processing	PNP		
External input specifications			
Input voltage	20.4 to 28.8 VDC (24 VDC +20\%/-15\%)	ON voltage/ON current	15 VDC min./3 mA min.
Input current	4.6 mA typical (24 VDC)	OFF voltage/OFF current	4.0 VDC max./1 mA max.
ON/OFF response time	$1 \mu \mathrm{~s}$ max. $/ 2 \mu \mathrm{~s}$ max.		
Internal I/O common processing	PNP		
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Isolation method	Photocoupler isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute with leakage current of 5 mA max.
I/O power supply source	Supplied from the NX bus. 20.4 to 28.8 VDC (24 VDC $+20 \% /-15 \%$)	Current capacity of I/O power supply terminals	IOV: 0.3 A max. per terminal for encoder supply section and 0.1 A max. per terminal for other sections IOG: 0.3 A max. per terminal for encoder supply section and 0.1 A max. per terminal for other sections
NX Unit power consumption	0.95 W	Current consumption from I/O power supply	None
Weight	70 g		
Circuit layout	Encoder Input and External Inputs	t limiter	
Installation orientation and restrictions	Installation orientation: 6 possible orientations Restrictions: There are no restrictions.		

[^19]EtherCAT Slave Terminals NX-series
Incremental Encoder Input Unit NC-ECO $\square \square$

Terminal connection diagram				
Failure detection	None		Protection	None

EtherCAT Slave Terminals NX-series Incremental Encoder Input Unit NC-ECO $\square \square$

Incremental Encoder Input Units 2 channel NX-EC0222

Unit name	Incremental Encoder Input Units	Model	NX-EC0222
Number of channels	2 channels	Type of external connections	Screwless push-in terminal block (12 terminals)
I/O refreshing method	Free-Run refreshing or synchronous I/O refreshing *		
Indicators	```EC0222 \squareTS -CH1 ~A1■B1 -Z1 -CH2 \squareA2\squareB2ロZ2```	Input signals	Counter: Phases A, B, and Z External Inputs: None
Input form	Voltage input (24 V)		
Counting unit	Pulses		
Pulse input method	Phase difference pulse (multiplication $\times 2 / 4$), pulse + direction inputs, or up and down pulse inputs		
Counter range	-2,147,483,648 to 2,147,483,647 pulses		
Counter functions			
Counter type	Ring counter or linear counter		
Counter controls	Gate control, counter reset, and counter preset		
Latch function	Two external input latches and one internal latch		
Measurements	Pulse rate measurement and pulse period measurement		
Voltage input specifications			
Input voltage	20.4 to 28.8 VDC (24 VDC +20\%/-15\%)	ON voltage	19.6 VDC min./3 mA min.
Input current	4.2 mA typical (24 VDC)	OFF voltage	4.0 VDC max./1 mA max.
Maximum response frequency	Phases A and B: Single-phase 500 kHz (phase difference pulse input x4: 125 kHz), Phase Z: 125 kHz		
Internal I/O common processing	PNP		
External input specifications			
Input voltage	-	ON voltage/ON current	-
Input current	--	OFF voltage/OFF current	---
ON/OFF response time	---		
Internal I/O common processing	---		
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Isolation method	Photocoupler isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute with leakage current of 5 mA max.
I/O power supply source	Supplied from the NX bus. 20.4 to 28.8 VDC (24 VDC +20\%/-15\%)	Current capacity of I/O power supply terminals	IOV: 0.3 A max. per terminal IOG: 0.3 A max. per terminal
NX Unit power consumption	0.95 W	Current consumption from I/O power supply	None
Weight	65 g		
Circuit layout	Encoder Input		
Installation orientation and restrictions	Installation orientation: 6 possible orientations Restrictions: There are no restrictions.		

[^20]EtherCAT Slave Terminals NX-series
Incremental Encoder Input Unit NC-ECO $\square \square$

EtherCAT Slave Terminals NX-series Incremental Encoder Input Unit NC-ECO $\square \square$

Incremental Encoder Input Units 1 channel NX-EC0142

Unit name	Incremental Encoder Input Units	Model	NX-EC0142
Number of channels	1 channel	Type of external connections	Screwless push-in terminal block (12 terminals $\times 2$)
I/O refreshing method	Free-Run refreshing or synchronous I/O refreshing *		
Indicators	```EC0142 -TS ach \(\square A \backsim B \quad \square Z\) \(\square 10 \square 11 \square_{1}\)```	Input signals	Counter: Phases A, B, and Z External Inputs: 3
Input form	Line receiver input		
Counting unit	Pulses		
Pulse input method	Phase difference pulse (multiplication $\times 2 / 4$), pulse + direction inputs, or up and down pulse inputs		
Counter range	-2,147,483,648 to 2,147,483,647 pulses		
Counter functions			
Counter type	Ring counter or linear counter		
Counter controls	Gate control, counter reset, and counter preset		
Latch function	Two external input latches and one internal latch		
Measurements	Pulse rate measurement and pulse period measurement		
Line driver specifications			
Input voltage	EIA standard RS-422-A line driver levels	High level input voltage	VIT+: 0.1 V min.
Input impedance	$120 \Omega \pm 5 \%$	Low level input voltage	VIT-: -0.1 V min.
Hysteresis voltage	Vhys (VIT+ - VIT-): 60 Mv		
Maximum response frequency	Phases A and B: Single-phase 4 MHz (phase difference pulse input x4: 1 MHz), Phase Z: 1 MHz		
5-V power supply for encoder	Output voltage: 5 VDC Output current: 500 mA max.		
External input specifications			
Input voltage	20.4 to 28.8 VDC (24 VDC +20\%/.15\%)	ON voltage/ON current	15 VDC min./3 mA min.
Input current	3.5 mA typical (24 VDC)	OFF voltage/OFF current	4.0 VDC max./1 mA max.
ON/OFF response time	$1 \mu \mathrm{~s}$ max./2 $\mu \mathrm{s}$ max.		
Internal I/O common processing	PNP		
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Isolation method	Photocoupler isolation
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute with leakage current of 5 mA max.
I/O power supply source	Supplied from the NX bus. 20.4 to 28.8 VDC (24 VDC +20\%/-15\%)	Current capacity of I/O power supply terminals	IOV: 0.1 A max. per terminal IOG: 0.1 A max. per terminal
NX Unit power consumption	1.05W	Current consumption from I/O power supply	30 mA
Weight	130 g		

[^21]EtherCAT Slave Terminals NX-series
Incremental Encoder Input Unit NC-ECO $\square \square$

Version Information

NX Units		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202*	NJ-series CPU Units NJ501- $\square \square \square /$ NJ301- $\square \square \square \square$	Sysmac Studio

*For the NX-ECC202, there is no unit version of 1.1 or earlier.

NX-series SSI Input Unit

NX-ECS $\square \square$

Read position information from encoders with Synchronous Serial Interface (SSI).

- Process SSI encoder input data using the MC Function Modules of the NJ -series Machine Automation Controller.
- Encoder data can be synchronised with the control cycle and EtherCAT Distributed Clock.

Features

- SSI clock frequency is supported up to 2 MHz .
- Free-run refreshing or Synchronous I/O refreshing can be selected for refreshing with the NX-series EtherCAT Coupler.
- When the MC Function Modules of the NJ-series Machine Automation Controller are used, the encoder input can be used for motion control instructions as an "axis".
- Choice of SSI Coding Methods (No conversion, binary code, or gray code)
- Input edge time stamps
- Multi turn and single turn SSI encoders are supported.
- Data Refresh Status (Data refreshing can be checked on the host controller.)
- Maximum connecting SSI cable length:400m

EtherCAT Slave Terminals NX-series
SSI Input Unit NX-ECS $\square \square \square$

Specification

SSI Input Units 1 channel NX-ECS112

Unit name	SSI Input Units	Model	NX-ECS112
Number of channels	1 channel	Type of external connections	Screwless push-in terminal block (12 terminals)
I/O refreshing method	Free-Run refreshing or synchronous I/O refreshing *1		
Indicators		Input signals	External inputs: 2 Data input (D+,D-) External outputs: 2 Clock output (C+, C-)
I/O interface	Synchronized serial interface (SSI)		
Clock output	EIA standard RS-422-A line driver levels		
Data input	EIA standard RS-422-A line receiver levels		
Maximum data length	32 bits (The single-turn, multi-turn, and status data length can be set.)		
Coding method	No conversion, binary code, or gray code		
Baud Rate	$100 \mathrm{kHz}, 200 \mathrm{kHz}, 300 \mathrm{kHz}, 400 \mathrm{kHz}, 500 \mathrm{kHz}, 1.0 \mathrm{MHz}$, 1.5 MHz , or 2.0 MHz		
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Isolation method	Digital isolator
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute with leakage current of 5 mA max.
I/O power supply source	Supplied from the NX bus. $20.4 \text { to } 28.8 \text { VDC (} 24 \text { VDC }+20 \% /-15 \% \text {) }$	Current capacity of I/O power supply terminals	IOV: 0.3 A max. per terminal IOG: 0.3 A max. per terminal
NX Unit power consumption	0.85 W	Current consumption from I/O power supply	20 mA
Maximum transmission distance *2	Baud Rate	Maximum transmission distance	
	100 kHz	400 m	
	200 kHz	190 m	
	300 kHz	120 m	
	400 kHz	80 m	
	500 kHz	60 m	
	1.0 MHz	25 m	
	1.5 MHz	10 m	
	2.0 MHz	5 m	
Weight	65 g		
Circuit layout	SSI Clock Output and Data Input		
Installation orientation and restrictions	Installation orientation: 6 possible orientations Restrictions: There are no restrictions.		
Terminal connection diagram			
Failure detection	None	Protection	None

*1. The I/O refreshing method is automatically set according to the connected Communications Coupler Unit and CPU Unit.
*2. The maximum transmission distance for an SSI Input Unit depends on the baud rate due to the delay that can result from the responsiveness of the connected encoder and cable impedance. The maximum transmission distance is only a guideline. Review the specifications for the cables and encoders in the system and evaluate the operation of the equipment before use.

SSI Input Units 2 channel NX-ECS212

Unit name	SSI Input Units	Model	NX-ECS212
Number of channels	2 channels	Type of external connections	Screwless push-in terminal block (12 terminals)
I/O refreshing method	Free-Run refreshing or synchronous I/O refreshing *1		
Indicators	$\begin{gathered} \text { ECS212 } \\ \text { ■S } \\ \text { CH1 } \\ \text { ■RD1 } \\ \text { CH2 } \\ \text { ■RD2 } \end{gathered}$	Input signals	External inputs: 2 Data input (D+, D-) External outputs: 2 Clock output (C+, C-)
I/O interface	Synchronized serial interface (SSI)		
Clock output	EIA standard RS-422-A line driver levels		
Data input	EIA standard RS-422-A line receiver levels		
Maximum data length	32 bits (The single-turn, multi-turn, and status data length can be set.)		
Coding method	No conversion, binary code, or gray code		
Baud Rate	$100 \mathrm{kHz}, 200 \mathrm{kHz}, 300 \mathrm{kHz}, 400 \mathrm{kHz}, 500 \mathrm{kHz}, 1.0 \mathrm{MHz}, 1.5 \mathrm{MHz}$, or 2.0 MHz		
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Isolation method \quad Digital isolator	
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute with leakage current of 5 mA max.
I/O power supply source	Supplied from the NX bus. 20.4 to 28.8 VDC (24 VDC $+20 \% /-15 \%$)	Current capacity of I/O power supply terminals	IOV: 0.3 A max. per terminal IOG: 0.3 A max. per terminal
NX Unit power consumption	0.9 W	Current consumption from I/O power supply	30 mA
Maximum transmission distance *2	Baud Rate	Maximum transmission distance	
	100 kHz	400 m	
	200 kHz	190 m	
	300 kHz	120 m	
	400 kHz	80 m	
	500 kHz	60 m	
	1.0 MHz	25 m	
	1.5 MHz	10 m	
	2.0 MHz	5 m	
Weight	65 g		
Circuit layout	SSI Clock Output and Data Input	No isolation: 5 V GND	
Installation orientation and restrictions	Installation orientation: 6 possible orientations Restrictions: There are no restrictions.		
Terminal connection diagram			
Failure detection	None	Protection	None

[^22]EthercAT Slave Terminals NX-series
SSI Input Unit NX-ECS $\square \square \square$

Version Information

NX Units		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202 *	NJ-series CPU Units NJ501- \square /NJ301- \square	Sysmac Studio
NX-ECS112	Ver.1.0	Ver. 1.0 or later	Ver.1.05 or later	Ver. 1.06 or higher
	Ver.1.1			Ver. 1.08 or higher
NX-ECS212	Ver.1.0			Ver. 1.06 or higher
	Ver.1.1			Ver. 1.08 or higher

* For the NX-ECC202, there is no unit version of 1.1 or earlier.

NX-series Pulse Output Unit NX-PGO $\square \square$

Positioning with Pulse Input Type Motor Drivers Such As Stepper Motor Drive

- The MC Function Modules of the NJ-series Machine Automation Controller enable pulse outputs for motor control.
- The same motion control instructions as those for Servomotor control allow you to program single-axis PTP control and interpolation.

Features

- When the motion control instructions of the MC Function Modules of the NJ -series Machine Automation Controller are used, number of usable units is the same as the maximum number of axes controlled by the NJ -series Controller.
- Synchronous I/O refreshing with the EtherCAT Coupler Unit.
- Latch function (2 external latch inputs)
- Maximum pulse output speed: 500 kpps

EthercAT Slave Terminals NX-series
Pulse Output Unit NX-PGO $\square \square$
Specification

Pulse Output Units NX-PG0122

Unit name	Pulse Output Units	Model	NX-PG0122
Number of axes	1	Type of external connections	Screwless push-in terminal block (16 terminals)
I/O refreshing method	Synchronous I/O refreshing *1		
Indicators	$\begin{array}{r} \text { PGO122 } \\ \square \mathrm{TS} \\ \square \mathrm{CH} 1 \\ \square A \square B \\ \square 00 \\ \square 0 \square 11 \end{array}$	I/O signals	External inputs: 2 These are general-purpose inputs. External outputs: 3 These are the forward direction pulse output, reverse direction pulse output, and a general-purpose output.
Control method	Open-loop control through pulse string output		
Controlled drive	Servo drive with a pulse train input or a stepper motor drive		
Pulse output form	Open collector output		
Control unit	Pulses		
Maximum pulse output speed	500 kpps		
Pulse output method	Forward/reverse direction pulse outputs or pulse + direction outputs		
Position control range	-2,147,483,648 to 2,147,483,647 pulses		
Velocity control range	1 to 500,000 pps		
Positioning *2			
Single-axis position control	Absolute positioning, relative positioning, and interrupt feeding		
Single-axis velocity control	Velocity control (velocity feeding in Position Control Mode)		
Single-axis synchronized control	Cam operation and gear operation		
Single-axis manual operation	Jogging		
Auxiliary function for single-axis control	Homing, stopping, and override changes		

External input specifications

Input voltage	20.4 to $28.8 \mathrm{VDC}(24 \mathrm{VDC}+20 \% /-15 \%)$	ON voltage/ON current	15 VDC min./3 mA min.
Input current	4.6 mA typical (24 VDC)	OFF voltage/OFF current	4.0 VDC max. $/ 1 \mathrm{~mA} \mathrm{max}$.
ON/OFF response time	$1 \mu \mathrm{~s}$ max. $2 \mu \mathrm{~s}$ max.		
Internal I/O common processing	PNP		

External output specifications

Rated voltage	24 VDC		
Load voltage range	15 to 28.8 VDC	Residual voltage	1.0 V max.
Maximum load current	30 mA	Leakage current	0.1 mA
ON/OFF response time	5μ s max. $/ 5 \mu$ s max.		
Internal I/O common processing	PNP		
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Isolation method	External inputs: Photocoupler isolation External outputs: Digital isolator
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	Dielectric strength	510 VAC between isolated circuits for 1 minute with leakage current of 5 mA max.
I/O power supply source	Supplied from the NX bus. 20.4 to 28.8 VDC (24 VDC $+20 \% /-15 \%$)	Current capacity of I/O power supply terminals	IOV: 0.1 A max. per terminal IOG: 0.1 A max. per terminal
NX Unit power consumption	0.9 W	Current consumption from I/O power supply	20 mA
Weight	70 g	Cable length	3 m max.

[^23]*2. These functions are supported when you also use the MC Function Module in the NJ-series CPU Unit.
Refer to the NJ-series CPU Unit Motion Control User's Manual (Cat. No. W507) for details.
A Pulse Output Unit only outputs pulses during the control period based on commands received at a fixed period.
Target position calculations (distribution calculations) for acceleration/deceleration control or for each control period must be performed on the Controller that is connected as the host

EtherCAT Slave Terminals NX-series
Pulse Output Unit NX-PGO $\square \square$
Version Information

NX Units		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202*	NJ-series CPU Units NJ501- $\square \square \square /$ NJ301- $\square \square \square \square$	Sysmac Studio
	Ver.1.0	Ver.1.0 or later	Ver.1.05 or later	Ver.1.06 or higher
	Ver.1.1			

[^24]NX-series System Unit

NX-PD/PF/PC/TBX

Power Supply Unit, Power Connection Unit, and FG Terminal Expansion Unit for NX-series

- Provide stabilised power to the internal circuits of NX I/O Units.
- Feed additional power to I/O circuits of NX I/O Units.
- Provide extra terminals for sensor/actuator power and termination of shielded cabling.

Features

- Units to feed in additional Unit power and I/O power to an NX-series remote I/O terminal.
- Screwless clamp terminal block significantly reduces wiring work.
- Space-saving 12 mm wide units.
- The NX Unit Power Supply Unit allows expansion of the I/O configuration beyond the maximum power supply capacity of the EtherCAT Coupler
- The I/O Power Supply Unit is used when the total allowed I/O current per feed terminal is exceeded, or to split I/O power into groups.
- The I/O Power Connection Unit can be used as an additional power supply terminal for connected sensors and actuators.
- The FG Terminal Expansion Unit can be used as ground terminal for wire shields.
- The screwless terminal block is detachable for easy commissioning and maintenance.

EtherCAT Slave Terminals NX-series
System Unit NX-PD/PF/PC/TBX

Specification

Additional NX Unit Power Supply Unit NX-PD1000

[^25]EtherCAT Slave Terminals NX-series
System Unit NX-PD/PF/PC/TBX

Additional I/O Power Supply Units NX-PF0 $\square 30$

* Use an output voltage that is appropriate for the I/O circuits of the NX Units and the connected external devices.

I/O Power Supply Connection Unit IOG terminal type NX-PC0010

EtherCAT Slave Terminals NX-series
System Unit NX-PD/PF/PC/TBX

I/O Power Supply Connection Unit IOV terminal type NX-PC0020

Unit name	I/O Power Supply Connection Unit		
Model	NX-PC0020		
External connection terminals	Screwless push-in terminal block (16 terminals)		
Number of I/O power supply terminals	IOV: 16 terminals		
Current capacity of I/O power supply terminal	4 A/terminal max.		
Dimensions	$12(\mathrm{~W}) \times 100(\mathrm{H}) \times 71(\mathrm{D})$		
Isolation method	No-isolation		
Isolation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)		
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.		
NX Unit power consumption	0.45 W max.		
I/O current consumption	No consumption		
Weight	65 g max.		
Circuit layout			
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions		
Terminal connection diagram		DC Input Unit or	Three-wire type

I/O Power Supply Connection Unit IOV/IOG terminal type NX-PC0030

EtherCAT Slave Terminals NX-series
System Unit NX-PD/PF/PC/TBX

Shield Connection Unit NX-TBX01

Unit name	Shield Connection Unit
Model	NX-TBX01
External connection terminals	Screwless push-in terminal block (16 terminals)
Number of shield terminals	14 terminals (The following two terminals are functional ground terminals.)
Dimensions	$12(\mathrm{~W}) \times 100(\mathrm{H}) \times 71(\mathrm{D})$
Isolation method	Isolation between the SHLD functional ground terminal, and internal circuit: No-isolation
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
NX Unit power consumption	0.45 W max.
I/O current consumption	No consumption
Weight	65 g max.
Circuit layout	
Installation orientation and restrictions	Installation orientation: Possible in 6 orientations. Restrictions: No restrictions
Terminal connection diagram	

Version Information

NX Units		Corresponding unit versions/versions		
Model	Unit Version	EtherCAT Coupler Units NX-ECC201/ECC202*	NJ-series CPU Units NJ501- \square / NJ301- \square	Sysmac Studio
NX-PD1000	Ver.1.0	Ver. 1.0 or later	Ver. 1.05 or later	Ver.1.06 or higher
NX-PF0630				
NX-PF0730				Ver.1.08 or higher
NX-PC0020				Ver.1.06 or higher
NX-PC0010				
NX-PC0030				
NX-TBX01				

Integration of Safety into Machine Automation Enables Simple, Flexible System Configuration.

-EN ISO13849-1 (PLe/Safety Category4), IEC 61508 (SIL3) certified.

- One connection using Safety over EtherCAT (FSoE) * protocol enables flexible configuration by mixing the Safety Units with standard NX I/O.
- Hardware and safety circuits can be configured using the Sysmac Studio (Ver. 1.07)

* Safety over EtherCAT (FSoE): The open protocol Safety over EtherCAT (abbreviated with FSoE "FailSafe over EtherCAT") defines a safety related communication layer for EtherCAT. Safety over EtherCAT meets the requirements of IEC 61508 SIL 3 and enables the transfer of safe and standard information on the same communication system without limitations with regard to transfer speed and cycle time.

Features

- Integrated safety into machine automation possible by connecting with the NX-series EtherCAT Coupler.
- The Safety CPU Unit controls up to 128 Safety I/O Units.
- 4 or 8 points per Safety Input Unit. The 4-point Safety Input Unit can be directly connected with OMRON Non-contact Switches and Singlebeam Sensors.
- 2 or 4 points per Safety Output Unit. The 2-point Safety Output Unit is characterized by large output breaking current of 2.0 A.
- The Safety Units can be freely allocated in any combination with standard NX I/O.
- Compliant with IEC61131-3
- Safety programs can be standardized and reused efficiently by using POUs for design and operation.

Specifications

Regulations and Standards

Certification body	Standards	
	\bullet EN ISO 13849-1: 2008 + AC: 2009	\bullet EN 61000-6-2: 2005
	\bullet EN ISO 13849-2: 2012	\bullet EN 61000-6-4: 2007
	\bullet IEC 61508 parts 1-7: 2010	\bullet NFPA 79: 2012
TÜV Rheinland $*$	\bullet EN 62061: 2005	• ANSI RIA 15.06-1999
	\bullet EN 61131-2: 2007	• ANSI B11.19-2010
	\bullet EN ISO 13850: 2008	UL1998
	\bullet EN 60204-1: 2006 + A1: 2009 + AC: 2010	• IEC 61326-3-1: 2008
UL	cULus: Listed (UL508) and ANSI/ISA 12.12.01	

* Certification was received for applications in which OMRON FSoE devices are connected to each other.

The NX-series Safety Control Units allow you to build a safety control system that meets the following standards.

- Requirements for SIL 3 (Safety Integrity Level 3) in IEC 61508, EN 62061, Safety Standard for Safety Instrumented Systems (Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems)
- Requirements for PLe (Performance Level e) and for safety category 4 in EN ISO13849-1

The NX-series Safety Control Units are also registered for C-Tick and KC compliance.
General Specification

Item		Specification
Enclosure		Mounted in a panel (open)
Grounding method		Ground to 100Ω or less.
Operating environment	Ambient operating temperature	0 to $55^{\circ} \mathrm{C}$ (The upper limit of the ambient operating temperature is restricted by the installation orientation.)
	Ambient operating humidity	10\% to 95\% (with no condensation or icing)
	Atmosphere	Must be free from corrosive gases.
	Ambient storage temperature	-25 to $70^{\circ} \mathrm{C}$ (with no condensation or icing)
	Altitude	2,000 m max.
	Pollution degree	2 or less: Conforms to JIS B3502 and IEC 61131-2.
	Noise immunity	Conforms to IEC 61131-2. 2 kV on power supply line (Conforms to IEC 61000-4-4.)
	Insulation class	Class III (SELV)
	Overvoltage category	Category II: Conforms to JIS B3502 and IEC 61131-2.
	EMC immunity level	Zone B
	Vibration resistance	Conforms to IEC 60068-2-6. 5 to 8.4 Hz with $3.5-\mathrm{mm}$ amplitude, 8.4 to 150 Hz , acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}, 100$ minutes each in X, Y, and Z directions (10 sweeps of 10 min each $=100 \mathrm{~min}$ total)
	Shock resistance	Conforms to IEC 60068-2-27. $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y, and Z directions
	Insulation resistance	$20 \mathrm{M} \Omega$ between isolated circuits (at 100 VDC)
	Dielectric strength	510 VAC for 1 min between isolated circuits, leakage current: 5 mA max .
Installation method		DIN Track (IEC 60715 TH35-7.5/TH35-15)
Applicable standards		IEC 61508: 2010 SIL 3, EN 62061: 2005 SIL CL3 EN ISO 13849-1, 13849-2: 2008 PL e/Safety Category 4 UL 1998 cULus: Listed UL508, ANSI/ISA 12.12.01 EN 61131-2, C-Tick, KC: KC Registration

Safety Control Units NX-series

NX-SL/SI/SO

Specifications of Individual Units

Safety CPU Unit NX-SL3300

Unit name	Safety CPU Unit	
Model	NX-SL3300	NX-SL3500
Maximum number of safety I/O points	256 points	1024 points
Program capacity	512 KB	2048 KB
Number of safety master connections	32	128
I/O refreshing method	Free-Run refreshing	Free-Run refreshing
External connection terminals	None	None
Indicators	FS indicator, VALID indicator, DEBUG indicator, TS indicator, and RUN indicator	FS indicator, VALID indicator, DEBUG indicator, TS indicator, and RUN indicator
Dimensions	$30 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	
I/O power supply method	Not supplied.	
Current capacity of I/O power supply terminals	No I/O power supply terminals	
NX Unit power consumption	0.90 W max.	
Current consumption from I/O power supply	No consumption	
Weight	75 g max.	
Installation orientation and restrictions	Installation orientation: 6 possible orientations Restrictions: None	

Safety Control Units NX-series NX-SL/SI/SO

Safety Input Units NX-SIH400/SID800

Unit name	Safety Input Unit	
Model	NX-SIH400	NX-SID800
Number of safety input points	4 points	8 points
Number of test output points	2 points	2 points
Internal I/O common	PNP (sinking inputs)	
Rated input voltage	24 VDC (20.4 to 28.8 VDC)	
OMRON special safety input devices	Can be connected.	Cannot be connected.
Number of safety slave connections	1	
I/O refreshing method	Free-Run refreshing	
External connection terminals	Screwless clamping terminal block (8 terminals)	Screwless clamping terminal block (16 terminals)
Indicators	TS indicator, FS indicator, input indicators (yellow), and input error indicators (red)	TS indicator, FS indicator, input indicators (yellow), and input error indicators (red)
Safety input current	4.5 mA typical	3.0 mA typical
Safety input ON voltage	11 VDC min.	15 VDC min.
Safety input OFF voltage/OFF current	5 VDC max., 1 mA max.	
Test output type	Sourcing outputs (PNP)	
Test output load current	25 mA max.	50 mA max.
Test output residual voltage	1.2 V max. (Between IOV and all output terminals)	
Test output leakage current	0.1 mA max.	
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	
Isolation method	Photocoupler isolation	
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	
Dielectric strength	510 VAC for 1 min between isolated circuits, leakage current: 5 mA max.	
I/O power supply method	Power supplied from the NX bus	
Current capacity of I/O power supply terminals	No applicable terminals.	
NX Unit power consumption	0.70 W max.	0.75 W max.
Current consumption from I/O power supply	20 mA max.	
Weight	70 g max.	
Circuit layout		
Terminal connection diagram	Si0 to Si3: Safety input terminals T0 and T1: Test output terminals Refer to User's manual (Z930-E1) for details.	Si0 to Si7: Safety input terminals T0 and T1: Test output terminals Refer to User's manual (Z930-E1) for details.
Installation orientation and restrictions	Installation orientation: 6 possible orientations. Restrictions: Maximum ambient temperature is $50^{\circ} \mathrm{C}$ for any orientation other than upright installation.	
Protective functions		

Safety Control Units NX-series
 NX-SL/SI/SO

Safety Output Units NX-SOH200/SOD400

Unit name	Safety Output Unit	
Model	NX- SOH200	NX-SOD400
Number of safety output points	2 points	4 points
Internal I/O common	PNP (sourcing outputs)	
Maximum load current	2.0 A/point 4.0 A/Unit at $40^{\circ} \mathrm{C}$ $2.5 \mathrm{~A} /$ Unit at $55^{\circ} \mathrm{C}$ The maximum load current depends on the installation orientation and ambient temperature	0.5 A/point and 2.0 A/Unit
Rated voltage	24 VDC (20.4 to 28.8 VDC)	
Number of safety slave connections	1	
I/O refreshing method	Free-Run refreshing	
External connection terminals	Screwless clamping terminal block (8 terminals)	
Indicators	TS indicator, FS indicator, output indicators (yellow), and output error indicators (red)	TS indicator, FS indicator, output indicators (yellow), and output error indicators (red)
Safety output ON residual voltage	1.2 V max. (Between IOV and all output terminals)	
Safety output OFF residual voltage	2 V max. (Between IOG and all output terminals)	
Safety output leakage current	0.1 mA max.	
Dimensions	$12 \times 100 \times 71 \mathrm{~mm}$ ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	
Isolation method	Photocoupler isolation	
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	
Dielectric strength	510 VAC for 1 min between isolated circuits, leakage current: 5 mA max.	
I/O power supply method	Power supplied from the NX bus	
Current capacity of I/O power supply terminals	IOG: 2 A max./terminal	IOG (A3 and B3): 2 A max./terminal IOG (A7 and B7): 0.5 A max./terminal
NX Unit power consumption	0.70 W max.	0.75 W max.
Current consumption from I/O power supply	40 mA max.	60 mA max.
Weight	65 g max.	
Circuit layout		
Terminal connection diagram	So0 and So1: Safety output terminals IOG: I/O power supply 0 V Refer to User's manual (Z930-E1) for details.	So0 to So3: Safety output terminals IOG: I/O power supply 0 V Refer to User's manual (Z930-E1) for details.

Safety Control Units NX-series
NX-SL/SI/SO

Version Information

The combinations that can be used of the unit versions of the Safety Control Units, NJ -series CPU Units, and NX-series EtherCAT Coupler Unit, and the version of the Sysmac Studio

NX Unit		Corresponding unit versions/version		
Model number	Unit version	EtherCAT Coupler Unit NX-ECC201/ECC202 *	NJ-series CPU Units (NJ501- \square (NJ301- $\square \square \square \square$)	Sysmac Studio
NX-SL3300	1.0 or later	1.1 or later	1.06 or later	1.07 or later
NX-SIH400				
NX-SID800				
NX-SOD400				
NX-SOH200				
NX-SL3500	1.0	1.2 or later	1.07 or later	1.08 or later

* For the NX-ECC202, there is no unit version of 1.1 or earlier.

External Interface

Safety CPU Unit

NX-SL3300/SL3500

Letter	Item	Specification
A	Marker attachment locations	The locations where markers are attached. The markers made by OMRON are installed for the factory setting. Commercially available markers can also be installed. For details, refer to User's Manual (Z930-E1).
B	Protrusions for removing the Unit	The protrusions to hold when removing the Unit.
C	DIN Track mounting hooks	These hooks are used to mount the NX Unit to a DIN Track.
D	NX bus connector	This is the NX-series bus connector. It is used to connect an NX-series Safety I/O Unit or other NX Unit.
E	Unit hookup guides	These guides are used to connect two Units.
F	Indicators	The indicators show the current operating status of the NX Unit or signal I/O status. Refer to User's Manual (Z930-E1).
G	Unit specifications	The specifications of the NX Unit are given here.

Safety Control Units NX-series
 NX-SL/SI/SO

Safety Input Unit NX-SIH400/SID800
Safety Output Unit NX-SOH200/SOD400

Letter	Item	Specification
A	Marker attachment locations	The locations where markers are attached. The markers made by OMRON are installed for the factory setting. Commercially available markers can also be installed. For details, refer to User's Manual (Z930-E1).
B	NX bus connector	This is the NX-series bus connector. Connect this connector to another Unit, such as the NX-series Safety CPU Unit or a Safety I/O Unit.
C	Unit hookup guides	These guides are used to connect two Units.
D	DIN Track mounting hooks	These hooks are used to mount the NX Unit to a DIN Track.
E	Protrusions for removing the Unit	The protrusions to hold when removing the Unit.
F	Indicators	The indicators show the current operating status of the NX Unit or signal I/O status. Refer to User's Manual (Z930-E1).
G	Terminal block	The terminal block is used to connect to external devices. It connects the safety outputs. The number of terminals depends on the NX Unit.
H	Unit specifications	The specifications of the NX Unit are given here.

Terminal Blocks

8-terminal type

16-terminal type

Letter	Item	Specification
(A)	Terminal number indications	The terminal numbers are given by column letters A and B, and row numbers 1 to 8. The combination of the column and row gives the terminal numbers from A1 to A8 and B1 to B8. The terminal number indicators are the same regardless of the number of terminals on the terminal block, as shown above.
(B)	Release holes	Insert a flat-blade screwdriver into these holes to connect and remove the wires.
(C)	Terminal holes	The wires are inserted into these holes.

Applicable Terminal Blocks for Each Unit Model

Unit model number	Terminal Blocks				
	Nodel terminals	Terminal number indications	Ground terminal mark	Terminal current capacity	
NX-SIH400	NX-TBA082	8	A/B	None	10A
NX-SID800	NX-TBA162	16	A/B	None	10A
NX-SOH200	NX-TBA082	8	A/B	None	10A
NX-SOD400	NX-TBA082	8	A/B	None	10A

Applicable Wires

Refer to the page of The Applicable Wires of the EtherCAT Slave Terminals NX Series.

Dimensions

Safety CPU Unit NX-SL3300

Safety Input Units NX-SIH400/SID800
 Safety Output Units NX-SOH200/SOD400

AC Servomotors/Linear Motors/Drives
 G5-Series

System Configuration

Automation Software

- Sysmac Studio

Use a category 5 or higher cable with double, aluminium tape and braided shielding.

- G5-Series Drives with Built-in EtherCAT Communications R88D-KN $\square \square$-ECT

	Peripheral Devices
	• Reactors
External	3G3AX-DL
scale	3G3AX-AL
	\bullet External Regeneration
	Resistors
	R88A-RR

Motor power signals
Feedback Signals

Encoder Cables
- Non-Flexible Cables - For 750W or less R88A-CRK $\square \square \square$ - For 1.0 kW or more R88A-CRKC $\square \square$ N - Flexible Cables - For 750W or less R88A-CRK $\square \square \square$ CR - For 1.0 kW or more R88A-CRKC $\square \square$ NR

- G5-Series motor R88M-K
$3000 \mathrm{r} / \mathrm{min}$
$2000 \mathrm{r} / \mathrm{min}$
$1500 \mathrm{r} / \mathrm{min}$
$1000 \mathrm{r} / \mathrm{min}$

[^26]Absolute/Incremental output: The Servomotor can be switched between an absolute output and an Incremental output. When an absolute output is selected and the Controller power supply is turned ON, the Controller reads the Servo absolute position data to restore the absolute position.

Linear Motor/Drives
 Q5-SerİeS Ethercat communications Linear Motor Type

System Configuration

Automation Software

- Sysmac Studio
 braided shielding.

G5-Series AC Servo Drives with Built-in EtherCAT Communications R88D-KN \square-ECT

G5-series provides both high-speed and highly-accurate control and safety

- High-accuracy positioning with fully-closed control.
- Servo Drives for 400VAC widens applicable systems and environment, including large-scale equipment and overseas facilities.
- Safe design and Safe Torque Off (STO) function (application pending)
- Vibration can be suppressed in acceleration/deceleration even in low rigidity mechanical systems.

General Specifications

Item			Specifications
Ambient operating temperature and operating humidity			0 to $55^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ max. (with no condensation)
Storage ambient temperature and humidity			-20 to $65^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ max. (with no condensation)
Operating and storage atmosphere			No corrosive gases
Vibration resistance			10 to 60 Hz and at an acceleration of $5.88 \mathrm{~m} / \mathrm{s}^{2}$ or less (Not to be run continuously at a resonance point)
Insulation resistance			Between power supply terminals/power terminals and FG terminal: $0.5 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength			Between power supply/power line terminals and FG terminal: 1,500 VAC for 1 min at $50 / 60 \mathrm{~Hz}$
Protective structure			Built into panel
International standard	EC Directives	EMC Directive	EN 55011, EN 61000-6-2, IEC 61800-3
		Low Voltage Directive	EN 61800-5-1
		Machinery Directives	EN954-1 (Category 3), EN ISO 13849-1: 2008 (Category 3) (PLc,d), ISO 13849-1: 2006 (Category 3) (PLc,d), EN61508 (SIL2), EN62061 (SIL2), EN61800-5-2 (STO), IEC61326-3-1 (SIL2)
	UL standards		UL 508C
	CSA standards		CSA22.2 No. 14

Note: 1. The above items reflect individual evaluation testing. The results may differ under compound conditions.
2. Always disconnect all connections to the Servo Drive before you perform insulation resistance tests on it. If you perform an insulation resistance test while the Servo Drive is connected, the Servo Drive may be damaged.
Never perform dielectric strength tests on the Servo Drive. Failure to follow this precaution may result in damaging internal elements.
3. Depending on the operating conditions, some Servo Drive parts will require maintenance. For details, refer to G5 Series USER'S MANUAL (Cat.No. I576)

AC Servomotors/Linear Motors/Drives G5-Series AC Servo Drives EtherCAT Communications Built-in Type

Performance Specifications

- Servo Drives with 100 VAC Input Power

for Single-phase input type

Item			R88D-KNA5L-ECT	R88D-KN01L-ECT	R88D-KN02L-ECT	R88D-KN04L-ECT
Continuous output current (rms)			1.2A	1.7A	2.5A	4.6A
Input power supply	Main circuit	Power supply capacity	0.4KVA	0.4KVA	0.5KVA	0.9KVA
		Power supply voltage	Single-phase 100 to 120 VAC (85 to 132 V) $50 / 60 \mathrm{~Hz}$			
		Rated current	1.7A	2.6A	4.3A	7.6A
		Heat value*1	11W	16.6W	21W	25W
	Control circuit	Power supply voltage	Single-phase 100 to 120 VAC (85 to 132 V) $50 / 60 \mathrm{~Hz}$			
		Heat value*1	4W	4W	4W	4W
Weight			Approx. 0.8 kg	Approx. 0.8 kg	Approx. 1.0kg	Approx. 1.6kg
Maximum applicable motor capacity			50W	100W	200W	400 W
Applicable Servomotor	$\begin{aligned} & 3,000 \mathrm{r} / \mathrm{min} \\ & \text { Servomotors } \end{aligned}$	INC	K05030H	K10030L	K20030L	K40030L
		ABS	K05030T	K10030S	K20030S	K40030S
	$\begin{aligned} & \text { 2,000 r/min } \\ & \text { Servomotors } \end{aligned}$	ABS	-	-	-	-
	$\begin{aligned} & 1,000 \mathrm{r} / \mathrm{min} \\ & \text { Servomotors } \end{aligned}$	ABS	-	-	-	-

*1 The heat value is given for rated operation.

- Servo Drives with 200 VAC Input Power for Single-phase/Three-phase input type

Item			$\begin{gathered} \hline \text { R88D- } \\ \text { KN01H-ECT } \end{gathered}$	$\begin{gathered} \text { R88D- } \\ \text { KN02H-ECT } \end{gathered}$	$\begin{gathered} \text { R88D- } \\ \text { KN04H-ECT } \end{gathered}$	$\begin{gathered} \text { R88D- } \\ \text { KN08H-ECT } \end{gathered}$	$\begin{gathered} \text { R88D- } \\ \text { KN10H-ECT } \end{gathered}$	$\begin{gathered} \text { R88D- } \\ \text { KN15H-ECT } \end{gathered}$
Continuous output current (rms)			1.2A	1.6A	2.6A	4.1A	5.9A	9.4 A
Input power supply	Main circuit	Power supply capacity	0.5 KVA	0.5 KVA *1	0.9KVA	1.3KVA	1.8KVA	2.3KVA
		Power supply voltage	Single-phase or 3-phase 200 to 240 VAC (170 to 264 V) $50 / 60 \mathrm{~Hz}$					
		Rated current	1.6/0.9A * ${ }^{\text {\% }}$	2.4/1.3A *1	4.1/2.4A *1	6.6/3.6A *1	9.1/5.2A *1	14.2/8.1A *1
		Heat value*2	14.3/13.7W*1	23/19W *1	33/24W *1	30/35.5W *1	57/49W *1	104/93W*1
	Control circuit	Power supply voltage	Single-phase 200 to 240 VAC (170 to 264 V) 50/60 Hz					
		Heat value*2	4W	4W	4W	4W	7W	7W
Weight			Approx. 0.8 kg	Approx. 0.8 kg	Approx. 1.0 kg	Approx. 1.6 kg	Approx. 1.8 kg	Approx. 1.8 kg
Maximum applicable motor capacity			100W	200W	400W	750W	1kW	1.5kW
Applicable Servomotor	3,000 r/min Servomotors	INC	$\begin{aligned} & \mathrm{K} 05030 \mathrm{H} \\ & \mathrm{~K} 10030 \mathrm{H} \end{aligned}$	K20030H	K40030H	K75030H	-	$\begin{aligned} & \text { K1K030H } \\ & \text { K1K530H } \end{aligned}$
		ABS	$\begin{aligned} & \text { K05030T } \\ & \text { K10030T } \end{aligned}$	K20030T	K40030T	K75030T	-	$\begin{aligned} & \text { K1K030T } \\ & \text { K1K530T } \end{aligned}$
	2,000 r/min Servomotors	INC	-	-	-	-	K1K020H	K1K520H
		ABS	-	-	-	-	K1K020T	K1K520T
	$\begin{aligned} & 1,000 \mathrm{r} / \mathrm{min} \\ & \text { Servomotors } \end{aligned}$	INC	-	-	-	-	-	K90010H
		ABS	-	-	-	-	-	K90010T

[^27]
AC Servomotors/Linear Motors/Drives G5-Series
 AC Servo Drives EtherCAT Communications Built-in Type

- Servo Drives with 200 VAC Input Power
for Three-phase input type

Item			R88D-KN20H-ECT	R88D-KN30H-ECT	R88D-KN50H-ECT	R88D-KN75H-ECT	$\begin{gathered} \text { R88D-KN150H- } \\ \text { ECT } \end{gathered}$
Continuous output current (rms)			13.4A	18.7A	33.0A	44.0A	66.1A
Input power supply	Main circuit	Power supply capacity	3.3KVA	4.5KVA	7.5KVA	11.0KVA	22.0KVA
		Power supply voltage	3-phase 200 to 230 VAC (170 to 253 V) $50 / 60 \mathrm{~Hz}$			$\begin{gathered} \text { 3-phase } 200 \text { to } 230 \mathrm{VAC}(170 \text { to } 253 \mathrm{~V}) 50 / 60 \mathrm{~Hz} \\ 280 \text { to } 325 \mathrm{VDC}(238 \text { to } 357 \mathrm{~V}) \end{gathered}$	
		Rated current	11.8A	15.1A	21.6A	32.0 A	58.0A
		Heat value *1	139W	108W	328W	381 W	720W
	Control circuit	Power supply voltage	Single-phase 200 to 230 VAC (170 to 253 V) 50/60 Hz			Single-phase 200 to 230 VAC (170 to 253 V) $50 / 60 \mathrm{~Hz}$ 280 to 25VDC (238 to 357 V)	
		Heat value *1	10W	13W	13W	15W	17W
Weight			Approx. 2.7 kg	Approx. 4.8 kg	Approx. 4.8 kg	Approx. 13.5kg	Approx. 21.0 kg
Maximum applicable motor capacity			2kW	3kW	5 kW	7.5 kW	15 kW
Applicable Servomotor	$\begin{aligned} & 3,000 \mathrm{r} / \mathrm{min} \\ & \text { Servomotors } \end{aligned}$	INC	K2K030H	K3K030H	$\begin{aligned} & \text { K4KO30H } \\ & \text { K5K030H } \end{aligned}$	-	-
		ABS	K2K030T	K3K030T	$\begin{aligned} & \text { K4K030T } \\ & \text { K5K030T } \end{aligned}$	-	-
	2,000 r/min Servomotors	INC	K2K020H	K3K020H	$\begin{aligned} & \text { K4K020H } \\ & \text { K5K020H } \end{aligned}$	-	-
		ABS	K2K020T	K3K020T	$\begin{aligned} & \text { K4K020T } \\ & \text { K5K020T } \end{aligned}$	K7K515T	K11K015T K15K015T
	$\begin{aligned} & 1,000 \mathrm{r} / \mathrm{min} \\ & \text { Servomotors } \end{aligned}$	INC	-	K2K010H	K3K010H	-	-
		ABS	-	K2K010T	K3K010T K4K510T	K6K010T	-

*1 The heat value is given for rated operation.

- Servo Drives with 400 VAC Input Power

for Three-phase input type

Item			R88D-KN06FECT	R88D-KN10FECT	R88D-KN15FECT	R88D-KN20FECT	R88D-KN30FECT	R88D-KN50FECT	R88D-KN75FECT	$\begin{gathered} \text { R88D- } \\ \text { KN150F- } \\ \text { ECT } \end{gathered}$
Continuous output current (rms)			1.5A	2.9A	4.7A	6.7A	9.4A	16.5A	22.0A	33.1 A
Input power supply	Main circuit	Power supply capacity	1.2KVA	1.8KVA	2.3KVA	3.8KVA	4.5KVA	6.0KVA	11.0KVA	22.0KVA
		Power supply voltage	Three-phase 380 to 480 VAC (323 to 528 V) $50 / 60 \mathrm{~Hz}$							
		Rated current	2.1A	2.8 A	4.7A	5.9A	7.6A	12.1A	16.0A	29.0A
		Heat value*1	32.2 W	48W	49W	65W	108W	200W	300W	590W
	Control circuit	Power supply voltage	24 VDC (20.4 to 27.6 V)							
		Heat value*1	7W	7W	7W	10W	13W	13W	15W	22W
Weight			$\begin{gathered} \hline \text { Approx. } \\ 1.9 \mathrm{~kg} \end{gathered}$	Approx. 1.9 kg	$\begin{gathered} \hline \text { Approx. } \\ 1.9 \mathrm{~kg} \\ \hline \end{gathered}$	Approx. 2.7 kg	Approx. 4.7 kg	Approx. $4.7 \mathrm{~kg}$	$\begin{aligned} & \text { Approx. } \\ & 13.5 \mathrm{~kg} \end{aligned}$	Approx. 21.0kg
Maximum applicable motor capacity			600W	1kW	1.5 kW	2kW	3kW	5 kW	7.5kW	15kW
Applicable Servomotor	3,000 r/min Servomotors	INC	-	K75030F	K1K030F K1K530F	K2K030F	K3K030F	$\begin{aligned} & \text { K4K030F } \\ & \text { K5K030F } \end{aligned}$	-	-
		ABS	-	K75030C	$\begin{aligned} & \text { K1K030C } \\ & \text { K1K530C } \end{aligned}$	K2K030C	K3K030C	$\begin{aligned} & \text { K4K030C } \\ & \text { K5K030C } \end{aligned}$	-	-
	2,000 r/min Servomotors	INC	$\begin{aligned} & \text { K40020F } \\ & \text { K60020F } \end{aligned}$	K1K020F	K1K520F	K2K020F	K3K020F	$\begin{aligned} & \text { K4K020F } \\ & \text { K5K020F } \end{aligned}$	-	-
		ABS	$\begin{aligned} & \text { K40020C } \\ & \text { K60020C } \end{aligned}$	K1K020C	K1K520C	K2K020C	K3K020C	$\begin{aligned} & \text { K4K020C } \\ & \text { K5K020C } \end{aligned}$	K7K515C	K11K015C K15K015C
	$1,000 \mathrm{r} / \mathrm{min}$ Servomotors	INC	-	-	K90010F	-	K2K010F	K3K010F	-	-
			-	-	K90010C	-	K2K010C	K3K010C K4K510C	K6K010C	-

[^28]
EtherCAT Communications Specifications

Item	Specification
Communications standard	IEC 61158 Type 12, IEC 61800-7 CiA 402 Drive Profile
Physical layer	100BASE-TX (IEEE802.3)
Connectors	RJ45 $\times 2$ (shielded) ECAT IN: EtherCAT input ECAT OUT: EtherCAT output
Communications media	Category 5 or higher (cable with double, aluminum tape and braided shielding) is recommended.
Communications distance	Distance between nodes: 100 mmax .
Process data	Fixed PDO mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information
Distributed clock	Synchronization in DC mode. DC cycle: $250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}$
LED indicators	$\begin{aligned} & \text { L/A IN }(\text { Link } / \text { Activity IN }) \times 1 \\ & \text { L/A OUT }(\text { Link } / \text { Activity OUT }) \times 1 \\ & \text { RUN } \times 1 \\ & \text { ERR } \times 1 \end{aligned}$
CiA402 Drive Profile	- Cyclic synchronous position mode - Cyclic synchronous velocity mode - Cyclic synchronous torque mode - Profile position mode - Homing mode - Touch probe function (Latch function) - Torque limit function

Version Information

Unit Versions

Unit	Model	Unit version		
		Unit version 1.0	Unit version 2.0	Unit version 2.1
AC Servo Drives G5-Series built-in EtherCAT Communications	R88D-KN \square-ECT-R	Supported		
	R88D-KN \square-ECT		Supported	Supported
Compatible Sysmac Studio version		Version 1.00 or higher *1	Version1.00 or higher *2	Version1.00 or higher

*1 The function that was enhanced by the upgrade for Unit version2.0 can not be used. For detail, refer to "Function Support by Unit Version".
*2 The function that was enhanced by the upgrade for Unit version2.1 can not be used. For detail, refer to "Function Support by Unit Version".

Function Support by Unit Version

		AC Servo Drives G5-Series built-in EtherCAT Communications		
Model		R88D-KN■-ECT-R	R88D-KN■-ECT	
Item Unit version		Unit version 1.0	Unit version 2.0	Unit version 2.1
Sysmac Products Features	Sysmac Error Status	No supported		Supported
	Saving the Node Address Setting	No supported		Supported
	Serial Number Display *1	No supported		Supported
	ESI Specification (Version 1.0)	No supported		Supported
	SII Data Check	No supported		Supported
Fixed PDO mapping		No supported	Supported	
Variable PDO mapping (1600 hex, 1A00 hex)		No supported		Supported
Available operation modes	csp: Cyclic synchronous position mode	Supported		
	csv: Cyclic synchronous velocity mode	No supported	Supported	
	cst: Cyclic synchronous torque mode	No supported	Supported	
	pp: Profile position mode	No supported		Supported
	hm: Homing mode	No supported	Supported	
FIR filter function		No supported	Supported *2 (Available when the communications cycle is 1 ms or above)	
Error detection function	Excessive Speed Deviation Error	No supported	Supported	
	Interruptions Error	No supported	Supported	
Electronic gear function		Supported	No supported (only to 1:1)	Supported
Fully-closed Control *3		Supported	Available when the communications cycle is $500 \cdot \mathrm{~s}$ or above in csp and 1 ms or above in hm .	Available when the communications cycle is 1 ms or above at an electronic gear ratio of $1: 1$ and 2 ms or above at a gear ratio other than 1:1. *4

AC Servomotors/Linear Motors/Drives G5-Series
 AC Servo Drives EtherCAT Communications Built-in Type

Unit	AC Servo Drives G5-Series built-in EtherCAT Communications		
Model	R88D-KND-ECT-R	R88D-KN■-ECT	
Unit version Item	Unit version 1.0	Unit version 2.0	Unit version 2.1
Torque limit objects	PDO mapping to 60E0/ 60E1 hex is not possible.	PDO mapping to 60E0/60E1 hex is possible.*5	
Positioning Completion Range	No supported		Supported
Reference Position for CSP (4020 hex)	No supported		Supported
Data Setting Warning Detection Setting (3781)	No supported		Supported
Version indication on the unit label	No supported	Supported	

*1 The function to show the serial number controlled by OMRON in 1018h-04 hex.
*2 Setting the communications cycle to 500μ s or less does not enable the FIR filter function, although doing so does not cause any error.
*3 If Fully-closed Control is not available, a Function Setting Error (Error No. 93.4) will occur.
*4 This is applicable only when the total size of the objects mapped to RxPDO is 12 bytes or less. For details, refer to the USER'S MANUAL.
*5 There are objects added (3013 hex/3522 hex) to or renamed (3525 hex/3526 hex) from unit version 1.0.
For details of these objects, refer to Torque Limit Selection (3521 hex) in Extended Objects of each manual.

Components and Functions

Name	Function		
Display	A 2-digit 7-segment display shows the node addrest, error codes, and other Servo Drive status.		
Charge Lamp	Lights when the main circuit power supply is turned ON.		
EtherCAT Status Indicators	These indicators show the status of Ether- CAT communications. For details, refer to G5 Series USER'S MANUAL (Cat.No. I576).		
Control I/O Connector (CN1)	Used for command input signals and I/O sig- nals.		
Encoder Connector (CN2)	Connector for the encoder installed in the Servomotor.		
External Encoder Connector (CN4)	Connector for an encoder signal used during fully-closed control.		
EtherCAT Communications	These connectors are for EtherCAT commu- nications.		
Connectors (ECAT IN and			
ECAT OUT)		\quad	You can use a special cable to monitor val-
:---			
ues, such as the motor rotation speed,			
torque command value, etc.			

Dimensions

<Wall Mounting>
Single-phase 100 VAC R88D-KNA5L-ECT/-KN01L-ECT (50 to 100 W) R88D-KN01L-ECT-L (100W)
Single-phase/Three-phase 200 VAC R88D-KN01H-ECT/-KN02H-ECT (100 to 200W) R88D-KN01H-ECT-L/-KN02H-ECT-L (100 to 200W)

Single-phase 100 VAC R88D-KN02L-ECT (200W)
R88D-KN02L-ECT-L (200W)
Single-phase/Three-phase 200 VAC R88D-KN04H-ECT (400W)
R88D-KN04H-ECT-L (400W)
Mounting dimensions

Single-phase 100 VAC R88D-KN04L-ECT (400W)
R88D-KN04L-ECT-L (400W)
Single-phase/Three-phase 200 VAC R88D-KN08H-ECT (750W)
R88D-KN08H-ECT-L (750W)

AC Servomotors/Linear Motors/Drives G5-Series
AC Servo Drives EtherCAT Communications Built-in Type

Single-phase/Three-phase 200 VAC R88D-KN10H-ECT/-KN15H-ECT (900W to 1.5kW) R88D-KN10H-ECT-L/-KN15H-ECT-L (1 to 1.5kW)

Three-phase 200 VAC R88D-KN20H-ECT (2kW)

Three-phase 200 VAC R88D-KN30H-ECT/-KN50H-ECT (3 to 5kW)

AC Servomotors/Linear Motors/Drives G5-Series AC Servo Drives EtherCAT Communications Built-in Type

Three-phase 200 VAC R88D-KN75H-ECT (7.5kW)

Three-phase 200 VAC R88D-KN150H-ECT (15kW)

AC Servomotors/Linear Motors/Drives G5-Series
AC Servo Drives EtherCAT Communications Built-in Type

Three-phase 400 VAC R88D-KN06F-ECT/-KN10F-ECT (600W to 1.0kW) R88D-KN06F-ECT-L/-KN10F-ECT-L (600W to 1.0kW)
Three-phase 400 VAC R88D-KN15F-ECT (1.5kW)
R88D-KN15F-ECT-L (1.5kW)
Mounting dimensions

Three-phase 400 VAC R88D-KN20F-ECT (2kW)
R88D-KN20F-ECT-L (2kW)

Mounting dimensions

Three-phase 400 VAC R88D-KN30F-ECT/-KN50F-ECT (3 to 5kW) R88D-KN30F-ECT-L (3kW)

Mounting dimensions

AC Servomotors/Linear Motors/Drives G5-Series AC Servo Drives EtherCAT Communications Built-in Type

Three-phase 400 VAC R88D-KN75F-ECT (7.5kW)

Three-phase 400 VAC R88D-KN150F-ECT (15kW)

G5-series AC Servo Drives with Built-in EtherCAT Communications Linear Motor Type R88D-KND-ECT-L

Linear Motor for Higher-speed and Higher-precision

- Inherited functions and performance of G5series and EtherCAT communications achieve high-speed and high-precision positioning.
- Same Iron-core motor type for 200V AC and 400V AC.
- Quick setup by automatic setup function

General Specifications

Item		Specifications
Ambient operating temperature and humidity		0 to $55^{\circ} \mathrm{C}, 20 \%$ to 85% max. (with no condensation)
Storage ambient temperature and humidity		-20 to $65^{\circ} \mathrm{C}, 20 \%$ to 85% max. (with no condensation)
Operating and storage atmosphere		No corrosive gases
Vibration resistance		10 to 60 Hz and at an acceleration of $5.88 \mathrm{~m} / \mathrm{s}^{2}$ or less (Not to be run continuously at the resonance point)
Insulation resistance		Between power supply terminals/power terminals and FG terminal: $0.5 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength		Between power supply/power terminals and FG terminal: $1,500 \mathrm{VAC}$ for 1 min at $50 / 60 \mathrm{~Hz}$
Protective structure		Built into panel
EC Directives*	EMC Directive	EN 55011, EN 61000-6-2, EN 61800-3
	Low Voltage Directive	EN 61800-5-1
	Machinery Directives	EN954-1(Cat.3), EN ISO13849-1 (Cat.3)(PLc, d), ISO13849-1(Cat.3)(PLc, d),EN61508(SIL2), EN62061(SIL2), EN61800-5-2 (STO), IEC61326-3-1 (SIL 2)
UL standards		UL 508C
CSA standards		CSA22.2 No. 14

* The certification from third party is issued in combination with the revolution type motor. The conformance as the whole system should be checked by machine builder.
Note: 1. The above items reflect individual evaluation testing. The results may differ under compound conditions.
Note: 2. Always disconnect all connections to the Servo Drive before you perform insulation resistance tests on it. If you perform an insulation resistance test while the Servo Drive is connected, the Servo Drive may be damaged. Never perform dielectric strength tests on the Servo Drive. Failure to follow this precaution may result in damaging internal elements.
Note: 3. Depending on the operating conditions, some Servo Drive parts will require maintenance. For details, refer to the G5 series USER'S MANUAL (Cat.No.I577). Confirm the Manual No. that is listed in Related Manuals.
Note: 4. Vibration, unstable movement, or accoustic noise may occur by an exogenous noise. In such case, please reduce incoming noise as referred in G5 series user's manuals.

Performance Specifications

- Servo Drives with 100 VAC Input Power for Single-phase input types

Item			R88D-KN01L-ECT-L	R88D-KN02L-ECT-L	R88D-KN04L-ECT-L
Input power supply	Main circuit	Power supply capacity	0.4 KVA	0.5 KVA	0.9 KVA
		Power supply voltage	Single-phase 100 to 120 VAC (85 to 132 VAC) $50 / 60 \mathrm{~Hz}$		
		Rated current	2.6 A	4.3 A	7.6 A
		Heat value*1	16.6 W	21 W	25 W
	Control circuit	Power supply voltage	Single-phase 100 to 120 VAC (85 to 132 VAC) $50 / 60 \mathrm{~Hz}$		
		Heat value*1	4 W	4 W	4 W
Mass			Approx. 0.8 kg	Approx. 1.0 kg	Approx. 1.6 kg
Maximum motor capacity	Motor Rated Rms Current		1.7 Arms	2.5 Arms	4.6 Arms
	Maximum current of motor		5.1 Arms	7.5 Arms	13.8 Arms

*1. The heat value is given for rated operation.

- Servo Drives with 200 VAC Input Power
for Single-phase/Three-phase input type

Item			R88D-KN01H-ECT-L	R88D-KN02H-ECT-L	R88D-KN04H-ECT-L	R88D-KN08H-ECT-L	R88D-KN10H-ECT-L	R88D-KN15H-ECT-L
Input power supply	Main circuit	Power supply capacity	0.5 KVA	0.5 KVA	0.9 KVA	1.3 KVA	1.8 KVA	2.3 KVA
		Power supply voltage	Single-phase or 3-phase 200 to 240 VAC (170 to 264 VAC) $50 / 60 \mathrm{~Hz}$					
		Rated current	1.6/0.9 A*1	2.4/1.3 A*1	4.1/2.4 A*1	6.6/3.6 A*1	9.1/5.2 $\mathrm{A}^{* 1}$	14.2/8.1 $\mathrm{A}^{* 1}$
		Heat value*2	14.3/13.7 W*1	23/19 W*1	33/24 W*1	30/35.5 W*1	57/49 W*1	104/93 W*1
	Control circuit	Power supply voltage	Single-phase 200 to 240 VAC (170 to 264 VAC) $50 / 60 \mathrm{~Hz}$					
		Heat value*2	4 W	4 W	4 W	4 W	7 W	7 W
Mass			Approx. 0.8 kg	Approx. 0.8 kg	Approx. 1.0 kg	Approx. 1.6 kg	Approx. 1.8 kg	Approx. 1.8 kg
Maximum motor capacity	Rated effective current of motor		1.2 Arms	1.6 Arms	2.6 Arms	4.1 Arms	5.9 Arms	9.4 Arms
	Maximum current of motor		3.6 Arms	4.8 Arms	7.8 Arms	12.3 Arms	16.9 Arms	28.2 Arms

*1. The first value is for single-phase input power and the second value is for 3-phase input power.
*2. The heat value is given for rated operation.

- Servo Drives with 400 VAC Input Power

for Three-phase input type

Item			R88D-KN06F-ECT-L	R88D-KN10F-ECT-L	R88D-KN15F-ECT-L	R88D-KN20F-ECT-L	R88D-KN30F-ECT-L
Input power supply	Main circuit	Power supply capacity	1.2 KVA	1.8 KVA	2.3 KVA	3.8 KVA	4.5 KVA
		Power supply voltage	3-phase 380 to 480 VAC (323 to 528 VAC) $50 / 60 \mathrm{~Hz}$				
		Rated current	2.1 A	2.8 A	3.9 A	5.9 A	7.6 A
		Heat value*1	32.2 W	48 W	49 W	65 W	108 W
	Control circuit	Power supply voltage	24 VDC (20.4 to 27.6 VAC)				
		Heat value*1	7 W	7 W	7W	10 W	13 W
Mass			Approx. 1.9 kg	Approx. 1.9 kg	Approx. 1.9 kg	Approx. 2.7 kg	Approx. 4.7 kg
Maximum motor capacity	Rated effective current of motor		1.5 Arms	2.9 Arms	4.7 Arms	6.7 Arms	9.4 Arms
	Maximum current of motor		4.5 Arms	8.7 Arms	14.1 Arms	19.7 Arms	28.2 Arms

*1. The heat value is given for rated operation.

AC Servomotors/Linear Motors/Drives G5-Series
AC Servo Drives with Built-in EtherCAT Communications Linear Motor Type
EtherCAT Communications Specifications

Item	Specification
Communications standard	IEC 61158 Type 12, IEC 61800-7 CiA 402 Drive Profile
Physical layer	100BASE-TX (IEEE802.3)
Connectors	RJ45 $\times 2$ (shielded) ECAT IN: EtherCAT input ECAT OUT: EtherCAT output
Communications media	Ethernet Category 5 (100BASE-TX) or higher (twisted-pair cable with double, aluminum tape and braided shielding) is recommended.
Communications distance	Distance between nodes: 100 mmax .
Process data	Fixed PDO mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information
Distributed clock (DC)	Synchronization in DC mode. DC cycle: $250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}$
LED indicators	```L/A IN (Link/Activity IN) \(\times 1\) L/A OUT (Link/Activity OUT) \(\times 1\) RUN \(\times 1\) ERR \(\times 1\)```
CiA402 Drive Profile	- Cyclic synchronous position mode - Cyclic synchronous velocity mode - Cyclic synchronous torque mode - Profile position mode - Homing mode - Touch probe function (Latch function) - Torque limit function

Version Information

Unit Versions

- AC Servo Drives with built-in EtherCAT communications Linear motor type and Software

Unit	Model	Unit version
		Unit version 1.1
AC Servo Drives G5-Series built-in EtherCAT Communications Linear Motor Type	R88D-KN $\square \square \square-E C T-L ~$	Supported
Compatible Sysmac Studio version	Version 1.04 or higher	
Compatible CX-Drive version	Version 2.72 or higher	

Components and Functions

Display

A 2-digit 7-segment display shows the node address, error codes, and other Servo Drive status.

Charge Lamp

Lights when the main circuit power supply is turned ON.

EtherCAT Status Indicators

These indicators show the status of EtherCAT communications. For details, refer to the G5 series USER'S MANUAL (Cat.No.I576).
Control I/O Connector (CN1)
Used for command input signals and I/O signals.

External Encoder Connector (CN4)*

Connector for an encoder signal used during fully-closed control.
EtherCAT Communications Connectors (ECAT IN and ECAT OUT) These connectors are for EtherCAT communications.

Analog Monitor Connector (CN5)

You can use a special cable to monitor values, such as the motor rotation speed, torque command value, etc.

USB Connector (CN7)

Communications connector for the computer.

Safety Connector (CN8)

Connector for safety devices.
If no safety devices are used, keep the factory-set safety bypass connector installed.

AC Servomotors/Linear Motors/Drives G5-Series AC Servo Drives with Built-in EtherCAT Communications Linear Motor Type

*External Encoder
Contact the encoder manufacturer to find out the detailed specifications such as operating environment before use.

External encoder type	Maker	Example of External encoder	Supported speed*1	$\begin{aligned} & \text { Resolution *4 } \\ & {[\mu \mathrm{m}]} \end{aligned}$	$\begin{gathered} \text { Maximum } \\ \text { speed *4 } \\ {[\mathrm{m} / \mathrm{s}]} \end{gathered}$
90® phase difference output type*2*3	-	Phase A/B type	0 to 4 Mpps (Multiplication $\times 4$)	-	-
Serial communications type (Incremental type)*3	Magnescale Co., Ltd	SR75	0 to 400 Mpps	0.01 to 1	3.3
		SR85		0.01 to 1	3.3
		SL700+PL101RP/RHP		0.1	10
		SL710+PL101RP/RHP		0.1	10
Serial communications type (Absolute type)*3	Mitutoyo Corporation	AT573A	0 to 400 Mpps	0.05	2.5
		ST778A(L)		0.1	5
	Magnescale Co., Ltd	SR77		0.01 to 1	3.3
		SR87		0.01 to 1	3.3
	Renishaw Co.	RESOLUTE		0.001	0.4
				0.05	20
				0.1	40
	FAGOR AUTOMATION	SAP/SVAP/GAP		0.05	2.5
		LAP		0.1	2

*1. The supported speed is the internal feedback pulse speed [external encoder pulse/s] of the external encoder that can be processed by the Servo Drive.
Check the instruction manual of the external encoder for the speed range supported by your external encoder.
*2. These are the directions that the Drive counts a 90° phase difference output.

EXB is 90° ahead of EXA.

$$
\begin{aligned}
& \mathrm{t} 1>0.25 \mu \mathrm{~s} \\
& \mathrm{t} 2>1.0 \mu \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t} 1>0.25 \mu \mathrm{~s} \\
& \mathrm{t} 2>1.0 \mu \mathrm{~s}
\end{aligned}
$$

*3. For the external encoder connection direction, set the direction so that count-up occurs when the motor shaft is rotating counterclockwise, and count-down occurs when the motor shaft is rotating clockwise. If the connection direction cannot be selected due to installation conditions or any other reason, the count direction can be reversed using External Feedback Pulse Direction Switching (3326 hex).
*4. The resolution and maximum speed are the values for the G5-series Servo Drive. The resolution and maximum speed may be different from the specifications of the feedback encoder due to restriction on the maximum pulse frequency of the Servo Drive.

Dimensions

Refer to the page of Dimensions of the built-in EtherCAT communication type.

Servo family for accurate motion control. Power range extended up to 15 kW

- Maximum rotation speed : 6,000 r/min
- Featuring a 20-bit high-resolution incremental encoder
- Servomotors Conform to IP67
- 60% cogging torque reduction

General Specifications

Item	(3,000-r/min motors		

*1 The amplitude may be amplified by machine resonance. Do not exceed 80% of the specified value for extended periods of time.
*2 UL 1004-6 applies only to $1,500-\mathrm{r} / \mathrm{min}$ Servomotors of 7.5 to 15 kW and $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 4.5 to 6 kW .
Note: 1. Do not use the cable when it is laying in oil or water.
2. Do not expose the cable outlet or connections to stress due to bending or the weight of the cable itself.
3. Always disconnect all connections to the Servo Motor before you perform insulation resistance tests on it. If you perform an insulation resistance test while the Servo Motor is connected, the Servo Motor may be damaged.
Never perform dielectric strength tests on the Servo Motor . Failure to follow this precaution may result in damaging internal elements.
4. To conform EMC directive, the tips on wiring and installation written in the G5 series user's manual must be followed.Confirm the Manual No. that is listed in Related Manuals.

AC Servomotors/Linear Motors/Drives G5-Series
 AC Servomotors

Performance Specifications

<Cylinder type>

- 3,000 r/min Servomotors (100 VAC Input Power)

Model (R88M-)				K05030H	K10030L	K20030L	K40030L
Item			Unit	K05030T	K10030S	K20030S	K40030S
Rated output *1			W	50	100	200	400
Rated torque *1			N•m	0.16	0.32	0.64	1.3
Rated rotation speed			r/min	3,000			
Momentary maximum rotation speed			r/min	6,000			
Momentary maximum torque*1			N•m	0.48	0.95	1.91	3.8
Rated current *1			A (rms)	1.1	1.6	2.5	4.6
Momentary maximum current*1			A (0-p)	4.7	6.9	10.6	19.5
Rotor inertia		Without brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.025×10^{-4}	0.051×10^{-4}	0.14×10^{-4}	0.26×10^{-4}
		With brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.027×10^{-4}	0.054×10^{-4}	0.16×10^{-4}	0.28×10^{-4}
Applicable load inertia			-	30 times the rotor inertia max. *2			
Torque constant *1			N•m/A	0.11 $\pm 10 \%$	0.14 $\pm 10 \%$	0.20 $\pm 10 \%$	0.21 $\pm 10 \%$
Power rate *1		Without brake	kW/s	10.1	19.8	28.9	62.4
		With brake	kW/s	9.4	18.7	25.3	37.8
Mechanicaltime constant		Without brake	ms	1.43	1.03	0.61	0.48
		With brake	ms	1.54	1.09	0.70	0.52
Electrical time constant			ms	0.82	0.91	3.0	3.4
Allowable radial load *3			N	68	68	245	245
Allowable thrust load *3			N	58	58	98	98
Weight		Without brake	kg	Approx. 0.31	Approx. 0.45	Approx. 0.78	Approx. 1.2
		With brake	kg	Approx. 0.51	Approx. 0.65	Approx. 1.2	Approx. 1.6
Radiator plate dimensions (material)				$100 \times 80 \times 110$ (Al)		$130 \times 120 \times$ t12 (AI)	
Applicable drivers (R88D-)				KNA5L-ECT	KN01L-ECT	KN02L-ECT	KN04L-ECT
	Brake inerti		$\mathrm{kg} \cdot \mathrm{m}^{2}$	2×10^{-7}	2×10^{-7}	1.8×10^{-6}	1.8×10^{-6}
	Excitation v	oltage *4	V	$24 \mathrm{VDC} \pm 10 \%$			
	Power cons	umption (at $20^{\circ} \mathrm{C}$)	W	7	7	9	9
	Current con	sumption (at $20^{\circ} \mathrm{C}$)	A	0.3	0.3	0.36	0.36
	Static frictio	n torque	N•m	0.29 min.	0.29 min .	1.27 min .	1.27 min .
	Attraction ti	me *5	ms	35 max.	35 max.	50 max.	50 max.
	Release tim		ms	20 max.	20 max.	15 max.	20 max.
	Backlash			$\pm 1^{\circ}$			
	Allowable w	ork per braking	J	39.2	39.2	137	137
	Allowable to	tal work	J	4.9×10^{3}	4.9×10^{3}	44.1×10^{3}	44.1×10^{3}
	Allowable a	ngular acceleration	$\mathrm{rad} / \mathbf{s}^{2}$	$30,000 \mathrm{max}$. (Speed of $2,800 \mathrm{r} / \mathrm{min}$ or more must not be changed in less than 10 ms)			
	Brake limit		-	10 million times min.			
	Rating		-	Continuous			
	Insulation class		-	Type F			

*1 These are the values when the motor is combined with a driver at normal temperature $\left(20^{\circ} \mathrm{C}, 65 \%\right)$. The momentary maximum torque indicates the standard value.
*2 Applicable load inertia.

- The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.
- If the dynamic brake is activated frequently with high load inertia, the Dynamic Brake Resistor may burn. Do not repeatedly turn the servo ON/OFF while the dynamic brake is enabled.
- The dynamic brake is designed only for emergency stops. Design the system so that the Servomotor remains stopped for at least 3 minutes after applying the dynamic brake. Otherwise the dynamic brake circuits may fail.
*3 The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures. The allowable radial loads are applied as shown in the following diagram.

*4 This is a non-excitation brake. (It is released when excitation voltage is applied.)
*5 The operation time is the value (reference value) measured with a surge suppressor (CR50500 by Okaya Electric Industries Co., Ltd.).

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

Torque and Rotation Speed Characteristics

- 3,000 r/min Servomotors (100 VAC Input Power)

The following graphs show the characteristics with a 3-m standard cable and a 100 VAC input.

- R88M-K05030H/T (50W)

- R88M-K40030L/S (400W)

- R88M-K10030L/S (100W)

- R88M-K20030L/S (200W)

Note: 1. The continuous operation range is the range in which continuous operation is possible. Continuous operation at the maximum speed is also possible. However,doing so will reduce the output torque.
2. If the motor power cable exceeds 20 m , the voltage drop will increase and the momentary operation range will become narrower.

Performance Specifications

- 3,000 r/min Servomotors (200 VAC Input Power)

Model (R88M-)				K05030H	K10030H	K20030H	K40030H	K75030H	K1K030H	K1K530H	K2K030H	K3K030H	K4K030H	K5K030H
Item			Unit	K05030T	K10030T	K20030T	K40030T	K75030T	K1K030T	K1K530T	K2K030T	K3K030T	K4K030T	K5K030T
Rated output *1			W	50	100	200	400	750	1000	1500	2000	3000	4000	5000
Rated torque *1			$\mathbf{N} \cdot \mathrm{m}$	0.16	0.32	0.64	1.3	2.4	3.18	4.77	6.37	9.55	12.7	15.9
Rated rotation speed			r/min	3,000										
Momentary maximum rotation speed]			r/min	6,000					5,000				4,500	
Momentary maximum torque *1			N•m	0.48	0.95	1.91	3.8	7.1	9.55	14.3	19.1	28.6	38.2	47.7
Rated current *1			A (rms)	1.1	1.1	1.5	2.4	4.1	6.6	8.2	11.3	18.1	19.6	24.0
Momentary maximum current *1			A (0-p)	4.7	4.7	6.5	10.2		28	35	48	77	83	102
Rotor inertia		Without brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.025×10^{-4}	0.051×10^{-4}	0.14×10^{-4}	0.26×10^{-4}	0.87×10^{-4}	2.03×10^{-4}	2.84×10^{-4}	3.68×10^{-4}	6.50×10^{-4}	12.9×10^{-4}	17.4×10^{-4}
		With brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.027×10^{-4}	0.054×10^{-4}	0.16×10^{-4}	0.28×10^{-4}	0.97×10^{-4}	2.35×10^{-4}	3.17×10^{-4}	4.01×10^{-4}	7.85×10^{-4}	14.2×10^{-4}	18.6×10^{-4}
Applicable load inertia			-	30 times the rotor inertia max. *2				20 times the rotor inertia max. *2	15 times the rotor inertia max. *2		15 times the rotor inertia max. *2			
Torque constant *1			$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$	0.11 $\pm 10 \%$	0.21 $\pm 10 \%$	0.32 $\pm 10 \%$	0.40 $\pm 10 \%$	0.45 $\pm 10 \%$	0.37	0.45	0.44	0.41	0.49	0.49
Power rate *1		Without brake	kW/s	10.1	19.8	28.9	62.3	65.4	49.8	80.1	110	140	126	146
		With brake	kW/s	9.4	18.7	25.3	57.8	58.7	43.0	71.8	101	116	114	136
Mechanical time constant		Without brake	ms	1.43	1.07	0.58	0.43	0.37	0.61	0.49	0.44	0.41	0.51	0.50
		With brake	ms	1.54	1.13	0.66	0.46	0.42	0.71	0.55	0.48	0.49	0.56	0.54
Electrical time constant			ms	0.82	0.90	3.2	3.4	5.3	5.8	6.3	6.7	11	12	13
Allowable radial load *3			N	68	68	245	245	392	490	490	490	490	784	784
Allowable thrust load *3			N	58	58	98	98	147	196	196	196	196	343	343
Weight		Without brake	kg	Approx. 0.31	$\begin{gathered} \hline \text { Approx. } \\ 0.46 \\ \hline \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 0.79 \end{gathered}$	Approx. 1.2	Approx. 2.3	$\begin{gathered} \text { Approx. } \\ 3.5 \\ \hline \end{gathered}$	Approx. 4.4	$\begin{gathered} \text { Approx. } \\ 5.3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 8.3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 14.0 \\ \hline \end{gathered}$
		With brake	kg	$\begin{gathered} \hline \text { Approx. } \\ 0.51 \end{gathered}$	Approx. 0.66	Approx. 1.2	Approx. 1.6	Approx. 3.1	$\begin{gathered} \text { Approx. } \\ 4.5 \end{gathered}$	Approx. 5.4	$\begin{aligned} & \hline \text { Approx. } \\ & 6.3 \end{aligned}$	$\begin{gathered} \text { Approx. } \\ 9.4 \end{gathered}$	Approx. 12.6	$\begin{gathered} \text { Approx. } \\ 16.0 \end{gathered}$
Radiator plate dimensions (material)				$100 \times 80 \times 110$ (AI)		$130 \times 120 \times$ t12 (AI)		$\begin{aligned} & 170 \times 160 \\ & \times \mathrm{t} 12 \text { (AI) } \end{aligned}$	$320 \times 300 \times t 20(\mathrm{Al})$		$380 \times 350 \times$ t30 (AI)			
Applicable drives (R88D-)				KN01HECT	KN01H- ECT	$\begin{gathered} \text { KNO2H- } \\ \text { ECT } \end{gathered}$	KN04H- ECT	KN08HECT	KN15HECT	KN15HECT	$\begin{gathered} \text { KN2OH- } \\ \text { ECT } \end{gathered}$	$\begin{gathered} \text { KN30H- } \\ \text { ECT } \end{gathered}$	$\begin{gathered} \text { KN50H- } \\ \text { ECT } \end{gathered}$	$\begin{aligned} & \text { KN50H- } \\ & \text { ECT } \end{aligned}$
	Brake in	ertia	$\mathbf{k g} \cdot \mathrm{m}^{2}$	2×10^{-7}	2×10^{-7}	1.8×10^{-6}	1.8×10^{-6}	0.33×10^{-4}	0.33×10^{-4}	0.33×10^{-4}	ECT	$\begin{array}{\|c\|} \hline \text { ECT } \\ \hline 0.33 \times 10^{-4} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { ECT } \\ \hline 1.35 \times 10^{-4} \\ \hline \end{array}$	$\frac{\text { ECT }}{1.35 \times 10^{-4}}$
	Excitation voltage *4 Power consumption (at $20^{\circ} \mathrm{C}$)		V	$24 \mathrm{VDC} \pm 10 \%$										
			W	7	7	9	9	17	19	19	19	19	22	22
	Current (at $20^{\circ} \mathrm{C}$	consumption	A	0.3	0.3	0.36	0.36	0.70 $\pm 10 \%$	0.81 $\pm 10 \%$	0.81 $\pm 10 \pm$	0.81 $\pm 10 \%$	0.81 $\pm 10 \%$	0.90 $\pm 10 \%$	0.90 $\pm 10 \%$
	Static fr torque		N•m	0.29 min .	0.29 min .	1.27 min .	1.27 min .	2.5 min.	7.8 min.	7.8 min.	7.8 min.	11.8 min.	16.1 min.	16.1 min.
	Attractio	n time *5	ms	35 max.	35 max.	50 max.	80 max.	110 max.	110 max.					
	Release	time *5	ms	20 max.	20 max.	15 max.	15 max.	15 max. *6	15 max. * ${ }^{\text {a }}$	15 max. *6	15 max. *6	15 max. *6	50 max. *7	50 max. ${ }^{* 7}$
	Backlash			$\pm 1^{\circ}$										
	Allowable work per braking		J	39.2	39.2	137	137	392	392	392	392	392	1470	1470
	Allowab	le total work	J	4.9×10^{3}	4.9×10^{3}	44.1×10^{3}	44.1×10^{3}	4.9×10^{5}	4.9×10^{5}	4.9×10^{5}	4.9×10^{6}	4.9×10^{6}	2.2×10^{6}	2.2×10^{6}
	Allowable angular acceleration		$\mathrm{rad} / \mathbf{s}^{2}$	$30,000 \mathrm{max}$. (Speed of $2,800 \mathrm{r} / \mathrm{min}$ or more must not be changed in less than 10 ms)				10,000						
	Brake limit		-	10 million times min.										
	Rating		-	Continuous										
	Insulation class		-	Type F										

*1 These are the values when the motor is combined with a driver at normal temperature $\left(20^{\circ} \mathrm{C}, 65 \%\right)$. The momentary maximum torque indicates the standard value.
*2 Applicable load inertia.

- The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.
olf the dynamic brake is activated frequently with high load inertia, the Dynamic Brake Resistor may burn. Do not repeatedly turn the servo ON/ OFF while the dynamic brake is enabled.
-The dynamic brake is designed only for emergency stops. Design the system so that the Servomotor remains stopped for at least 3 minutes after applying the dynamic brake. Otherwise the dynamic brake circuits may fail.
*3 The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures. The allowable radial loads are applied as shown in the following diagram.

*4 This is a non-excitation brake. (It is released when excitation voltage is applied.)
*5 The operation time is the value (reference value) measured with a surge suppressor (CR50500 by Okaya Electric Industries Co., Ltd.).
*6 Direct current switching with a varistor (Z15D151 by Ishizuka Electronics Co.).
*7 Direct current switching with a varistor (TNR9G820K by Nippon Chemi-Con Corporation).

AC Servomotors/Linear Motors/Drives G5-Series

AC Servomotors

Torque and Rotation Speed Characteristics

- 3,000 r/min Servomotors (200 VAC Input Power)

The following graphs show the characteristics with a 3 m standard cable and a 200 VAC input.

- R88M-K40030H/T (400W)

- R88M-K1K530H/T (1.5kW)

- R88M-K4K030H/T (4kW)

- R88M-K10030H/T (100W)

- R88M-K75030H/T (750W)

- R88M-K2K030H/T (2kW)

- R88M-K5K030H/T (5kW)

- R88M-K20030H/T (200W)

- R88M-K1K030H/T (1kW)

- R88M-K3K030H/T (3kW)

Note: 1. The continuous operation range is the range in which continuous operation is possible. Continuous operation at the maximum speed is also possible. However,doing so will reduce the output torque.
2. If the motor power cable exceeds 20 m , the voltage drop will increase and the momentary operation range will become narrower.

AC Servomotors/Linear Motors/Drives G5-Series AC Servomotors

Performance Specifications

- 3,000 r/min Servomotors (400 VAC Input Power)

Model (R88M-)				K75030F	K1K030F	K1K530F	K2K030F	K3K030F	K4K030F	K5K030F
Item			Unit	K75030C	K1K030C	K1K530C	K2K030C	K3K030C	K4K030C	K5K030C
Rated output ${ }^{+1}$			W	750	1,000	1,500	2,000	3,000	4,000	5,000
Rated torque ${ }^{\text {¹ }}$			N•m	2.39	3.18	4.77	6.37	9.55	12.7	15.9
Rated rotation speed			r/min	3,000						
Momentary maximum rotation speed			r/min	5,000					4,500	
Momentary maximum torque* ${ }^{*}$			N•m	7.16	9.55	14.3	19.1	28.6	38.2	47.7
Rated current*1			A (rms)	2.4	3.3	4.2	5.7	9.2	9.9	12.0
Momentary maximum current ${ }^{*}{ }^{1}$			A (0-p)	10	14	18	24	39	42	51
Rotor inertia		Without brake	$\mathrm{kg} \cdot \mathrm{m}^{\mathbf{2}}$	1.61×10^{-4}	2.03×10^{-4}	2.84×10^{-4}	3.68×10^{-4}	6.50×10^{-4}	12.9×10^{-4}	17.4×10^{-4}
		With brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	1.93×10^{-4}	2.35×10^{-4}	3.17×10^{-4}	4.01×10^{-4}	7.85×10^{-4}	14.2×10^{-4}	18.6×10^{-4}
Applicable load inertia			-	20 times the rotor inertia max. *2	15 times the rotor inertia max. ${ }^{*}$					
Torque constant ${ }^{*}$			$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$	0.78	0.75	0.89	0.87	0.81	0.98	0.98
Power rate *1		Without brake	kW/s	35.5	49.8	80.1	110	140	126	146
		With brake	kW/s	29.6	43	71.8	101	116	114	136
Mechanical time constant		Without brake	ms	0.67	0.60	0.49	0.45	0.40	0.51	0.50
		With brake	ms	0.8	0.70	0.55	0.49	0.49	0.56	0.54
Electrical time constant			ms	5.9	5.8	6.5	6.6	12	13	13
Allowable radial load ${ }^{3}$			N	490	490	490	490	490	784	784
Allowable thrust load ${ }^{\text {+3 }}$			N	196	196	196	196	196	343	343
Weight		Without brake	kg	Approx. 3.1	Approx. 3.5	Approx. 4.4	Approx. 5.3	Approx. 8.3	Approx. 11.0	Approx. 14.0
		With brake	kg	Approx. 4.1	Approx. 4.5	Approx. 5.4	Approx. 6.3	Approx. 9.4	Approx. 12.6	Approx. 16.0
Radiator plate dimensions (material)				$320 \times 300 \times \mathrm{t} 20$ (AI)				$380 \times 350 \times$ t30 (AI)		
Applicable drives (R88D-)				KN10F-ECT	KN15F-ECT	KN15F-ECT	KN20F-ECT	KN30F-ECT	KN50F-ECT	KN50F-ECT
	Brake ine		$\mathrm{kg} \cdot \mathrm{m}^{\mathbf{2}}$	0.33×10^{-4}	1.35×10^{-4}					
	Excitation voltage ${ }^{* 4}$		V	$24 \mathrm{VDC} \pm 10 \%$						
	Power consumption (at $20^{\circ} \mathrm{C}$)		W	17	19	19	19	19	22	22
	Current con	sumption (at $20^{\circ} \mathrm{C}$)	A	0.70 $\pm 10 \%$	0.81 $\pm 10 \%$	0.90 $\pm 10 \%$	0.90 $\pm 10 \%$			
	Static fric	ion torque	N•m	2.5 min.	7.8 min.	7.8 min.	7.8 min .	11.8 min.	16.1 min.	16.1 min.
	Attraction	time ${ }^{\text {5 }}$	ms	50 max.	50 max .	50 max.	50 max.	80 max.	110 max.	110 max.
	Release ti	me ${ }^{5}$	ms	15 max. ${ }^{*}$	15 max. ${ }^{6}$	$15 \mathrm{max} .{ }^{*}$	15 max. ${ }^{*}$	15 max. ${ }^{*}$	$50 \mathrm{max} .{ }^{\text { }}$	50 max. ${ }^{7}$
	Backlash			$\pm 1^{\circ}$						
	Allowable	vork per braking	J	392	392	392	392	392	1470	1470
	Allowable	total work	J	4.9×10^{5}	2.2×10^{6}	2.2×10^{6}				
	Allowable angular acceleration		$\mathrm{rad} / \mathbf{s}^{2}$	10,000						
	Brake limit		-	10 million times min.						
	Rating		-	Continuous						
	Insulation class		-	Type F						

*1 These are the values when the motor is combined with a driver at normal temperature $\left(20^{\circ} \mathrm{C}, 65 \%\right)$. The momentary maximum torque indicates the standard value.
*2 Applicable load inertia.

- The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.
-If the dynamic brake is activated frequently with high load inertia, the Dynamic Brake Resistor may burn. Do not repeatedly turn the servo ON/ OFF while the dynamic brake is enabled
-The dynamic brake is designed only for emergency stops. Design the system so that the Servomotor remains stopped for at least 3 minutes after applying the dynamic brake. Otherwise the dynamic brake circuits may fail.
*3 The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures. The allowable radial loads are applied as shown in the following diagram.

*4 This is a non-excitation brake. (It is released when excitation voltage is applied.)
*5 The operation time is the value (reference value) measured with a surge suppressor (CR50500 by Okaya Electric Industries Co., Ltd.).
*6 Direct current switching with a varistor (Z15D151 by Ishizuka Electronics Co.).
*7 Direct current switching with a varistor (TNR9G820K by Nippon Chemi-Con Corporation).

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

Torque and Rotation Speed Characteristics

- 3,000 r/min Servomotors (400 VAC Input Power)

The following graphs show the characteristics with a 3 m standard cable and a 400 VAC input.

- R88M-K75030F/C (750W)

- R88M-K2K030F/C (2kW)

- R88M-K1K030F/C (1kW)

- R88M-K3K030F/C (3kW)

- R88M-K1K530F/C (1.5kW)

- R88M-K4K030F/C (4kW)

- R88M-K5K030F/C (5kW)

Note: 1. The continuous operation range is the range in which continuous operation is possible. Continuous operation at the maximum speed is also possible. However,doing so will reduce the output torque.
2. If the motor power cable exceeds 20 m , the voltage drop will increase and the momentary operation range will become narrower.

AC Servomotors/Linear Motors/Drives G5-Series
 AC Servomotors

Performance Specifications

- 1,500r/min, 2,000 r/min Servomotors (200 VAC Input Power)

Model (R88M-)				K1K020H	K1K520H	K2K020H	K3K020H	K4K020H	K5K020H	-	-	-
Item			Unit	K1K020T	K1K520T	K2K020T	К3К020T	K4K020T	K5K020T	K7K515T	K11K015T	K15K015T
Rated output *1			W	1,000	1,500	2,000	3,000	4,000	5,000	7,500	11,000	15,000
Rated torque *1			N•m	4.77	7.16	9.55	14.3	19.1	23.9	47.8	70.0	95.0
Rated rotation speed			r/min	2,000						1,500		
Momentary maximum rotation speed			r/min	3,000							2,000	
Momentary maximum torque* ${ }^{*}$			N•m	14.3	21.5	28.6	43.0	57.3	71.6	119.0	175.0	224.0
Rated current * ${ }^{1}$			A (rms)	5.7	9.4	11.5	17.4	21.0	25.9	44.0	54.2	66.1
Momentary maximum current ${ }^{*} 1$			A (0-p)	24	40	49	74	89	110	165	203	236
Rotor inertia		Without brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	4.60×10^{-4}	6.70×10^{-4}	8.72×10^{-4}	12.9×10^{-4}	37.6×10^{-4}	48.0×10^{-4}	101×10^{-4}	212×10^{-4}	302×10^{-4}
		With brake	$\mathbf{k g} \cdot \mathrm{m}^{\mathbf{2}}$	5.90×10^{-4}	7.99×10^{-4}	10.0×10^{-4}	14.2×10^{-4}	38.6×10^{-4}	48.8×10^{-4}	107×10^{-4}	220×10^{-4}	311×10^{-4}
Applicable load inertia			-	10 times the rotor inertia max. ${ }^{2}$								
Torque constant ${ }^{\text {* }}$			N•m/A	0.63	0.58	0.64	0.59	0.70	0.70	0.77	0.92	1.05
Power rate *1		Without brake	kW/s	49.5	76.5	105	159	97.1	119	226	231	302
		With brake	kW/s	38.6	64.2	91.2	144	94.5	117	213	223	293
Mechanical time constant		Without brake	ms	0.80	0.66	0.66	0.57	0.65	0.63	0.58	0.80	0.71
		With brake	ms	1.02	0.80	0.76	0.63	0.66	0.64	0.61	0.83	0.74
Electrical time constant			ms	9.4	10	10	12	20	19	21	31	32
Allowable radial load ${ }^{\text {3 }}$			N	490	490	490	784	784	784	1,176	2,254	2,254
Allowable thrust load ${ }^{\text {+3 }}$			N	196	196	196	343	343	343	490	686	686
Weight		Without brake	kg	$\begin{gathered} \text { Approx. } \\ 5.2 \end{gathered}$	Approx. 6.7	$\begin{gathered} \text { Approx. } \\ 8.0 \end{gathered}$	Approx. 11.0	$\begin{gathered} \text { Approx. } \\ 15.5 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 18.6 \end{gathered}$	Approx. 36.4	$\begin{gathered} \text { Approx. } \\ 52.7 \end{gathered}$	Approx. 70.2
		With brake	kg	Approx. 6.7	Approx. 8.2	Approx. 9.5	Approx. 12.6	Approx. 18.7	Approx. 21.8	Approx. 40.4	Approx. 58.9	Approx. 76.3
Radiator plate dimensions (material)				$275 \times 260 \times$ t15 (AI)			$\begin{gathered} 380 \times 350 \times \mathrm{t} \\ 30(\mathrm{Al}) \end{gathered}$	$470 \times 440 \times$ t30 (AI)		$\begin{gathered} 550 \times 520 \times \mathrm{t} \\ 30(\mathrm{Al}) \end{gathered}$	$670 \times 630 \times 135$ (AI)	
Applicable drives (R88D-)				KN10HECT	KN15HECT	KN2OH- ECT	KN30HECT	KN50HECT	KN50HECT	KN75HECT	$\begin{gathered} \text { KN150H- } \\ \text { ECT } \end{gathered}$	$\begin{gathered} \text { KN150H- } \\ \text { ECT } \end{gathered}$
	Brake inertia		$\mathrm{kg} \cdot \mathrm{m}^{2}$	1.35×10^{-4}	1.35×10^{-4}	1.35×10^{-4}	1.35×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	7.1×10^{-4}	7.1×10^{-4}
	Excitation voltage ${ }^{*} 4$		V	$24 \mathrm{VDC} \pm 10 \%$								
	Power consumption (at $20^{\circ} \mathrm{C}$)		W	14	19	19	22	31	31	34	26	26
	Current con	umption (at $20^{\circ} \mathrm{C}$)	A	0.59 $\pm 10 \%$	0.79 $\pm 10 \%$	0.79 $\pm 10 \%$	0.90 $\pm 10 \%$	1.3 $\pm 10 \%$	1.3 $\pm 10 \%$	1.4 $\pm 10 \%$	1.08 $\pm 10 \%$	1.08 $\pm 10 \%$
	Static fric	ion torque	N•m	4.9 min .	13.7 min.	13.7 min .	16.2 min .	24.5 min.	24.5 min.	58.8 min.	100 min .	100 min .
	Attraction	time ${ }^{\text {5 }}$	ms	80 max.	100 max.	100 max.	110 max.	80 max.	80 max.	150 max.	300 max.	300 max.
	Release t	me ${ }^{5}$	ms	70 max. * 6	50 max. * 6	50 max. * 6	50 max. *6	25 max. ${ }^{7}$	25 max. ${ }^{7}$	50 max.	140 max.	140 max.
	Backlash			$\pm{ }^{\circ}$								
	Allowable work per braking		J	588	1,176	1,176	1,470	1,372	1,372	1,372	2,000	2,000
	Allowable total work		J	7.8×10^{5}	1.5×10^{6}	1.5×10^{6}	2.2×10^{6}	2.9×10^{6}	2.9×10^{6}	2.9×10^{6}	4.0×10^{6}	4.0×10^{6}
	Allowable angular acceleration		$\mathrm{rad} / \mathbf{s}^{2}$	10,000						5,000	3,000	
	Brake limit		-	10 million times min.								
	Rating		-	Continuous								
	Insulation class		-	Type F								

*1 These are the values when the motor is combined with a driver at normal temperature $\left(20^{\circ} \mathrm{C}, 65 \%\right)$. The momentary maximum torque indicates the standard value.
*2 Applicable load inertia.

- The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.
-If the dynamic brake is activated frequently with high load inertia, the Dynamic Brake Resistor may burn. Do not repeatedly turn the servo ON/ OFF while the dynamic brake is enabled.
-The dynamic brake is designed only for emergency stops. Design the system so that the Servomotor remains stopped for at least 3 minutes after applying the dynamic brake. Otherwise the dynamic brake circuits may fail.
*3 The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures. The allowable radial loads are applied as shown in the following diagram.

*4 This is a non-excitation brake. (It is released when excitation voltage is applied.)
*5 The operation time is the value (reference value) measured with a surge suppressor (CR50500 by Okaya Electric Industries Co., Ltd.).
*6 Direct current switching with a varistor (Z15D151 by Ishizuka Electronics Co.).
*7 Direct current switching with a varistor (TNR9G820K by Nippon Chemi-Con Corporation).

AC Servomotors/Linear Motors/Drives G5-Series
 AC Servomotors

Torque and Rotation Speed Characteristics

- 1,500r/min, 2,000 r/min Servomotors (200 VAC Input Power)

The following graphs show the characteristics with a 3 m standard cable and a 200 VAC input.

- R88M-K1K020H/T (1kW)

- R88M-K3K020H/T (3kW)

- R88M-K1K520H/T (1.5kW)

- R88M-K4K02OH/T (4kW)

- R88M-K11K015T (11kW)

- R88M-K2K020H/T (2kW)

- R88M-K5K020H/T (5kW)

Note: 1. The continuous operation range is the range in which continuous operation is possible. Continuous operation at the maximum speed is also possible. However,doing so will reduce the output torque.
2. If the motor power cable exceeds 20 m , the voltage drop will increase and the momentary operation range will become narrower.

AC Servomotors/Linear Motors/Drives G5-Series
 AC Servomotors

Performance Specifications

- 1,500r/min, 2,000 r/min Servomotors (400 VAC Input Power)

Model (R88M-)				K40020F	K60020F	K1K020F	K1K520F	K2K020F	K3K020F	K4K020F	K5K020F	-	-	-
Item			Unit	K40020C	K60020C	K1K020C	K1K520C	K2K020C	K3K020C	K4K020C	K5K020C	K7K515C	K11K015C	K15K015C
Rated output *1			W	400	600	1,000	1,500	2,000	3,000	4,000	5,000	7,500	11,000	15,000
Rated torque ${ }^{4}$			N•m	1.91	2.86	4.77	7.16	9.55	14.3	19.1	23.9	47.8	70.0	95.9
Rated rotation speed			r/min	2,000								1,500		
Momentary maximum rotation speed			r/min	3,000									2,000	
Momentary maximum torque ${ }^{1}$			N•m	5.73	8.59	14.3	21.5	28.7	43.0	57.3	71.6	119.0	175.0	224.0
Rated current * ${ }^{1}$			A (rms)	1.2	1.5	2.8	4.7	5.9	8.7	10.6	13.0	22.0	27.1	33.1
Momentary maximum current ${ }^{* 1}$			A (0-p)	4.9	6.5	12	20	25	37	45	55	83	101	118
Rotor inertia		Without brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	1.61×10^{-4}	2.03×10^{-4}	4.60×10^{-4}	6.70×10^{-4}	8.72×10^{-4}	12.9×10^{-4}	37.6×10^{-4}	48.0×10^{-4}	101×10^{-4}	212×10^{-4}	302×10^{-4}
		With brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	1.90×10^{-4}	2.35×10^{-4}	5.90×10^{-4}	7.99×10^{-4}	10.0×10^{-4}	14.2×10^{-4}	38.6×10^{-4}	48.8×10^{-4}	107×10^{-4}	220×10^{-4}	311×10^{-4}
Applicable load inertia			-	10 times the rotor inertia max. ${ }^{\text {+2 }}$										
Torque constant ${ }^{*}$			$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$	1.27	1.38	1.27	1.16	1.27	1.18	1.40	1.46	1.54	1.84	2.10
Power rate		Without brake	kW/s	22.7	40.3	49.5	76.5	105	159	97.1	119	226	231	302
		With brake	kW/s	19.2	34.8	38.6	64.2	91.2	144	94.5	117	213	223	293
Mechanical time constant		Without brake	ms	0.70	0.62	0.79	0.66	0.68	0.56	0.60	0.60	0.58	0.80	0.71
		With brake	ms	0.83	0.72	1.01	0.79	0.78	0.61	0.61	0.61	0.61	0.83	0.74
Electrical time constant			ms	5.7	5.9	10	10	10	12	21	19	21	31	32
Allowable radial load ${ }^{3}$			N	490	490	490	490	490	784	784	784	1,176	2,254	2,254
Allowable thrust load ${ }^{\text {³}}$			N	196	196	196	196	196	343	343	343	490	686	686
Weight		Without brake	kg	Approx. 3.1	$\begin{gathered} \text { Approx. } \\ 3.5 \end{gathered}$	Approx. 5.2	Approx. 6.7	$\begin{gathered} \text { Approx. } \\ 8.0 \end{gathered}$	Approx. 11.0	$\begin{gathered} \text { Approx. } \\ 15.5 \end{gathered}$	Approx. 18.6	Approx. 36.4	Approx. 52.7	Approx. 70.2
		With brake	kg	Approx. 4.1	$\begin{gathered} \text { Approx. } \\ 4.5 \end{gathered}$	Approx. 6.7	Approx. 8.2	$\begin{gathered} \text { Approx. } \\ 9.5 \end{gathered}$	Approx.	Approx. 18.7	$\begin{gathered} \text { Approx. } \\ 21.8 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 40.4 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 58.9 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 76.3 \end{gathered}$
Radiator plate dimensions (material)				$320 \times 300 \times \mathrm{t} 20$ (AI)		$275 \times 260 \times 115$ (AI)			$\begin{aligned} & 380 \times 350 \\ & \times+30(\mathrm{Al}) \end{aligned}$	$470 \times 440 \times 130$ (AI)		$\begin{aligned} & 550 \times 520 \\ & \times+30(\mathrm{Al}) \\ & \hline \end{aligned}$	670×630×t35 (AI)	
Applicable drives (R88D-)				KN06FECT	KN06FECT	KN10FECT	KN15FECT	KN20FECT	KN30FECT	KN50FECT	KN50FECT	KN75FECT	$\begin{gathered} \text { KN150F- } \\ \text { ECT } \end{gathered}$	$\begin{gathered} \text { KN150F- } \\ \text { ECT } \end{gathered}$
	Brake in	ertia	$\mathbf{k g} \cdot \mathrm{m}^{2}$	$1.35 \times 10^{-4} 1.35 \times 10^{-4}$		1.35×10^{-4}	1.35×10^{-4}	1.35×10^{-4}	1.35×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	7.1×10^{-4}	7.1×10^{-4}
	Excitation voltage ${ }^{* 4}$		V	$24 \mathrm{VDC} \pm 10 \%$										
	Power consumption (at $20^{\circ} \mathrm{C}$)		W	17	17	14	19	19	22	31	31	34	26	26
	Current (at $20^{\circ} \mathrm{C}$)	consumption	A	0.70 $\pm 10 \%$	0.70 $\pm 10 \%$	0.59 $\pm 10 \%$	0.79 $\pm 10 \%$	0.79 $\pm 10 \%$	0.90 $\pm 10 \%$	1.3 $\pm 10 \%$	1.3 $\pm 10 \%$	1.4 $\pm 10 \%$	1.08 $\pm 10 \%$	1.08 $\pm 10 \%$
	Static fri	ction torque	N•m	2.5 min .	2.5 min .	4.9 min .	13.7 min.	13.7 min .	16.2 min .	24.5 min .	24.5 min .	58.8 min.	100 min .	100 min .
	Attractio	n time ${ }^{5}$	ms	50 max.	50 max.	80 max.	100 max.	100 max.	110 max.	80 max.	80 max.	150 max.	300 max.	300 max.
	Release	time ${ }^{\text {5 }}$	ms	15 max. ${ }^{7}$	15 max. ${ }^{7}$	70 max . ${ }^{6}$	50 max . ${ }^{\text {6 }}$	50 max. ${ }^{\text {* }}$	50 max. ${ }^{6}$	25 max. ${ }^{7}$	25 max. ${ }^{7}$	50 max.	140 max.	140 max.
	Backlash			$\pm 1^{\circ}$										
	Allowable work per braking		J	392	392	588	1,176	1,176	1,470	1,372	1,372	1,372	2,000	2,000
	Allowable total work		J	4.9×10^{5}	4.9×10^{5}	7.8×10^{5}	1.5×10^{6}	1.5×10^{6}	2.2×10^{6}	2.9×10^{6}	2.9×10^{6}	2.9×10^{6}	4.0×10^{6}	4.0×10^{6}
	Allowable angular acceleration		$\mathrm{rad} / \mathbf{s}^{2}$	10,000								5,000	3,0	
	Brake limit		-	10 million times min.										
	Rating		-	Continuous										
	Insulation class		-	Type F										

*1 These are the values when the motor is combined with a driver at normal temperature $\left(20^{\circ} \mathrm{C}, 65 \%\right)$. The momentary maximum torque indicates the standard value.
*2 Applicable load inertia.

- The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.
-If the dynamic brake is activated frequently with high load inertia, the Dynamic Brake Resistor may burn. Do not repeatedly turn the servo ON/ OFF while the dynamic brake is enabled.
-The dynamic brake is designed only for emergency stops. Design the system so that the Servomotor remains stopped for at least 3 minutes after applying the dynamic brake. Otherwise the dynamic brake circuits may fail.
*3 The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures. The allowable radial loads are applied as shown in the following diagram.

*4 This is a non-excitation brake. (It is released when excitation voltage is applied.)
*5 The operation time is the value (reference value) measured with a surge suppressor (CR50500 by Okaya Electric Industries Co., Ltd.).
*6 Direct current switching with a varistor (Z15D151 by Ishizuka Electronics Co.).
*7 Direct current switching with a varistor (TNR9G820K by Nippon Chemi-Con Corporation).

AC Servomotors/Linear Motors/Drives G5-Series

AC Servomotors

Torque and Rotation Speed Characteristics

- 1,500r/min, 2,000 r/min Servomotors (400 VAC Input Power)

The following graphs show the characteristics with a 3 m standard cable and a 400 VAC input.

- R88M-K40020F/C (400W)

- R88M-K1K520F/C (1.5kW)

- R88M-K4K020F/C (4kW)

- R88M-K11K015C (11kW)

- R88M-K60020F/C (600W)

$(\mathrm{N} \cdot \mathrm{m})$	Power supply voltage dropped by 10%

- R88M-K2K020F/C (2kW)

- R88M-K5K020F/C (5kW)

- R88M-K15K015C (15kW)

- R88M-K1K020F/C (1kW)

- R88M-K3K020F/C (3kW)

- R88M-K7K515C (7.5kW)

Note: 1. The continuous operation range is the range in which continuous operation is possible. Continuous operation at the maximum speed is also possible. However,doing so will reduce the output torque.
2. If the motor power cable exceeds 20 m , the voltage drop will increase and the momentary operation range will become narrower.

Performance Specifications

- 1,000 r/min Servomotors (200/400 VAC Input Power)

				200 VAC					400 VAC				
Model (R88M-)				K90010H	K2K010H	K3K010H	-	-	K90010F	K2K010F	K3K010F	-	-
Item Unit				K90010T	K2K010T	K3K010T	K4K510T	K6K010T	K90010C	K2K010C	K3K010C	K4K510C	K6K010C
Rated output *1			W	900	2,000	3,000	4,500	6,000	900	2,000	3,000	4,500	6,000
Rated torque *1			N•m	8.59	19.1	28.7	43.0	57.0	8.59	19.1	28.7	43.0	57.3
Rated rotation speed			r/min	1,000									
Momentary maximum rotation speed			r/min	2,000									
Momentary maximum torque ${ }^{11}$			N•m	19.3	47.7	71.7	107.0	143.0	19.3	47.7	71.7	107.0	143.0
Rated current ${ }^{*}$			A (rms)	7.6	17.0	22.6	29.7	38.8	3.8	8.5	11.3	14.8	19.4
Momentary maximum current ${ }^{11}$			A (0-p)	24	60	80	110	149	12	30	40	55	74
Rotor inertia		Without brake	kW/s	6.70×10^{-4}	30.3×10^{-4}	48.4×10^{-4}	79.1×10^{-4}	101×10^{-4}	6.70×10^{-4}	30.3×10^{-4}	48.4×10^{-4}	79.1×10^{-4}	101×10^{-4}
		With brake	kW/s	7.99×10^{-4}	31.4×10^{-4}	49.2×10^{-4}	84.4×10^{-4}	107×10^{-4}	7.99×10^{-4}	31.4×10^{-4}	49.2×10^{-4}	84.4×10^{-4}	107×10^{-4}
Applicable load inertia			-	10 times the rotor inertia max. ${ }^{2}$									
Torque constant ${ }^{* 1}$			N • m/A	0.86	0.88	0.96	1.02	1.04	1.72	1.76	1.92	2.05	2.08
Power rate * ${ }^{*}$		Without brake	kW/s	110	120	170	233	325	110	120	170	233	325
		With brake	kW/s	92.4	116	167	219	307	92.4	116	167	219	307
Mechanical time constant		Without brake	ms	0.66	0.75	0.63	0.55	0.54	0.66	0.76	0.61	0.55	0.54
		With brake	ms	0.78	0.78	0.64	0.63	0.57	0.79	0.78	0.62	0.63	0.57
Electrical time constant			ms	11	18	21	20	23	11	18	22	20	23
Allowable radial load ${ }^{3}$			N	686	1176	1470	1470	1764	686	1176	1470	1470	1764
Allowable thrust load ${ }^{3}$			N	196	490	490	490	588	196	490	490	490	588
Weight		Without brake	kg	Approx. 6.7	Approx. 14.0	Approx. 20.0	Approx. 29.4	Approx. 36.4	Approx. 6.7	Approx. 14.0	Approx. 20.0	Approx. 29.4	Approx. 36.4
		With brake	kg	Approx. 8.2	Approx. 17.5	$\begin{gathered} \text { Approx. } \\ 23.5 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 33.3 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 40.4 \end{gathered}$	Approx. 8.2	$\begin{gathered} \text { Approx. } \\ 17.5 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 23.5 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 33.3 \end{gathered}$	$\begin{gathered} \text { Approx. } \\ 40.4 \end{gathered}$
Radiator plate dimensions (material)				$270 \times 260 \times t 15$ (AI)			$\begin{aligned} & 470 \times 440 \\ & \times t 30(\mathrm{Al}) \end{aligned}$	$\begin{array}{r} 550 \times 520 \\ \times 130(\mathrm{Al}) \end{array}$	$\begin{aligned} & 270 \times 260 \\ & \times \mathrm{t} 15 \text { (AI) } \end{aligned}$	$470 \times 440 \times$ t30 (AI)			$\begin{aligned} & 550 \times 520 \\ & \times 130(\mathrm{Al}) \end{aligned}$
Applicable drives (R88D-)				KN15HECT	$\begin{gathered} \hline \text { KN3OHF- } \\ \text { ECT } \end{gathered}$	KN50HECT	$\begin{gathered} \hline \text { KN50H- } \\ \text { ECT } \end{gathered}$	KN75HECT	KN15FECT	KN30FECT	KN50FECT	KN50FECT	KN75FECT
	Brake iner		$\mathrm{kg} \cdot \mathrm{m}^{2}$	1.35×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	1.35×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	4.7×10^{-4}	4.7×10^{-4}
	Excitation	voltage *4	V	24 VDC $\pm 10 \%$									
	Power con	sumption (at $20^{\circ} \mathrm{C}$)	W	19	31	34	34	34	19	31	34	34	34
	$\begin{array}{\|l} \hline \text { Current c } \\ \text { (at } 20^{\circ} \mathrm{C} \text {) } \\ \hline \end{array}$	onsumption	A	0.79 $\pm 10 \%$	1.3 $\pm 10 \%$	1.4 $\pm 10 \%$	1.4 $\pm 10 \%$	1.4 $\pm 10 \%$	0.79 $\pm 10 \%$	1.3 $\pm 10 \%$	1.4 $\pm 10 \%$	1.4 $\pm 10 \%$	1.4 $\pm 10 \%$
	Static frict	tion torque	N•m	13.7 min.	24.5 min.	58.8 min.	58.8 min .	58.8 min.	13.7 min.	24.5 min .	58.8 min.	58.8 min.	58.8 min .
	Attraction	time ${ }^{5}$	ms	100 max.	80 max .	150 max.	150 max.	150 max.	100 max.	80 max.	150 max.	150 max.	150 max .
	Release ti	me ${ }^{5}$	ms	50 max. ${ }^{*}$	25 max. ${ }^{7}$	50 max. ${ }^{7}$	50 max.	50 max.	$50 \mathrm{max} .{ }^{\text {* }}$	25 max. * ${ }^{7}$	50 max. ${ }^{7}$	50 max.	50 max.
	Backlash			$\pm 1^{\circ}$									
	Allowable work per braking		J	1,176	1,372	1,372	1,372	1,372	1,176	1,372	1,372	1,372	1,372
	Allowable total work		J	1.5×10^{6}	2.9×10^{6}	2.9×10^{6}	2.9×10^{6}	2.9×10^{6}	1.5×10^{6}	2.9×10^{6}	2.9×10^{6}	2.9×10^{6}	2.9×10^{6}
	Allowable angular acceleration		$\mathrm{rad} / \mathbf{s}^{2}$	10,000			5,000		10,000			5,000	
	Brake limit		-	10 million times min.									
	Rating		-	Continuous									
	Insulation class		-	Type F									

*1 These are the values when the motor is combined with a driver at normal temperature $\left(20^{\circ} \mathrm{C}, 65 \%\right)$. The momentary maximum torque indicates the standard value.
*2 Applicable load inertia.

- The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.
-If the dynamic brake is activated frequently with high load inertia, the Dynamic Brake Resistor may burn. Do not repeatedly turn the servo ON/ OFF while the dynamic brake is enabled.
-The dynamic brake is designed only for emergency stops. Design the system so that the Servomotor remains stopped for at least 3 minutes after applying the dynamic brake. Otherwise the dynamic brake circuits may fail.
*3 The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures. The allowable radial loads are applied as shown in the following diagram.

*4 This is a non-excitation brake. (It is released when excitation voltage is applied.)
*5 The operation time is the value (reference value) measured with a surge suppressor (CR50500 by Okaya Electric Industries Co., Ltd.).
*6 Direct current switching with a varistor (Z15D151 by Ishizuka Electronics Co.).
*7 Direct current switching with a varistor (TNR9G820K by Nippon Chemi-Con Corporation).

AC Servomotors/Linear Motors/Drives G5-Series AC Servomotors

Torque and Rotation Speed Characteristics

- 1,000 r/min Servomotors (200/400 VAC Input Power)

The following graphs show the characteristics with a 3 m standard

- R88M-K90010H/T/F/C (900W)

- R88M-K4K510T/C (4.5kW)

cable and a 200 VAC input.
- R88M-K2K010H/T/F/C (2kW)

- R88M-K6K010T/C (6kW)

- R88M-K3K010H/T/F/C (3kW)

Note: 1. The continuous operation range is the range in which continuous operation is possible. Continuous operation at the maximum speed is also possible. However,doing so will reduce the output torque.
2. If the motor power cable exceeds 20 m , the voltage drop will increase and the momentary operation range will become narrower.

Encoder Specifications

Incremental Encoders

Item	Specifications
Encoder system	Optical encoder
	20 bits
No. of output pulses	Phases A and B: 262,144 pulses/rotation Phase Z: 1 pulse/rotation
Power supply voltage	$5 \mathrm{VDC} \pm 5 \%$
Power supply current	180 mA (max.)
Output signals	$+\mathrm{S},-\mathrm{S}$
Output interface	RS-485 compliance

Absolute Encoders

Item	Specifications
Encoder system	Optical encoder
	17 bits
No. of output pulses	Phases A and B: 32,768 pulses/rotation Phase Z: 1 pulse/rotation
Maximum rotations	$-32,768$ to $+32,767$ rotations
Power supply voltage	$5 \mathrm{VDC} \pm 5 \%$
Power supply current	110 mA (max.)
Applicable battery voltage	3.6 VDC
	$265 \mu \mathrm{~A}$ for a maximum of 5 s right after power interruption $100 ~ \mu \mathrm{~A} \mathrm{for} \mathrm{operation} \mathrm{during} \mathrm{power}$ interruption $3.6 ~ \mu \mathrm{~A}$ when power is supplied to Servo Drive
Current consumption of battery	RS- -485 compliance Output signals
Output interface	Rackup

Note: Multi-rotation Data Backup

- The multi-rotation data will be lost if the battery cable connector is disconnected at the motor when connecting the battery cable for the absolute encoder and battery.
- The multi-rotation data will be lost if CN 2 is disconnected when connecting the battery to CN1.

Dimensions

<Cylinder type>

. 3,000 r/min Servomotors (100/200 VAC)

50W/100W

- Without brake
- R88M-K05030H (-S2)-K10030■ (-S2) INC
- R88M-K05030T (-S2)/-K10030 \square (-S2) ABS

Model		Dimensions (mm)		
		LM	LN	
R88M-K05030 \square	72	48	23	
R88M-K10030 \square	92	68	43	

200W/400W

- Without brake
- R88M-K20030 $\square(-S 2)$-K40030 $\square(-S 2)$ INC
-R88M-K20030■ (-S2)/-K40030■ (-S2) ABS

Model	Dimensions (mm)		
	LL	LM	LN
R88M-K20030 \square	79.5	56.5	11
R88M-K40030 \square	99	76	14

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

- With brake

- R88M-K20030 \square-B (S2)/-K40030 \square-B (S2) INC
- R88M-K20030 \square-B (S2)/-K40030 \square-B (S2) ABS

Model	Dimensions (mm)		
	LL	LM	S
R88M-K20030 $\square-$ B \square	116	93	11
R88M-K40030 $\square-$ B \square	135.5	112.5	14

750W

- Without brake
- R88M-K75030H (-S2) INC
- R88M-K75030T (-S2) ABS

With brake

- R88M-K75030H-B (S2) INC
- R88M-K75030T-B (S2) ABS

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

AC Servomotors/Linear Motors/Drives G5-Series

 AC Servomotors
1kW/1.5kW/2kW

- Without brake

- R88M-K1K030H (-S2)/-K1K530H (-S2)/-K2K030H (-S2) INC
- R88M-K1K030T (-S2)/-K1K530T (-S2)/-K2K030T (-S2) ABS

- With brake

- R88M-K1K030H-B (S2)/-K1K530H-B (S2)/-K2K030H-B (S2) INC
- R88M-K1K030T-B (S2)/-K1K530T-B (S2)/-K2K030T-B (S2) ABS

Model		Dimensions (mm)			
		LM	KB1	KB2	
R88M-K1K030 \square	141	97	66	119	
R88M-K1K530 \square	159.5	115.5	84.5	137.5	
R88M-K2K030 \square	178.5	134.5	103.5	156.5	
R88M-K1K030 $\square-$ B \square	168	124	66	146	
R88M-K1K530 \square-B \square	186.5	142.5	84.5	164.5	
R88M-K2K030 $\square-\mathbf{B} \square$	205.5	161.5	103.5	183.5	

3kW

- Without brake
- R88M-K3K030H (-S2) INC
- R88M-K3K030T (-S2) ABS
- With brake
- R88M-K3K030H-B (S2) INC
- R88M-K3K030T-B (S2) ABS

Model		Dimensions (mm)		
		LM	KB2	
R88M-K3K030 \square	190	146	168	
R88M-K3K030 $\square-$ B \square	215	171	193	

 Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

4kW/5kW

- Without brake

- R88M-K4K030H (-S2)/-K5K030H (-S2) INC
- R88M-K4K030T (-S2)/-K5K030T (-S2) ABS
- With brake
- R88M-K4K030H-B (S2)/-K5K030H-B (S2) INC
- R88M-K4K030T-B (S2)/-K5K030T-B (S2) ABS

Model	Dimensions (mm)			
	LL	LM	KB1	KB2
R88M-K4K030 \square	208	164	127	186
R88M-K5K030 \square	243	199	162	221
R88M-K4K030 \square-B \square	233	189	127	211
R88M-K5K030 $\square-$ B \square	268	224	162	246

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

-3,000 r/min Servomotors (400 VAC)

750W/1kW/1.5kW/2kW

- Without brake
- R88M-K75030F (-S2)/-K1K030F (-S2)/-K1K530F (-S2)/-K2K030F (-S2) INC
- R88M-K75030C (-S2)/-K1K030C (-S2)/-K1K530C (-S2)/-K2K030C (-S2) ABS
- With brake
- R88M-K75030F-B (S2)/-K1K030F-B (S2)/-K1K530F-B (S2)/-K2K030F-B (S2) INC
- R88M-K75030C-B (S2)/-K1K030C-B (S2)/-K1K530C-B (S2)/-K2K030C-B (S2) ABS

Model		Dimensions (mm)			
		LM	KB1	KB2	
R88M-K75030 \square	131.5	87.5	56.5	109.5	
R88M-K1K030 \square	141	97	66	119	
R88M-K1K530 \square	159.5	115.5	84.5	137.5	
R88M-K2K030 \square	178.5	134.5	103.5	156.5	
R88M-K75030 \square-B \square	158.5	114.5	53.5	136.5	
R88M-K1K030 $\square-$ B \square	168	124	63	146	
R88M-K1K530 \square-B \square	186.5	142.5	81.5	164.5	
R88M-K2K030 $\square-$ B \square	205.5	161.5	100.5	183.5	

3kW

- Without brake
- R88M-K3K030F (-S2) INC
- R88M-K3K030C (-S2) ABS
- With brake
- R88M-K3K030F-B (S2) INC
- R88M-K3K030C-B (S2) ABS

Model		Dimensions (mm)		
		LM	KB2	
R88M-K3K030 \square	190	146	168	
R88M-K3K030 \square - \square	215	171	193	

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

AC Servomotors/Linear Motors/Drives G5-Series
 AC Servomotors

4kW/5kW

- Without brake

- R88M-K4K030F (-S2)/-K5K030F (-S2) INC
- R88M-K4K030C (-S2)/-K5K030C (-S2) ABS
- With brake
- R88M-K4K030F-B (S2)/-K5K030F-B (S2) INC
- R88M-K4K030C-B (S2)/-K5K030C-B (S2) ABS

Model	Dimensions (mm)			
	LL	LM	KB1	KB2
R88M-K4K030 \square	208	164	127	186
R88M-K5K030 \square	243	199	162	221
R88M-K4K030 \square-B \square	233	189	127	211
R88M-K5K030 $\square-$ B \square	268	224	162	246

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

. 1,500r/min, 2,000 r/min Servomotors (200 VAC)

$1 \mathrm{~kW} / 1.5 \mathrm{~kW} / 2 \mathrm{~kW} / 3 \mathrm{~kW}$

- Without brake
- R88M-K1K020H (-S2)/-K1K520H (-S2)/-K2K020H (-S2)/-K3K020H (-S2) INC
- R88M-K1K020T (-S2)/-K1K520T (-S2)/-K2K020T (-S2)/-K3K020T (-S2) ABS
- With brake
- R88M-K1K020H-B (S2)/-K1K520H-B (S2)/-K2K020H-B (S2)/-K3K020H-B (S2) INC
- R88M-K1K020T-B (S2)/-K1K520T-B (S2)/-K2K020T-B (S2)/-K3K020T-B (S2) ABS

Model		Dimensions (mm)					
		LR	LM	S	KB1	KB2	
R88M-K1K020 \square	138	55	94	22	60	116	
R88M-K1K520 \square	155.5	55	111.5	22	77.5	133.5	
R88M-K2K020 \square	173	55	129	22	95	151	
R88M-K3K020 \square	208	65	164	24	127	186	
R88M-K1K020 $\square-$ B \square	163	55	119	22	60	141	
R88M-K1K520 $\square-$ B \square	180.5	55	136.5	22	77.5	158.5	
R88M-K2K020 $\square-$ B \square	198	55	154	22	95	176	
R88M-K3K020 $\square-B$							
	233	65	189	24	127	211	

4kW/5kW

- Without brake
- R88M-K4K020H (-S2)/-K5K020H (-S2) INC
- R88M-K4K020T (-S2)/-K5K020T (-S2) ABS

- With brake

- R88M-K4K020H-B (S2)/-K5K020H-B (S2) INC
- R88M-K4K020T-B (S2)/-K5K020T-B (S2) ABS

Model		Dimensions (mm)			
		LM	KB1	KB2	
R88M-K4K020 \square	177	133	96	155	
R88M-K5K020 \square	196	152	115	174	
R88M-K4K020 \square-B \square	202	158	96	180	
R88M-K5K020 \square-B \square	221	177	115	199	

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

7.5kW

- Without brake
- R88M-K7K515T (-S2) ABS
- With brake
- R88M-K7K515T-B (S2) ABS

Model		Dimensions (mm)										
		LR	LM	S	KB1	KB2	L1	L2	L3			
R88M-K7K515T \square	312	113	268	42	219	290	117.5	117.5	149			
R88M-K7K515T-B \square	337	113	293	42	253	315	117.5	152.5	183			

Model	Dimensions (mm)								
	LL	LR	LM	S	KB1	KB2	L1	L2	L3
R88M-K11K015T \square	316	116	272	55	232	294	124.5	124.5	162
R88M-K15K015T \square	384	116	340	55	300	362	158.5	158.5	230
R88M-K11K015T-B \square	364	116	320	55	266	342	124.5	159.5	196
R88M-K15K015T-B \square	432	116	388	55	334	410	158.5	193.5	264

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

- Without brake
- R88M-K11K015T (-S2)/-K15K015T (-S2) ABS
- With brake
- R88M-K11K015T-B (S2)/R88M-K15K015T-B (S2) ABS

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

-1,500 r/min, 2,000 r/min Servomotors (400 VAC)

400W/600W

- Without brake

- R88M-K40020F (-S2)/-K60020F (-S2) INC
- R88M-K40020C (-S2)/-K60020C (-S2) ABS
- With brake
- R88M-K40020F-B (S2)/-K60020F-B (S2) INC
- R88M-K40020C-B (S2)/-K60020C-B (S2) ABS

Model		Dimensions (mm)			
		LM	KB1	KB2	
R88M-K40020 \square	131.5	87.5	56.5	109.5	
R88M-K60020 \square	141	97	66	119	
R88M-K40020 \square-B \square	158.5	114.5	53.5	136.5	
R88M-K60020 \square - \square	168	124	63	146	

1kW/1.5kW/2kW/3kW

- Without brake
- R88M-K1K020F (-S2)/-K1K520F (-S2)/-K2K020F (-S2)/-K3K020F (-S2) INC
- R88M-K1K020C (-S2)/-K1K520C (-S2)/-K2K020C (-S2)/-K3K020C (-S2) ABS
- With brake
- R88M-K1K020F-B (S2)/-K1K520F-B (S2)/-K2K020F-B (S2)/-K3K020F-B (S2) INC
- R88M-K1K020C-B (S2)/-K1K520C-B (S2)/-K2K020C-B (S2)/-K3K020C-B (S2) ABS

Model		Dimensions (mm)					
		LR	LM	S	KB1	KB2	
R88M-K1K020 \square	138	55	94	22	60	116	
R88M-K1K520 \square	155.5	55	111.5	22	77.5	133.5	
R88M-K2K020 \square	173	55	129	22	95	151	
R88M-K3K020 \square	208	65	164	24	127	186	
R88M-K1K020 $\square-$ B \square	163	55	119	22	57	141	
R88M-K1K520 $\square-B$	180.5	55	136.5	22	74.5	158.5	
R88M-K2K020 $\square-$ B \square	198	55	154	22	92	176	
R88M-K3K020 $\square-B$	233	65	189	24	127	211	

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

4kW/5kW

- Without brake

- R88M-K4K020F (-S2)-K5K020F (-S2) INC
- R88M-K4K020C (-S2)/-K5K020C (-S2) ABS
- With brake
- R88M-K4K020F-B (S2)/-K5K020F-B (S2) INC
- R88M-K4K020C-B (S2)/-K5K020C-B (S2) ABS

Model		Dimensions (mm)			
		LM	KB1	KB2	
R88M-K4K020 \square	177	133	96	155	
R88M-K5K020 \square	196	152	115	174	
R88M-K4K020 \square-B \square	202	158	96	180	
R88M-K5K020 $\square-$ B \square	221	177	115	199	

7.5kW

- Without brake
- R88M-K7K515C (-S2) ABS
- With brake
- R88M-K7K515C-B
(S2) ABS

Model		Dimensions (mm)									
		LR	LM	S	KB1	KB2	L1	L2	L3		
R88M-K7K515C \square	312	133	268	42	219	290	117.5	117.5	149		
R88M-K7K515C-B \square	337	113	293	42	253	315	117.5	152.5	183		

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

11kW/15kW

- Without brake
- R88M-K11K015C (-S2)/-K15K015C (-S2) ABS
- With brake
- R88M-K11K015C-B (S2)/R88M-K15K015C-B (S2) ABS

Model	Dimensions (mm)								
	LL	LR	LM	S	KB1	KB2	L1	L2	L3
R88M-K11K015C \square	316	116	272	55	232	294	124.5	124.5	162
R88M-K15K015C \square	384	116	340	55	300	362	158.5	158.5	230
R88M-K11K015C-B \square	364	116	320	55	266	342	124.5	159.5	196
R88M-K15K015C-B \square	432	116	388	55	334	410	158.5	193.5	264

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

-1,000 r/min Servomotors (200 VAC)

900W

- Without brake
- R88M-K90010H (-S2) INC
- R88M-K90010T (-S2) ABS
- With brake
- R88M-K90010H-B (S2) INC
- R88M-K90010T-B (S2) ABS

Model		Dimensions (mm)		
		LM	KB2	
R88M-K90010 \square	155.5	111.5	133.5	
R88M-K90010 \square-B \square	180.5	136.5	158.5	

2kW/3kW

- Without brake

- R88M-K2K010H (-S2)/-K3K010H (-S2) INC
- R88M-K2K010T (-S2)-K3K010T (-S2) ABS

- With brake

- R88M-K2K010H-B (S2)/-K3K010H-B (S2) INC
- R88M-K2K010T-B (S2)/-K3K010T-B (S2) ABS

Model		Dimensions (mm)			
		LM	KB1	KB2	
R88M-K2K010 \square	163.5	119.5	82.5	141.5	
R88M-K3K010 \square	209.5	165.5	128.5	187.5	
R88M-K2K010 \square-B \square	188.5	144.5	82.5	166.5	
R88M-K3K010 $\square-$ B \square	234.5	190.5	128.5	212.5	

4.5kW

- Without brake

- R88M-K4K510T (-S2) ABS
- With brake
- R88M-K4K510T-B (S2) ABS

Model		Dimensions (mm)									
		LR	LM	S	KB1	KB2	L1	L2			
R88M-K4K510T \square	266	113	222	42	185	244	98	98			
R88M-K4K510T-B \square	291	113	247	42	185	269	98	133			

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

6kW

- Without brake
- R88M-K6K010T (-S2) ABS
- With brake
- R88M-K6K010T-B (S2) ABS

Model		Dimensions (mm)										
		LR	LM	S	KB1	KB2	L1	L2	L3			
R88M-K6K010T \square	312	113	268	42	219	290	117.5	117.5	149			
R88M-K6K010T-B \square	337	113	293	42	253	315	117.5	152.5	183			

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

-1,000 r/min Servomotors (400 VAC)
 900W

- Without brake
- R88M-K90010F (-S2) INC
- R88M-K90010C (-S2) ABS
- With brake
- R88M-K90010F-B (S2) INC
- R88M-K90010C-B (S2) ABS

Model		Dimensions (mm)			
		LM	KB1	KB2	
R88M-K90010 \square	155.5	111.5	77.5	133.5	
R88M-K90010 \square-B \square	180.5	136.5	74.5	158.5	

2kW/3kW

- Without brake

- R88M-K2K010F (-S2)-K3K010F (-S2) INC
- R88M-K2K010C (-S2)/-K3K010C (-S2) ABS
- With brake
- R88M-K2K010F-B (S2)/-K3K010F-B (S2) INC
- R88M-K2K010C-B (S2)/-K3K010C-B (S2) ABS

Model	Dimensions (mm)			
	LL	LM	KB1	KB2
R88M-K2K010 \square	163.5	119.5	82.5	141.5
R88M-K3K010 \square	209.5	165.5	128.5	187.5
R88M-K2K010 \square-B \square	188.5	144.5	82.5	166.5
R88M-K3K010 \square-B \square	234.5	190.5	128.5	212.5

4.5kW

- Without brake

- R88M-K4K510C (-S2) ABS
- With brake
- R88M-K4K510C-B ABS

Model		Dimensions (mm)									
		LR	LM	S	KB1	KB2	L1	L2			
R88M-K4K510T \square	266	113	222	42	185	244	98	98			
R88M-K4K510T-B \square	291	113	247	42	185	269	98	133			

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

AC Servomotors/Linear Motors/Drives G5-Series
AC Servomotors

6kW

- Without brake
- R88M-K6K010C (-S2) ABS
- With brake
- R88M-K6K010C-B (S2) ABS

Model		Dimensions (mm)										
		LR	LM	S	KB1	KB2	L1	L2	L3			
R88M-K6K010C \square	312	113	268	42	219	290	117.5	117.5	149			
R88M-K6K010C-B \square	337	113	293	42	253	315	117.5	152.5	183			

Note: The standard models have a straight shaft. A model with a key and tap is indicated by adding "S2" to the end of the model number. Models with an oil seal are indicated with O at the end of the model number. The motor dimensions do not change.

G5-series Linear Motor R88L-EC- \square

Linear Motor for Higher-speed and Higher-precision

- Lineup of compact and high-thrust iron-core motor type and cogging-free ironless motor type with excellent speed stability.
- Same Iron-core motor type for 200V AC and 400V AC.

General Specifications

- Iron-core Linear Motors

Item			Description
Operating ambient temperature humidity			0 to $40^{\circ} \mathrm{C}, 20 \%$ to 80% (with no condensation)
Storage ambient temperature and humidity			-20 to $+65^{\circ} \mathrm{C}, 85 \%$ max. (with no condensation)
Operating and storage atmosphere			No corrosive gases
Vibration resistance*			Acceleration of $49 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$. in X, Y, and Z directions
Impact resistance			Acceleration of $98 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} .3$ times each in X, Y, and Z directions
Insulation resistance			Between power terminal and FG terminal: $10 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength			Between power terminal and FG terminal: 2,750 VDC for 1 s Between power terminal and sensor: 2,750 VDC for 1 s
Protective structure			IP00
Maximum coil temperature (Motor Coil Unit)			$130^{\circ} \mathrm{C}$
Maximum magnet temperature (Magnet Track)			$70^{\circ} \mathrm{C}$
Insulation class			Class B
Cooling method			Self-cooling
International standard	EC directive	Low voltage directive	EN60034-1

- Ironless Linear Motors

Item			Description
Operating ambient temperature humidity			0 to $40^{\circ} \mathrm{C}, 20 \%$ to 80% (with no condensation)
Storage ambient temperature and humidity			-20 to $+65^{\circ} \mathrm{C}, 85 \%$ max. (with no condensation)
Operating and storage atmosphere			No corrosive gases
Vibration resistance*			Acceleration of $49 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$. in X, Y, and Z directions
Impact resistance			Acceleration of $98 \mathrm{~m} / \mathrm{s}^{2}$ max. 3 times each in X, Y, and Z directions
Insulation resistance			Between power terminal and FG terminal: $10 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength			Between power terminal and FG terminal: 2,250 VDC for 1 s Between power terminal and sensor: 2,250 VDC for 1 s
Protective structure			IP00
Maximum coil temperature (Motor Coil Unit)			$110^{\circ} \mathrm{C}$
Maximum magnet temperature (Magnet Track)			$70^{\circ} \mathrm{C}$
Insulation class			Class B
Cooling method			Self-cooling
International standard	EC directive	Low voltage directive	EN60034-1

[^29]
AC Servomotors/Linear Motors/Drives G5-Series Linear Motor

Characteristics/Speed - Force Characteristics

- Iron-core Linear Motors

Item	Unit	R88L-EC-						
		FW-0303-ANPC	FW-0306-ANPC	FW-0606-ANPC	FW-0609-ANPC	FW-0612-ANPC	FW-1112-ANPC	FW-1115-ANPC
Maximum speed (100VAC)	m/s	2.5	2.5	2	-	-	-	-
Maximum speed (200VAC)	m/s	5	5	4	4	4	2	2
Maximum speed (400VAC)	m/s	10	10	8	8	8	4	4
Continuous force*1	N	48	96	160	240	320	608	760
Momentary maximum force*2	N	105	210	400	600	800	1,600	2,000
Continuous current*2	Arms	1.24	2.4	3.4	5.2	6.9	6.5	8.2
Momentary maximum current* ${ }^{* 1}$	Arms	3.1	6.1	10	15	20	20	25
Motor force constant	N/Arms	39.7	39.7	46.5	46.5	46.5	93.0	93.0
Back electromotive force	$\mathrm{V} \cdot \mathrm{s} / \mathrm{m}$	13.2	13.2	15.5	15.5	15.5	31	31
Motor constant	N/ $\sqrt{ } \mathbf{W}$	9.75	13.78	19.49	23.87	27.57	41.47	46.37
Phase resistance	Ω	5.34	2.68	1.83	1.23	0.92	1.6	1.29
Phase inductance	mH	34.7	17.4	13.7	9.2	6.9	12.8	10.3
Electrical time constant	ms	6.5	6.5	7.5	7.5	7.5	8	8
Maximum continuous power consumption	W	32	63	88	131	175	279	349
Thermal resistance	K/W	2.20	1.10	0.78	0.52	0.39	0.23	0.18
Thermal time constant	s	110	110	124	124	124	126	126
Magnetic attractive force	N	300	500	1,020	1,420	1,820	3,640	4,440
Magnetic pole pitch	mm	24	24	24	24	24	24	24
Mass (except cables)	kg	0.48	0.78	1.31	1.84	2.37	4.45	5.45
Cooling plate dimensions	mm	$238 \times 220 \times 10$	$238 \times 220 \times 10$	$250 \times 287 \times 12$	$250 \times 287 \times 12$	$250 \times 287 \times 12$	$371 \times 330 \times 14$	$371 \times 330 \times 14$
Application Servo Drives (R88D- \square-ECT-L)		KN01L/KN02H/ KN06F	$\begin{aligned} & \text { KN02L/KN04H/ } \\ & \text { KN10F } \end{aligned}$	KN04L/KN08H/ KN15F	KN10H/KN20F	KN15H/KN30F	KN15H/KN30F	KN15H/KN30F
Magnet Trac (R88L-EC-)		$\begin{aligned} & \text { FM-03096-A/FM-03144-A/ } \\ & \text { FM-03384-A } \end{aligned}$		FM-06192-A/FM-06288-A			FM-11192-A/FM-11288-A	
Magnet Trac Unit Length	mm	96/144/384		192/288			192/288	

*1. This shows a value measured when the Motor Coil Unit is at $100^{\circ} \mathrm{C}$ and the Magnet Trac is at $25^{\circ} \mathrm{C}$. The coil unit is mounted in the center of an aluminum moving table (heat sink) which has its size larger than indicated in table as cooling condition.
*2. The Motor Coil Unit is subjected to a temperature rise of $6 \mathrm{~K} / \mathrm{s}$.

AC Servomotors/Linear Motors/Drives G5-Series Linear Motor

Speed - Force Characteristics

The following graphs show the performance when the coil temperature of the Motor Coil Unit is $100^{\circ} \mathrm{C}$.
The maximum operation speed is limited by considering the guide mechanism, encoder, and other aspects. If it is $5 \mathrm{~m} / \mathrm{s}$ or higher, please consult with your OMRON representative.

R88L-EC-FW-0303

R88L-EC-FW-0306

R88L-EC-FW-0606

R88L-EC-FW-0609

R88L-EC-FW-0612

R88L-EC-FW-1115

R88L-EC-FW-1112

AC Servomotors/Linear Motors/Drives G5-Series
 Linear Motor

- Ironless Linear Motors

Item	Unit	R88L-EC-									
		GW-0303 -ANPS		GW-0306 -ANPS	GW-0309 -ANPS	GW-0503 -ANPS	GW-0506 -ANPS	GW-0509 -ANPS	GW-0703 -ANPS	GW-0706 -ANPS	GW-0709 -ANPS
Maximum speed (100VAC)	m/s	8	-	8	-	2.2	2.2	2.2	1.2	1.2	-
Maximum speed (200VAC)	m/s	-	16	16	16	4.4	4.4	4.4	2.4	2.4	2.4
Continuous force*1	N	26.5		53	80	58	117	175	117	232	348
Momentary maximum force*2	N	100	96	200	300	240	480	720	552	1110	1730
Continuous current*2	Arms	1.33		2.66	4.0	0.87	1.76	2.60	0.94	1.87	2.81
Momentary maximum current*1	Arms	5.0	4.8	10.0	15.0	3.50	7.1	10.6	4.5	9.0	14
Motor force constant	N/Arms	19.9		19.9	19.9	68.0	68.0	68.0	124.0	124.0	124.0
Back electromotive force	V-s/m	6.6		6.6	6.6	22.7	22.7	22.7	41.3	41.3	41.3
Motor constant	N/ $\sqrt{ } \mathbf{W}$	4.90		6.93	8.43	9.85	13.96	17.03	17.97	25.44	31.14
Phase resistance	Ω	5.5		2.8	1.8	15.9	8.0	5.3	15.8	7.9	5.3
Phase inductance	mH	1.8		0.9	0.6	13	6.5	4.2	28.0	14.0	9.0
Electrical time constant	ms	0.35		0.35	0.35	0.8	0.8	0.8	1.8	1.8	1.8
Maximum continuous power consumption	W	47		95	142	67	134	200	82	165	247
Thermal resistance	K/W	2.1		1.06	0.71	1.70	0.85	0.65	1.56	1.04	0.52
Thermal time constant	S	36		36	36	72	72	72	96	96	96
Magnetic attractive force	N	0		0	0	0	0	0	0	0	0
Magnetic pole pitch	mm	30		30	30	42	42	42	57	57	57
Mass (except cables)	kg	0.084		0.162	0.24	0.25	0.47	0.69	0.55	0.95	1.35
Application Servo Drives (R88D- \square-ECT-L)		KN01L	KN02H	$\begin{aligned} & \text { KN04L/ } \\ & \text { KN08H } \end{aligned}$	$\mathrm{KN10H}$	$\begin{aligned} & \text { KN01L/ } \\ & \text { KN01H } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { KN02L/ } \\ \text { KN04H } \end{array}$	$\begin{aligned} & \text { KN04L/ } \\ & \text { KN08H } \end{aligned}$	$\begin{aligned} & \text { KN02L/ } \\ & \text { KN04H } \end{aligned}$	$\begin{aligned} & \text { KN04L/ } \\ & \text { KN08H } \end{aligned}$	KN10H
Magnet Trac (R88L-EC-)		$\begin{aligned} & \text { GM-03090-A/GM-03120-A/ } \\ & \text { GM-03390-A } \end{aligned}$				GM-05126-A/GM-05168-A/ GM-05210-A/GM-05546-A			$\begin{aligned} & \text { GM-07114-A/GM-07171-A/ } \\ & \text { GM-07456-A } \end{aligned}$		
Magnet Trac Unit Length	mm	90/120/390				126/168/210/546			114/171/456		

$* 1$. This shows a value measured when the Motor Coil Unit is at $100^{\circ} \mathrm{C}$ and the Magnet Trac is at $25^{\circ} \mathrm{C}$.
*2. The Motor Coil Unit is subjected to a temperature rise of $40 \mathrm{~K} / \mathrm{s}$.

Speed - Force Characteristics

The maximum operation speed is limited by considering the guide mechanism, encoder, and other aspects. If it is $5 \mathrm{~m} / \mathrm{s}$ or higher, please consult with your OMRON representative.

R88L-EC-GW-0303

R88L-EC-GW-0309

R88L-EC-GW-0506

m/s

R88L-EC-GW-0503

R88L-EC-GW-0509

200 V AC

AC Servomotors/Linear Motors/Drives G5-Series Linear Motor

R88L-EC-GW-0703

R88L-EC-GW-0709

$0 \quad 1 \quad 2 \mathrm{~m} / \mathrm{s}$

R88L-EC-GW-0706

AC Servomotors/Linear Motors/Drives G5-Series
 Linear Motor

Dimensions

- Iron-core Linear Motors

R88L-EC-FW-0303/-0306

- Motor Coil Unit

Model	L1 [mm]	Number of holes [N]	Mass [kg] $^{\boldsymbol{* 1}}$
R88L-EC-FW-0303	$79+0.15 /-0.35$	4	0.72
R88L-EC-FW-0306	$127+0.15 /-0.35$	6	1.03

*1 The weight of $450-\mathrm{mm}$ cables are included.
*2 These values indicate mounting dimensions.

- Magnet Trac

Model	L2 $[\mathbf{m m}]$	L3 $[\mathbf{m m}]$	Number of holes [N$]$	Mass [kg]
R88L-EC-FM-03096-A	96	48	4	Approx. 0.22
R88L-EC-FM-03144-A	144	96	6	Approx. 0.32
R88L-EC-FM-03384-A	384	336	16	Approx. 0.85

Enlarged view of portion B

* Use M5 low head allen head bolts.

AC Servomotors/Linear Motors/Drives G5-Series

Linear Motor

R88L-EC-FW-0606/-0609/-0612

- Motor Coil Unit

Model	L1 [mm]	Number of holes [N$]$	Mass [kg]¹
R88L-EC-FW-0606	$127+0.15 /-0.35$	6	1.59
R88L-EC-FW-0609	$175+0.15 /-0.35$	8	2.15
R88L-EC-FW-0612	$223+0.15 /-0.35$	10	2.7

*1 The weight of $450-\mathrm{mm}$ cables are included.
*2 These values indicate mounting dimensions.

Model	L2 [mm]	L3 [mm]	Number of holes [N]	Mass [kg]
R88L-EC-FM-06192-A	192	144	8	Approx. 0.77
R88L-EC-FM-06288-A	288	240	12	Approx. 1.15

* Use M5 low head allen head bolts.

R88L-EC-FW-1112/-1115

- Motor Coil Unit

Model	L1 [mm]	Number of holes [N]	Mass [kg] $^{\star 1}$
R88L-EC-FW-1112	$223+0.15 /-0.35$	15	4.89
R88L-EC-FW-1115	$271+0.15 /-0.35$	18	5.94

*1 The weight of $450-\mathrm{mm}$ cables are included.
*2 These values indicate mounting dimensions.

- Magnet Trac

Model	L2 [mm]	L3 [mm]	Number of holes [N]	Mass [kg]
R88L-EC-FM-11192-A	192	144	8	Approx. 2.12
R88L-EC-FM-11288-A	288	240	12	Approx. 3.18

[^30]
AC Servomotors/Linear Motors/Drives G5-Series Linear Motor

- Ironless Linear Motors

R88L-EC-GW-0303/-0306/-0309

- Motor Coil Unit

Model	L1 [mm]	L2 [mm]	Number of holes [N]	Mass [kg] $^{\boldsymbol{*}}$
R88L-EC-GW-0303	78	60	4	0.2
R88L-EC-GW-0306	138	120	7	0.28
R88L-EC-GW-0309	198	180	10	0.36

* The weight of 950 mm cables are included.

- Magnet Trac

Model	L3 [mm]	L4 [mm]	Number of holes [N]	Mass [kg]
R88L-EC-GM-03090-A	90	60	3	Approx. 0.46
R88L-EC-GM-03120-A	120	90	4	Approx. 0.61
R88L-EC-GM-03390-A	390	360	13	Approx. 1.97

- Combination diagram

R88L-EC-GW-0503/-0506/-0509

- Motor Coil Unit

Model	L1 [mm]	L2 [mm]	Number of holes [N]	Mass [kg] $^{\boldsymbol{*}}$
R88L-EC-GW-0503	106	84	4	0.48
R88L-EC-GW-0506	190	168	7	0.71
R88L-EC-GW-0509	274	252	10	0.94

AC Servomotors/Linear Motors/Drives G5-Series Linear Motor

R88L-EC-GW-0703/-0706/-0709

- Motor Coil Unit

Model	L1 [mm]	L2 [mm]	Number of holes [N]	Mass [kg] *
R88L-EC-GW-0703	134	114	4	0.9
R88L-EC-GW-0706	248	228	7	1.32
R88L-EC-GW-0709	362	342	10	1.74

* The weight of 950 mm cables are included.
- Magnet Trac

Model	L3 [mm]	L4 [mm]	Number of holes [N]	Mass [kg]
R88L-EC-GM-07114-A	114	57	2	Approx. 2.88
R88L-EC-GM-07171-A	171	114	3	Approx. 4.31
R88L-EC-GM-07456-A	456	399	8	Approx. 11.5

- Combination diagram

Combination table

Servo Drive and Servomotor Combinations ($3,000 \mathrm{r} / \mathrm{min}, 2,000 \mathrm{r} / \mathrm{min}, 1,500 \mathrm{r} / \mathrm{min}, 1,000 \mathrm{r} / \mathrm{min}$)

<Cylinder Type>

3,000-r/min servomotors

Power Supply Voltage	Servo Drive Model Numbers	Servomotor Model Numbers		
	EtherCAT	Output	With incremental encoder	With absolute encoder
Single-phase 100 to 115 VAC	R88D-KNA5L-ECT	50 W	R88M-K05030H- \square	R88M-K05030T- \square
	R88D-KN01L-ECT	100 W	R88M-K10030L- \square	R88M-K10030S- \square
	R88D-KN02L-ECT	200 W	R88M-K20030L- \square	R88M-K20030S- \square
	R88D-KN04L-ECT	400 W	R88M-K40030L- \square	R88M-K40030S- \square
Single-phase/ three-phase 200 to 240 VAC	R88D-KN01H-ECT *	50 W	R88M-K05030H- \square *	R88M-K05030T- \square *
	R88D-KN01H-ECT	100 W	R88M-K10030H- \square	R88M-K10030T- \square
	R88D-KN02H-ECT	200 W	R88M-K20030H- \square	R88M-K20030T- \square
	R88D-KN04H-ECT	400 W	R88M-K40030H- \square	R88M-K40030T- \square
	R88D-KN08H-ECT	750 W	R88M-K75030H- \square	R88M-K75030T- \square
	R88D-KN15H-ECT *	1 kW	R88M-K1K030H- \square^{*}	R88M-K1K030T- \square *
	R88D-KN15H-ECT	1.5 kW	R88M-K1K530H- \square	R88M-K1K530T- \square
Three-phase 200 to 240 VAC	R88D-KN20H-ECT	2 kW	R88M-K2K030H- \square	R88M-K2K030T- \square
	R88D-KN30H-ECT	3 kW	R88M-K3K030H- \square	R88M-K3K030T- \square
	R88D-KN50H-ECT *	4 kW	R88M-K4K030H- \square^{*}	R88M-K4K030T- \square *
	R88D-KN50H-ECT	5 kW	R88M-K5K030H- \square	R88M-K5K030T- \square
Three-phase 400 to 480 VAC	R88D-KN10F-ECT *	750 W	R88M-K75030F- \square^{*}	R88M-K75030C- \square *
	R88D-KN15F-ECT *	1 kW	R88M-K1K030F- \square *	R88M-K1K030C- \square *
	R88D-KN15F-ECT	1.5 kW	R88M-K1K530F- \square	R88M-K1K530C- \square
	R88D-KN20F-ECT	2 kW	R88M-K2K030F- \square	R88M-K2K030C- \square
	R88D-KN30F-ECT	3 kW	R88M-K3K030F- \square	R88M-K3K030C- \square
	R88D-KN50F-ECT *	4 kW	R88M-K4K030F- \square *	R88M-K4K030C- \square *
	R88D-KN50F-ECT	5 kW	R88M-K5K030F- \square	R88M-K5K030C- \square

1,500r/min, 2,000-r/min servomotors

Power Supply Voltage	Servo Drive Model Numbers	Servomotor Model Numbers		
	EtherCAT	Output	With incremental encoder	With absolute encoder
Single-phase/ three-phase 200 to 240 VAC	R88D-KN10H-ECT	1 kW	R88M-K1K020H- \square	R88M-K1K020T- \square
	R88D-KN15H-ECT	1.5 kW	R88M-K1K520H- \square	R88M-K1K520T- \square
Three-phase 200 to 240 VAC	R88D-KN20H-ECT	2 kW	R88M-K2K020H- \square	R88M-K2K020T- \square
	R88D-KN30H-ECT	3 kW	R88M-K3K020H- \square	R88M-K3K020T- \square
	R88D-KN50H-ECT *	4 kW	R88M-K4K020H- $\square^{\text {* }}$	R88M-K4K020T- \square^{*}
	R88D-KN50H-ECT	5 kW	R88M-K5K020H- \square	R88M-K5K020T- \square
	R88D-KN75H-ECT	7.5 kW	-	R88M-K7K515T- \square
	R88D-KN150H-ECT *	11 kW	-	R88M-K11K015T- \square^{*}
	R88D-KN150H-ECT	15 kW	-	R88M-K15K015T- \square
Three-phase 400 to 480 VAC	R88D-KN06F-ECT *	400 W	R88M-K40020F- \square^{*}	R88M-K40020C- \square^{*}
	R88D-KN06F-ECT	600 W	R88M-K60020F- \square	R88M-K60020C- \square
	R88D-KN10F-ECT	1 kW	R88M-K1K020F- \square	R88M-K1K020C- \square
	R88D-KN15F-ECT	1.5 kW	R88M-K1K520F- \square	R88M-K1K520C- \square
	R88D-KN20F-ECT	2 kW	R88M-K2K020F- \square	R88M-K2K020C- \square
	R88D-KN30F-ECT	3 kW	R88M-K3K020F- \square	R88M-K3K020C- \square
	R88D-KN50F-ECT *	4 kW	R88M-K4K020F- \square^{*}	R88M-K4K020C- $\square^{\text {* }}$
	R88D-KN50F-ECT	5 kW	R88M-K5K020F- \square	R88M-K5K020C- \square
	R88D-KN75F-ECT	7.5 kW	-	RR88M-K7K515C- \square
	R88D-KN150F-ECT *	11 kW	-	R88M-K11K015C- \square^{*}
	R88D-KN150F-ECT	15 kW	-	R88M-K15K015C- \square

[^31]AC Servomotors/Linear Motors/Drives G5-Series

1,000-r/min servomotors

Power Supply Voltage	Servo Drive Model Numbers	Servomotor Model Numbers		
	EtherCAT	Output	With incremental encoder	With absolute encoder
Single-phase/	R88D-KN15H-ECT *	900 W	R88M-K90010H- \square^{*}	R88M-K90010T- \square *
Three-phase 200 to 240 VAC	R88D-KN30H-ECT *	2 kW	R88M-K2K010H- \square^{*}	R88M-K2K010T- \square *
	R88D-KN50H-ECT *	3 kW	R88M-K3K010H- \square^{*}	R88M-K3K010T- \square *
	R88D-KN50H-ECT *	4.5 kW	-	R88M-K4K510T- \square *
	R88D-KN75H-ECT *	6 kW	-	R88M-K6K010T- \square *
Three-phase 400 to 480 VAC	R88D-KN15F-ECT *	900 W	R88M-K90010F- \square^{*}	R88M-K90010C- \square *
	R88D-KN30F-ECT *	2 kW	R88M-K2K010F- \square^{*}	R88M-K2K010C- \square^{*}
	R88D-KN50F-ECT *	3 kW	R88M-K3K010F- \square^{*}	R88M-K3K010C- \square *
	R88D-KN50F-ECT *	4.5 kW	-	R88M-K4K510C- \square^{*}
	R88D-KN75F-ECT *	6 kW	-	R88M-K6K010C- \square^{*}

[^32]Servomotor and Decelerator Combinations (3,000 r/min, 2,000 r/min, 1,000 r/min)
<Cylinder Type>
$3,000-\mathrm{r} / \mathrm{min}$ servomotors

Motor model	1/5	$1 / 11$ (1/9 for flange size No.11)	1/21	1/33	1/45
R88M-K05030 \square	R88G-HPG11B05100B \square (Also used with R88MK10030 \square)	R88G-HPG11B09050B \square (Gear ratio 1/9)	R88G-HPG14A21100B \square (Also used with R88MK10030 \square)	R88G-HPG14A33050B \square	R88G-HPG14A45050B \square
R88M-K10030 \square	R88G-HPG11B05100B \square	R88G-HPG14A11100B \square	R88G-HPG14A21100B \square	R88G-HPG20A33100B \square	R88G-HPG20A45100B \square
R88M-K20030 \square	R88G-HPG14A05200B \square	R88G-HPG14A11200B \square	R88G-HPG20A21200B \square	R88G-HPG20A33200B \square	R88G-HPG20A45200B \square
R88M-K40030■	R88G-HPG14A05400B \square	R88G-HPG20A11400B \square	R88G-HPG20A21400B \square	R88G-HPG32A33400B \square	R88G-HPG32A45400B \square
$\begin{aligned} & \hline \text { R88M-K75030H/T } \\ & (200 \mathrm{~V}) \end{aligned}$	R88G-HPG20A05750B \square	R88G-HPG20A11750B \square	R88G-HPG32A21750B \square	R88G-HPG32A33750B \square	R88G-HPG32A45750B \square
$\begin{aligned} & \text { R88M-K75030F/C } \\ & (400 \mathrm{~V}) \end{aligned}$	R88G-HPG32A052K0B \square (Also used with R88MK2K030■)	R88G-HPG32A112K0B \square (Also used with R88MK2K030 \square)	R88G-HPG32A211K5B \square (Also used with R88MK1K5030 \square)	R88G-HPG32A33600SB (Also used with R88MK60020 \square)	R88G-HPG50A451K5B (Also used with R88M- K1K530])
R88M-K1K030 \square	R88G-HPG32A052K0B \square (Also used with R88MK2K030■)	R88G-HPG32A112K0B \square (Also used with R88M- K2K030 \square)	R88G-HPG32A211K5B \square (Also used with R88M- K1K5030■)	R88G-HPG50A332K0B \square (Also used with R88M- K2K030 \square)	R88G-HPG50A451K5B (Also used with R88M- K1K530 \square)
R88M-K1K530 \square	R88G-HPG32A052K0B \square (Also used with R88MK2K030■)	R88G-HPG32A112K0B \square (Also used with R88MK2K030 \square)	R88G-HPG32A211K5B \square	R88G-HPG50A332K0B \square (Also used with R88MK2K030 \square)	R88G-HPG50A451K5B \square
R88M-K2K030■	R88G-HPG32A052K0B \square	R88G-HPG32A112K0B \square	R88G-HPG50A212K0B \square	R88G-HPG50A332K0B \square	-
R88M-K3K030 \square	R88G-HPG32A053K0B \square	R88G-HPG50A113K0B \square	R88G-HPG50A213K0B \square	-	-
R88M-K4K030 \square	R88G-HPG32A054K0B \square	R88G-HPG50A115K0B \square (Also used with R88MK5K030■)	-	-	-
R88M-K5K030 \square	R88G-HPG50A055K0B \square	R88G-HPG50A115K0B \square	-	-	-

2,000-r/min servomotors

Motor model	1/5	1/11	$1 / 21$ ($1 / 20$ for flange size No .65)	$1 / 33$ (1/25 for flange size No.65)	1/45
R88M-K40020 (Only 400 V)	R88G-HPG32A052K0B \square (Also used with R88MK2K030■)	R88G-HPG32A112K0B \square (Also used with R88MK2K030 \square)	R88G-HPG32A211K5B \square (Also used with R88MK1K5030■)	R88G-HPG32A33600SB \square (Also used with R88MK60020】)	R88G- HPG32A45400SB \square
R88M-K60020 (Only 400 V)	R88G-HPG32A052K0B \square (Also used with R88MK2K030 \square)	R88G-HPG32A112K0B \square (Also used with R88M- K2K030 \square)	R88G-HPG32A211K5B \square (Also used with R88MK1K5030 \square)	R88G- HPG32A33600SB \square	$\begin{aligned} & \text { R88G-HPG50A451K5B } \square \\ & \text { (R88M-K1K530 } \square \text {) } \end{aligned}$
R88M-K1K020 \square	R88G-HPG32A053K0B \square (Also used with R88MK3K030■)	R88G- HPG32A112K0SB \square (Also used with R88M- K2K020 \square)	R88G- HPG32A211K0SB \square	R88G- HPG50A332K0SB \square (Also used with R88M- K2K020 \square)	R88G- HPG50A451K0SB \square
R88M-K1K520 \square	R88G-HPG32A053K0B \square (Also used with R88MK3K030 \square)	R88G- HPG32A112K0SB \square (Also used with R88M- K2K020 \square)	R88G-HPG50A213K0B \square (Also used with R88MK3K030 \square)	R88G- HPG50A332K0SB \square (Also used with R88M- K2K020■)	-
R88M-K2K020 \square	R88G-HPG32A053K0B \square (Also used with R88MK3K030 \square)	R88G- HPG32A112K0SB \square	R88G-HPG50A213K0B \square (Also used with R88MK3K030П)	R88G- HPG50A332K0SB \square	-
R88M-K3K020 \square	R88G-HPG32A054K0B \square (Also used with R88MK4K030■)	R88G-HPG50A115K0B \square (Also used with R88MK5K030 \square)	R88GHPG50A213K0SB \square	R88G- HPG65A253K0SB \square	-
R88M-K4K020 \square	R88G- HPG50A055K0SB \square (Also used with R88M- K5K020■)	R88G- HPG50A115K0SB \square (Also used with R88MK3K030П)	R88G- HPG65A205K0SB \square (Also used with R88M- K3K030■)	R88G- HPG65A255K0SB \square (Also used with R88M- K5K020■)	-
R88M-K5K020 \square	R88GHPG50A055K0SB	R88GHPG50A115K0SB	R88G- HPG65A205K0SB	R88G- HPG65A255K0SB	-

$1,000-\mathrm{r} / \mathrm{min}$ servomotors

Motor model	$\mathbf{1 / 5}$	$\mathbf{1 / 1 1}$	1/21 (1/20 for flange size No.65)	1/33 (1/25 for flange size No.65)
R88M-K90010 \square	R88G-HPG32A05900TB \square (Also used with R88M- K5K020 \square)	R88G-HPG32A11900TB \square (Also used with R88M- K2K020 \square)	R88G-HPG50A21900TB \square (Also used with R88M- K3K030 $\square)$	R88G-HPG50A33900TB \square (Also used with R88M- K2K020 $\square)$
R88M-K2K010 \square	R88G-HPG32A052K0TB \square	R88G-HPG50A112K0TB \square	R88G-HPG50A212K0TB \square (Also used with R88M- K5K020 \square)	R88G-HPG65A255K0SB \square (Also used with R88M- K5K020 $\square)$
R88M-K3K010 \square	R88G-HPG50A055K0SB \square (Also used with R88M- K5K020 \square)	R88G-HPG50A115K0SB \square (Also used with R88M- K5K020 \square)	R88G-HPG65A205K0SB \square (Also used with R88M- K5K020 $\square)$	R88G-HPG65A255K0SB \square (Also used with R88M- K5K020 $\square)$

AC Servomotors/Linear Motors/Drives G5-Series

Linear Motor and AC Servo Drive Linear Motor Type Combinations

- Iron-core Linear Motor type

Linear Motor Model Numbers	Power Supply Voltage (V)	Servo Drive Model Numbers	Maximum speed (m/s)
R88L-EC-FW-0303-ANPC	100	R88D-KN01L-ECT-L	2.5
	200	R88D-KN02H-ECT-L	5
	400	R88D-KN06F-ECT-L	10
R88L-EC-FW-0306-ANPC	100	R88D-KN02L-ECT-L	2.5
	200	R88D-KN04H-ECT-L	5
	400	R88D-KN10F-ECT-L	10
R88L-EC-FW-0606-ANPC	100	R88D-KN04L-ECT-L	2
	200	R88D-KN08H-ECT-L	4
	400	R88D-KN15F-ECT-L	8
R88L-EC-FW-0609-ANPC	200	R88D-KN10H-ECT-L	4
	400	R88D-KN20F-ECT-L	8
R88L-EC-FW-0612-ANPC	200	R88D-KN15H-ECT-L	4
	400	R88D-KN30F-ECT-L	8
R88L-EC-FW-1112-ANPC	200	R88D-KN15H-ECT-L	2
	400	R88D-KN30F-ECT-L	4
R88L-EC-FW-1115-ANPC	200	R88D-KN15H-ECT-L	2
	400	R88D-KN30F-ECT-L	4

- Ironless Linear Motor type

Linear Motor Model Numbers	Power Supply Voltage (V)	Servo Drive Model Numbers	Maximum speed (m/s)
R88L-EC-GW-0303-ANPS	100	R88D-KN01L-ECT-L	8
	200	R88D-KN02H-ECT-L	16
R88L-EC-GW-0306-ANPS	100	R88D-KN04L-ECT-L	8
	R88D-KN08H-ECT-L	16	
R88L-EC-GW-0503-ANPS	200	R88D-KN10H-ECT-L	16
	R88D-KN01L-ECT-L	2.2	
R88L-EC-GW-0509-ANPS	100	R88D-KN02H-ECT-L	4.4
	R88D-KN02L-ECT-L	2.2	
	200	R88D-KN04H-ECT-L	4.4
	R88D-KN04L-ECT-L	2.2	
R88L-EC-GW-0709-ANPS	200	R88D-KN08H-ECT-L	4.4

Note: The maximum operation speed is limited by considering the guide mechanism, encoder, and other aspects. If it is $5 \mathrm{~m} / \mathrm{s}$ or higher, please consult with your OMRON representative.

Cable Combinations

- EtherCAT Communications

- EtherCAT Communications Linear Motor Type

AC Servomotors/Linear Motors/Drives G5-Series

Servomotor Power Cables (For CNB)

Symbol			Name	Connected to	Model	Description
(1)			Standard Servomotor Power Cables for Servomotors without Brakes	[100 V] [200 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 50$ to 750 W	R88A-CAKA $\square \square \square S$ The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[200 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 1$ to 2 kW Cylindrical Servomotors, 2,000 r/min, 1 to 2 kW Cylindrical Servomotors, 1,000 r/min, 900 W	R88A-CAGB $\square \square \square$ S The empty boxes in the model number are for the	[Servomotor Connector] Straight plug: N/MS3106B20-4S
				[400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 750 \mathrm{~W}$ to 2 kW Cylindrical Servomotors, $2,000 \mathrm{r} / \mathrm{min}, 400 \mathrm{~W}$ to 2 kW Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 900 \mathrm{~W}$	cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[200 V] [400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 3$ to 5 kW Cylindrical Servomotors, 2,000 r/min, 3 to 5 kW Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 2$ to 4.5 kW	R88A-CAGD $\square \square$ C The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[200 V] [400 V] Cylindrical Servomotors, $1,500 \mathrm{r} / \mathrm{min}, 7.5 \mathrm{~kW}$ Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 6 \mathrm{~kW}$	R88A-CAGEDप \square The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
			Standard Servomotor Power Cables for Servomotors with Brakes	Note: Different connectors are used for the motor power and the brake on $100-\mathrm{V}$ and 200-V, 3,000-r/min Servomotors of 50 to 750 W and Servomotors of 6 to 15 kW . When using a Servomotor with a brake, two cables are required: a Power Cable without Brake and a Brake Cable.		
				[200 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 1$ to 2 kW Cylindrical Servomotors, 2,000 r/min, 1 to 2 kW Cylindrical Servomotors, 1,000 r/min, 900 W	R88A-CAGB $\square \square$ B The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 1$ to 2 kW Cylindrical Servomotors, 2,000 r/min, 400 W to 2 kW Cylindrical Servomotors, 1,000 r/min, 900 W	R88A-CAKF $\square \square B$ The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[200 V] [400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 3$ to 5 kW Cylindrical Servomotors, 2,000 r/min, 3 to 5 kW Cylindrical Servomotors, 1,000 r/min, 2 to 3 kW	R88A-CAGD $\square \square B$ The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	

Note: Insert the cable length into the boxes in the model number of cables. ($3 \mathrm{~m}: 003,5 \mathrm{~m}: 005,10 \mathrm{~m}: 010$)

Symbol			Name	Connected to	Model	Description
(1)			Robot Servomotor Power Cables for Servomotors without Brakes	[100 V] [200 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 50$ to 750 W	R88A-CAKA $\square \square$ SR The empty boxes in the model number are for the cable length. The cable can be 3,5 , $10,15,20,30,40$, or 50 m long.	
				[200 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 1$ to 2 kW Cylindrical Servomotors, 2,000 r/min, 1 to 2 kW Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 900 \mathrm{~W}$	R88A-CAGB $\square \square$ SR The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 750 \mathrm{~W}$ to 2 kW Cylindrical Servomotors, $2,000 \mathrm{r} / \mathrm{min}, 400 \mathrm{~W}$ to 2 kW Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 900 \mathrm{~W}$		
				[200 V] [400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 3$ to 5 kW Cylindrical Servomotors, 2,000 r/min, 3 to 5 kW Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 2$ to 4.5 kW	R88A-CAGD $\square \square \square$ RR The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				Note: Different connectors are used for the motor power and the brake on $100-\mathrm{V}$ and 200-V, 3,000-r/min Servomotors of 50 to 750 W and Servomotors of 6 to 15 kW . When using a Servomotor with a brake, two cables are required: a Power Cable without Brake and a Brake Cable.		
				[200 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 1$ to 2 kW Cylindrical Servomotors, 2,000 r/min, 1 to 2 kW Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 900 \mathrm{~W}$	R88A-CAGB $\square \square$ BR The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 1$ to 2 kW Cylindrical Servomotors, $2,000 \mathrm{r} / \mathrm{min}, 400 \mathrm{~W}$ to 2 kW Cylindrical Servomotors, $1,000 \mathrm{r} / \mathrm{min}, 900 \mathrm{~W}$	R88A-CAKF $\square \square \square B R$ The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	
				[200 V] [400 V] Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 3$ to 5 kW Cylindrical Servomotors, 2,000 r/min, 3 to 5 kW Cylindrical Servomotors, 1,000 r/min, 2 to 3 kW	R88A-CAGD \square —BR The empty boxes in the model number are for the cable length. The cable can be $3,5,10,15,20,30,40$, or 50 m long.	

Note: Insert the cable length into the boxes in the model number of cables. ($3 \mathrm{~m}: 003,5 \mathrm{~m}: 005,10 \mathrm{~m}: 010$)

Brake Cables

Note: Insert the cable length into the boxes in the model number of cables. ($3 \mathrm{~m}: 003,5 \mathrm{~m}: 005,10 \mathrm{~m}: 010$)

AC Servomotors/Linear Motors/Drives G5-Series

Encoder Cables (for CN2)

Symbol		Name	Connected to	Model	Description		
(3)		Standard Encoder Cables with Connectors	Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 50$ to 750 W (Absolute encoder/ Incremental encoder)	R88A-CRKA $\square \square C$ The empty boxes in the model number are for the cable length. The cable can be 3,5 , $10,15,20,30,40$, or 50 m long. (3 to 20 m : 5.2 dia 30 to 50 m : 6.8 dia)	[Servo Drive Connector] Connector: 55100-0670 (Molex Japan Co., Ltd.) nor		
			Cylindrical Servomotors, 3,000 r/min, For $1 \mathrm{~kW}(200 \mathrm{~V})$ For $750 \mathrm{~W}(400 \mathrm{~V}$) Cylindrical Servomotors, 2,000 r/min, Cylindrical Servomotors, 1,000 r/min, (Absolute encoder/ Incremental encoder)	R88A-CRKC $\square \square \mathrm{N}$ The empty boxes in the model number are for the cable length. The cable can be 3, 5 , $10,15,20,30,40$, or 50 m long.	[Servo Drive Connector] Connector: 55100-0670 (Molex Japan Co., Ltd.)		[Servomotor Connector] Straight plug: JN2DS10SL2-R Japan Aviation Electronics Industry, Ltd.) Contact: JN1-22-20S-10000 (Japan Aviation Electronics Industry, Ltd.)
		Robot Encoder Cables with Connectors	Cylindrical Servomotors, $3,000 \mathrm{r} / \mathrm{min}, 50$ to 750 W (Absolute encoder/ Incremental encoder)	R88A-CRKA $\square \square C R$ The empty boxes in the model number are for the cable length. The cable can be 3, 5 , $10,15,20,30,40$, or 50 m long. (3 to 20 m : 5.2 dia 30 to 50 m : 6.8 dia)	[Servo Drive Connector] Connector: 55100-0670 (Molex Japan Co., Ltd.) 国		Servomotor Connector] Angle clamp: JN6FR07SM1 (Japan Aviation Electronics Industry, Ltd.) onnector pins: LY10-C1-A1-10000 (Japan Aviation Electronics Industry, Ltd.)
			Cylindrical Servomotors, 3,000 r/min, For $1 \mathrm{~kW}(200 \mathrm{~V})$ For $750 \mathrm{~W}(400 \mathrm{~V}$) Cylindrical Servomotors, 2,000 r/min, Cylindrical Servomotors, 1,000 r/min, (Absolute encoder/ Incremental encoder)	R88A-CRKC $\square \square$ NR The empty boxes in the model number are for the cable length. The cable can be 3, 5 , $10,15,20,30,40$, or 50 m long. (3 to 20 m : 6.8 dia 30 to 50 m : 7.7 dia)	[Servo Drive Connector] Connector: 55100-0670 (Molex Japan Co., Ltd.)		[Servomotor Connector] Straight plug: JN2DS10SL2-R (Japan Aviation Electronics Industry, Ltd.) Cable clamp: JN1-22-22S-10000 (Japan Aviation Electronics Industry, Ltd.)

Note: Insert the cable length into the boxes in the model number of cables. ($3 \mathrm{~m}: 003,5 \mathrm{~m}: 005,10 \mathrm{~m}: 010$)
Absolute Encoder Backup Battery and Absolute Encoder Battery Cable

Control Cables (for CN1)

Symbol	Name		Connected to		Model
(5)	For Connector Terminal Block	Connector Terminal Block Cables	Cable for EtherCAT Communications		XW2Z-■पПJ-B34 The empty boxes in the model number are for the cable length. The cable can be 1 , or 2 m long.
(6)		Connector- Terminal Block Conversion Units	Cable for EtherCAT Communications	M3 screws	XW2B-20G4
				M3.5 screws	XW2B-20G5
				M3 screws	XW2D-20G6

Note: Insert the cable length into the boxes in the model number of cables. ($3 \mathrm{~m}: 003,5 \mathrm{~m}: 005,10 \mathrm{~m}: 010$)

Monitor Connector (for CN5)

Symbol	Name	Lengths	Model
(7)	Analog Monitor Cable	1 m	R88A-CMK001S

EtherCAT Communication Cable

Symbol	Name	Description
(8)	Ethernet Cable	EtherCAT Communication Cables • Use a category 5 or higher cable with double, aluminum tape and braided shielding. Connector (Modular Plug) Specifications \bullet Use a category 5 or higher, shielded connector.

External encoder Cables

Symbol	Name	Length (L)	Model	Description
(9)	Serial Communications Cable	10 m		CN4 with Connectors

Connectors

Connectors	Name	Model
CN1	Control I/O Connector (EtherCAT Communications)	R88A-CNW01C
CN2	Encoder Connector	R88A-CNW01R
CN4	External scale connector	R88A-CNK41L
CN8	Safety connector	R88A-CNK81S

Servomotor Connector

Connectors	Name	Connected to	Model
-			
		$3,000 \mathrm{r} / \mathrm{min}, 50$ to 750 W	R88A-CNK02R
		$3,000 \mathrm{r} / \mathrm{min}, 1$ to $5 \mathrm{~kW}(200 \mathrm{~V}) / 750 \mathrm{~W}$ to $5 \mathrm{~kW}(400 \mathrm{~V})$ $2,000 \mathrm{r} / \mathrm{min}, 1,000 \mathrm{r} / \mathrm{min}$	R88A-CNK04R
-	Power cable connector	$750 \mathrm{~W} \mathrm{max}.(100 \mathrm{~V} / 200 \mathrm{~V})$	R88A-CNK11A
-	Brake cable connector	$750 \mathrm{~W} \mathrm{max}.(100 \mathrm{~V} / 200 \mathrm{~V})$	R88A-CNK11B

Multi-function Compact Inverter
 MX2-Series V1 type

With Machine Automation Mentality

- Positioning functionality.
- Fieldbus communications with optional unit *1

EtherCAT, CompoNet and DeviceNet

- Drive Programming.
- Current vector Control.
- High Starting torque: 200% at 0.5 Hz .
- Safety function *2 EN ISO13849-1:2008 (Cat.3/PLd) IEC60204-1 Stop Category 0
- Speed range up to 580 Hz .
*1 Optional communication unit can be used with the inverter 3G3MX2 of unit version 1.1 or higher.
*2 When optional DeviceNet communication unit or CompoNet communication unit is mounted onto the MX2, the inverter will not conform to the safety standards.

Performance Specifications

Inverter 3G3MX2

3-phase 200 V Class

Function name			3-phase 200 V										
Model name (3G3MX2-)			A2001-V1	A2002-V1	A2004-V1	A2007-V1	A2015-V1	A2022-V1	A2037-V1	A2055-V1	A2075-V1	A2110-V1	A2150-V1
Applicable motor capacity	kW	CT	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
		VT	0.2	0.4	0.75	1.1	2.2	3.0	5.5	7.5	11	15	18.5
	HP	CT	1/8	1/4	1/2	1	2	3	5	$71 / 2$	10	15	20
		VT	1/4	1/2	1	$11 / 2$	3	4	$71 / 2$	10	15	20	25
Rated output capacity [kVA]	200 V	CT	0.2	0.5	1.0	1.7	2.7	3.8	6.0	8.6	11.4	16.2	20.7
		VT	0.4	0.6	1.2	2.0	3.3	4.1	6.7	10.3	13.8	19.3	23.9
	240 V	CT	0.3	0.6	1.2	2.0	3.3	4.5	7.2	10.3	13.7	19.5	24.9
		VT	0.4	0.7	1.4	2.4	3.9	4.9	8.1	12.4	16.6	23.2	28.6
Rated input voltage			3-phase $200 \mathrm{~V}-15 \%$ to $240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$										
Rated input current [A]		CT	1.0	1.6	3.3	6.0	9.0	12.7	20.5	30.8	39.6	57.1	62.6
		VT	1.2	1.9	3.9	7.2	10.8	13.9	23.0	37.0	48.0	68.0	72.0
Rated output voltage			3-phase 200 to 240 V (The output cannot exceed the incoming voltage).										
Rated output current [A]		CT	1.0	1.6	3.0	5.0	8.0	11.0	17.5	25.0	33.0	47.0	60.0
		VT	1.2	1.9	3.5	6.0	9.6	12.0	19.6	30.0	40.0	56.0	69.0
Short-time deceleration braking torque (\%) (Discharge Resistor not connected)			50	50	50	50	50	20	20	20	20	10	10
Braking Resistor circuit *	Regenerative braking		Built-in Braking Resistor circuit (separate Discharge Resistor)										
	Min. co resista	nectable ce $[\Omega]$	100	100	100	50	50	35	35	20	17	17	10
Weight [kg]			1.0	1.0	1.1	1.2	1.6	1.8	2.0	3.3	3.4	5.1	7.4
Dimensions (width \times height) [mm]			68×128				108×128		$\begin{gathered} 140 \times \\ 128 \\ \hline \end{gathered}$	140×260		$\begin{gathered} 180 \times \\ 296 \end{gathered}$	$\begin{gathered} 220 \times \\ 350 \end{gathered}$
Dimensions (depth) [mm]			109		122.5	145.5	170.5		170.5	155		175	

* The BRD usage is 10%.

3-phase 400 V Class

Function name			3-phase 400 V									
Model name (3G3MX2-)			A4004-V1	A4007-V1	A4015-V1	A4022-V1	A4030-V1	A4040-V1	A4055-V1	A4075-V1	A4110-V1	A4150-V1
Applicable motor capacity	kW	CT	0.4	0.75	1.5	2.2	3.0	4.0	5.5	7.5	11	15
		VT	0.75	1.5	2.2	3.0	4.0	5.5	7.5	11	15	18.5
	HP	CT	1/2	1	2	3	4	5	$71 / 2$	10	15	20
		VT	1	2	3	4	5	$71 / 2$	10	15	20	25
Rated output capacity [kVA]	380 V	CT	1.1	2.2	3.1	3.6	4.7	6.0	9.7	11.8	15.7	20.4
		VT	1.3	2.6	3.5	4.5	5.7	7.3	11.5	15.1	20.4	25.0
	480 V	CT	1.4	2.8	3.9	4.5	5.9	7.6	12.3	14.9	19.9	25.7
		VT	1.7	3.4	4.4	5.7	7.3	9.2	14.5	19.1	25.7	31.5
Rated input voltage			3-phase $380 \mathrm{~V}-15 \%$ to $480 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$									
Rated input current [A]		CT	1.8	3.6	5.2	6.5	7.7	11.0	16.9	18.8	29.4	35.9
		VT	2.1	4.3	5.9	8.1	9.4	13.3	20.0	24.0	38.0	44.0
Rated output voltage			3-phase 380 to 480 V (The output cannot exceed the incoming voltage).									
Rated output current [A]		CT	1.8	3.4	4.8	5.5	7.2	9.2	14.8	18.0	24.0	31.0
		VT	2.1	4.1	5.4	6.9	8.8	11.1	17.5	23.0	31.0	38.0
Short-time deceleration braking torque (\%) (Discharge Resistor not connected)			50	50	50	20	20	20	20	20	10	10
Braking Resistor circuit *	Regenerative braking		Built-in Braking Resistor circuit (separate Discharge Resistor)									
	Min. co resista	nectable ce [Ω]	180	180	180	100	100	100	70	70	70	35
Weight [kg]			1.5	1.6	1.8	1.9	1.9	2.1	3.5	3.5	4.7	5.2
Dimensions (width \times height) [mm]			108×128					$\begin{gathered} 140 \times \\ 128 \end{gathered}$	140×260		180×296	
Dimensions (depth) [mm]			143.5	170.5				170.5	155		175	

* The BRD usage is 10%.

1-phase 200 V Class

Function name			1-phase 200 V					
Model name (3G3MX2-)			AB001-V1	AB002-V1	AB004-V1	AB007-V1	AB015-V1	AB022-V1
Applicable motor capacity	kW	CT	0.1	0.2	0.4	0.75	1.5	2.2
		VT	0.2	0.4	0.55	1.1	2.2	3.0
	HP	CT	1/8	1/4	1/2	1	2	3
		VT	1/4	1/2	3/4	$11 / 2$	3	4
Rated output capacity [kVA]	200 V	CT	0.2	0.5	1.0	1.7	2.7	3.8
		VT	0.4	0.6	1.2	2.0	3.3	4.1
	240 V	CT	0.3	0.6	1.2	2.0	3.3	4.5
		VT	0.4	0.7	1.4	2.4	3.9	4.9
Rated input voltage			1-phase $200 \mathrm{~V}-15 \%$ to $240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$					
Rated input current [A]		CT	1.3	3.0	6.3	11.5	16.8	22.0
		VT	2.0	3.6	7.3	13.8	20.2	24.0
Rated output voltage			3-phase 200 to 240 V (The output cannot exceed the incoming voltage).					
Rated output current [A]		CT	1.0	1.6	3.0	5.0	8.0	11.0
		VT	1.2	1.9	3.5	6.0	9.6	12.0
Short-time deceleration braking torque (\%) (Discharge Resistor not connected)			50	50	50	50	50	20
Braking Resistor circuit *	Regenerative braking		Built-in Braking Resistor circuit (separate Discharge Resistor)					
	Min. con resistan	nectable ce [Ω]	100	100	100	50	50	35
Weight [kg]			1.0	1.0	1.1	1.6	1.8	1.8
Dimensions (width \times height) [mm]			68×128			108×128		
Dimensions (depth) [mm]			109		122.5	170.5		

[^33]
MX2-Series EtherCAT Communication Unit 3G3AX-MX2-ECT

This is the communication unit to connect the Multi-function Compact Inverter MX2 to EtherCAT network.
This communication unit passed the conformance test of EtherCAT.
Note: EtherCAT Communication Unit 3G3AX-MX2-ECT can be used with the inverter 3G3MX2 of unit version 1.1 or higher.

Common Specifications

Item	Specifications
Model	3G3AX-MX2-ECT
Power supply	Supplied from the inverter
Protective structure	Open type (IP20)
Ambient Operating Temperature	-10 to $+50^{\circ} \mathrm{C}$
Ambient Storage Temperature	-20 to $+65^{\circ} \mathrm{C}$
Ambient Operating Humidity	20% to 90% RH (with no condensation)
Vibration Resistance	$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10$ to 55 Hz
Application environment	At a maximum altitude of 1,000 m; indoors (without corrosive gases or dust)
Weight	$100 \mathrm{~g} \mathrm{max}$.
International standard	UL/cUL
	EC directive

EtherCAT Communications Specifications

Item	Specifications
Communications standard	IEC 61158 Type12, IEC 61800-7 CiA 402 drive profile
Physical layer	100BASE-TX (IEEE802.3)
Connector	RJ45 $\times 2$ (shielded type) ECAT IN $\quad:$ EtherCAT input ECAT OUT \quad EtherCAT output
	Category 5 or higher (cable with double, aluminum tape and braided shielding) is recommended.
	Distance between nodes: 100 m max.
Process data	Fixed PDO mapping PDO mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information
Distributed clock	FreeRun mode (asynchronous)
	L/A IN (Link/Activity IN) $\times 1$
LED display	L/A OUT (Link/Activity OUT) $\times 1$
RUN $\times 1$	
CRR402 drive profile $\times 1$	

Function Specifications

Function name		Specifications
Enclosure ratings *1		Open type (IP20)
$$	Control method	Phase-to-phase sinusoidal modulation PWM
	Output frequency range *2	0.10 to 400 Hz (or 580 Hz in the high-frequency mode; restrictions apply)
	Frequency precision *3	Digital command: $\pm 0.01 \%$ of the max. frequency, Analog command: $\pm 0.2 \%$ of the max. frequency ($25 \pm 10^{\circ} \mathrm{C}$)
	Frequency setting resolution	Digital setting: 0.01 Hz , Analog setting: One-thousandth of the maximum frequency
	Voltage/Frequency characteristics	V/f characteristics (constant/reduced torque) Sensorless vector control, V/f control with speed feedback
	Overload current rating	Heavy load rating (CT): 150\%/60 s Light load rating (VT): 120\%/60 s
	Instantaneous overcurrent protection	200\% of the value of heavy load rating (CT)
	Acceleration/Deceleration time	0.01 to 3600 s (linear/curve selection), acceleration/deceleration 2 setting available
	Carrier frequency adjustment range	2 to 15 kHz (with derating)
	Starting torque	200\%/0.5 Hz (sensorless vector control)
	External DC injection braking	Starts at a frequency lower than that in deceleration via the STOP command, at a value set lower than that during operation, or via an external input. (Level and time settable).
Protective functions		Overcurrent, overvoltage, undervoltage, electronic thermal, temperature error, ground fault overcurrent at power-on status, rush current prevention circuit, overload limit, incoming overvoltage, external trip, memory error, CPU error, USP error, communication error, overvoltage suppression during deceleration, protection upon momentary power outage, emergency cutoff, etc.
	Frequency settings	Digital Operator External analog input signal: 0 to $10 \mathrm{VDC} / 4$ to 20 mA , Modbus communication (Modbus-RTU)
	RUN/STOP command	Digital Operator External digital input signal (3-wire input supported), Modbus communication (Modbus-RTU)
	Multi-function input	7 points (Selectable from 59 functions)
	Analog input	2 points (Voltage FV terminal: 10 bits/0 to 10 V , Current FI terminal: 10 bits/4 to 20 mA)
	Pulse input	1 point (RP terminal: 32 kHz max., 5 to 24 VDC)
$\begin{aligned} & \bar{\pi} \\ & \frac{5}{0} \\ & \overline{3} \\ & \frac{2}{3} \\ & 0 \end{aligned}$	Multi-function output	2 points (P1/EDM, P2; selectable from 43 functions)
	Relay output	1 point (1c contact: MC, MA, MB; selectable from 43 functions)
	Analog output (Frequency monitor)	1 point (AM terminal: Voltage 10 bits/0 to 10 V) (Frequency, current selectable)
	Pulse output	1 point (MP terminal: 32 kHz max., 0 to 10 V)
	RS-422	RJ45 connector (for Digital Operator)
	RS-485	Control circuit terminal block, Modbus communication (Modbus-RTU)
	USB	USB1.1, mini-B connector
Drive Programming *4		Calculate, Logic, Control I/O and so on
Other functions		AVR function, V/f characteristics switching, upper/lower limit, 16-step speeds, starting frequency adjustment, jogging operation, carrier frequency adjustment, PID control, frequency jump, analog gain/bias adjustment, S shape acceleration/deceleration, electronic thermal characteristics, level adjustment, restart function, torque boost function, fault monitor, soft lock function, frequency conversion display, USP function, motor 2 control function, UP/DWN, overcurrent control function, etc.
	Ambient operating temperature	-10 to $50^{\circ} \mathrm{C}$ (However, derating is required).
	Ambient storage temperature	$-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
	Ambient operating humidity	20\% to 90% RH (with no condensation)
	Vibration resistance	$5.9 \mathrm{~m} / \mathrm{s}^{2}$ (0.6G), 10 to 55 Hz
	Application environment	At a maximum altitude of 1,000 m; indoors (without corrosive gases or dust)
$\begin{aligned} & \text { n } \\ & \text { 음 } \\ & \text { n } \end{aligned}$	EtherCAT Communication Unit	3G3AX-MX2-ECT
	CompoNet Communication Unit	3G3AX-MX2-CRT-E
	DeviceNet Communication Unit	3G3AX-MX2-DRT-E
	I/O Unit	3G3AX-MX2-EI015-E

[^34]| Function name | | | Specifications |
| :---: | :---: | :---: | :---: |
| Other option | | | DC reactor, AC reactor, radio noise filter, input noise filter, output noise filter, regenerative braking unit, Braking Resistor, EMC noise filter, etc. |
| | EC directive | EMC directive | EN61800-3: 2004 |
| | | Low voltage directive | EN61800-5-1: 2007 |
| | | Machinery directives | IEC60204-1 Stop Category 0, EN IEC61800-5-2 (STO), EN ISO13849-1: 2008 (PLd) |
| | UL/cUL | | UL508C |

Note: 1. The applicable motor is a 3-phase standard motor. For using any other type, be sure that the rated current does not exceed that of the Inverter. 2. Output voltage decreases according to the level of the power supply voltage.
3. The braking torque at the time of capacitor feedback is an average deceleration torque at the shortest deceleration (when it stops from 50 Hz). It is not a continuous regeneration torque. Also, the average deceleration torque varies depending on the motor loss. The value is reduced in operation over 50 Hz .

Version Information

Unit Versions

Unit	Model	Unit version	
		Ver.1.0	Ver1.1
EtherCAT Communication Unit for MX2-Series	3G3AX-MX2-ECT	Supported	Supported
Compatible Sysmac Studio version	Version1.00 or higher*	Version1.00 or higher	

* The function that was enhanced by the upgrade for Unit version1.1 can not be used. For detail, refer to "Function Support by Unit Version".

Function Support by Unit Version

Unit		
Model	Unit version $\mathbf{1 . 0}$	
		Unit version 1.1
Item		Supported
Store-function of back-up number of parameters	Not supported	Supported
Initializing function as parameters.	Not supported	

Components and Functions

Inverter 3G3MX2

Name	Function
Modbus-RTU Termination resistor selector switch	Use this Terminal Resistor selector switch for RS-485 terminals on the control circuit terminal block. When this switch is turned ON, the internal 200Ω Resistor is connected.
Safety function selector switch	Turn this switch ON when using the safety function. Turn OFF the power before turning this switch ON/OFF. For details, refer to USER'S MANUAL (Cat.No.I585).
EDM function selector switch	Turn this switch ON when using the EDM output of the safety function. Turn OFF the power before turning this switch ON/ OFF.For details, refer to USER'S MANUAL (Cat.No.l585).
USB connector	Use this mini-B USB connector to connect a PC. Even when the Inverter is being operated by a PC, etc., via USB connection, it can still be operated using the Digital Operator.
Connector for Digital Operator	Use this connector to connect the Digital Operator.
Connector for optional board	Use this connector to mount the optional board. (Communications Units and other options can be connected.)
Control circuit terminal blocks A and B	These terminal blocks are used to connect various digital/analog input and output signals for inverter control, etc.
Multi-function contact terminal block	Use this SPDT contact terminal block for relay outputs.
Main circuit terminal block	Use this terminal block to connect an output to the motor and Braking Resistor, etc. Also, use this terminal block to connect the inverter to the main power supply.
CHARGE indicator (Charge indicator LED)	This LED indicator is lit if the DC voltage of the main circuit (between terminals P/+2 and N/-) remains approx. 45 V or above after the power has been cut off. Before wiring, etc. confirm that the Charge LED indicator is turned OFF.

Note: This illustration shows the terminal block with the front cover removed

EtherCAT Communication Unit 3G3AX-MX2-ECT

Connection Diagram

*1 Connect to terminals L1 and N on a single-phase, 200-V Inverter (3G3MX2-AB $\square \square \square-V 1$).
*2 Optional.

3G3MX2-AB001-V1 3G3MX2-AB002-V1 3G3MX2-AB004-V1 3G3MX2-A2001-V1 3G3MX2-A2002-V1 3G3MX2-A2004-V1 3G3MX2-A2007-V1

Power supply	Model	W [mm]	H [mm]	D [mm]	D1 [mm]
1-phase 200 V	$\begin{aligned} & \text { 3G3MX2-AB001-V1 } \\ & \text { 3G3MX2-AB002-V1 } \end{aligned}$	68	128	109	13.5
	3G3MX2-AB004-V1			122.5	27
3-phase 200 V	$\begin{aligned} & \text { 3G3MX2-A2001-V1 } \\ & \text { 3G3MX2-A2002-V1 } \end{aligned}$			109	13.5
	3G3MX2-A2004-V1			122.5	27
	3G3MX2-A2007-V1			145.5	50

3G3MX2-AB007-V1 3G3MX2-AB015-V1 3G3MX2-AB022-V1 3G3MX2-A2015-V1 3G3MX2-A2022-V1 3G3MX2-A4004-V1 3G3MX2-A4007-V1 3G3MX2-A4015-V1 3G3MX2-A4022-V1 3G3MX2-A4030-V1

Power supply	Model	W [mm]	H [mm]	D [mm]	D1 [mm]
1-phase 200 V	$\begin{aligned} & \text { 3G3MX2-AB007-V1 } \\ & \text { 3G3MX2-AB015-V1 } \\ & \text { 3G3M2-AB022-V1 } \end{aligned}$	108	128	170.5	55
$\begin{aligned} & \text { 3-phase } \\ & 200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 3G3MX2-A2015-V1 } \\ & \text { 3G3MX2-A2022-V1 } \end{aligned}$				
	3G3MX2-A4004-V1			143.5	28
3-phase 400 V	$\begin{aligned} & \text { 3G3MX2-A4007-V1 } \\ & \text { 3G3MX2-A4015-V1 } \\ & \text { 3G3MX2-A4022-V1 } \\ & \text { 3G3MX2-A4030-V1 } \end{aligned}$			170.5	55

3G3MX2-A2037-V1 3G3MX2-A4040-V1

Power supply	Model	W [mm]	H [mm]	D [mm]	D1 [mm]
3-phase 200 V	3G3MX2-A2037-V1				
3-phase 400 V	3G3MX2-A4040-V1		128	170.5	55

Power supply	Model	W [mm]	H [mm]	D [mm]	D1 [mm]
3-phase	3G3MX2-A2055-V1 200 V				
3G3MX2-A2075-V1	140	260	155	73.3	
3-phase 400 V	3G3MX2-A4055-V1 3G3MX2-A4075-V1				

3G3MX2-A2110-V1 3G3MX2-A4110-V1 3G3MX2-A4150-V1

Power supply	Model	W [mm]	H [mm]	D [mm]	D1 [mm]
3-phase 200 V	3G3MX2-A2110-V1				
3-phase 400 V	3G3MX2-A4110-V1 3G3MX2-A4150-V1		296	175	97

3G3MX2-A2150-V1

Power supply	Model	W [mm]	H [mm]	D [mm]	D1 [mm]
3-phase 200 V	3G3MX2-A2150-V1	220	350	175	84

EtherCAT Communication Unit

3G3AX-MX2-ECT

* After the EtherCAT Communication Unit is installed, dimension D of the inverter increases by 26.4 mm .
(Dimension D of the inverter varies depending on the capacity. Refer to the manual for the inverter.)

Related Options

Refer to Ordering Information of MX2-Series V1 type Inverters for the related Options.

High-function General-purpose Inverters
RX Series V1 Type

Versatile for a Wide Range of Applications

- Double rating VT 120\%/1 min and CT 150\% /1 min.
- Drive Programming
- LCD 5 line Digital Operator (Optional)
- Fieldbus communications with optional unit EtherCAT
- Built-in radio noise filter/EMC filter (Selectable)

Performance Specifications

Inverter 3G3RX-V1

3-phase 200-V Class
CT: Heavy load rating VT: Light load rating

Item Model name (3G3RX-)				3-phase 200-V class														
				A2004-V1	A2007-V1	A2015-V1	A2022-V1	A2037-V1	A2055-V1	A2075-V1	A2110-V1	A2150-V1	A2185-V1	A2220-V1	A2300-V1	A2370.V1	A2450-V1	A2550.V1
Maximum applicable motor capacity (kW)			CT	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
			VT	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Rated output capacity (kVA)		200V	CT	1.0	1.7	2.5	3.6	5.7	8.3	11.0	15.9	22.1	26.3	32.9	41.9	50.2	63.0	76.2
		VT	1.2	2.1	3.2	4.1	6.7	10.3	15.2	20.0	25.2	29.4	39.1	48.4	58.5	72.7	93.5	
		240V	CT	1.2	2.0	3.1	4.3	6.8	9.9	13.3	19.1	26.6	31.5	39.4	50.2	60.2	75.6	91.4
		VT	1.5	2.6	3.9	4.9	8.1	12.4	18.2	24.1	30.3	35.5	46.9	58.1	70.2	87.2	112.2	
Rated input voltage				3-phase $200 \mathrm{~V}-15 \%$ to $240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$														
Rated input current (A)			CT	3.3	5.5	8.3	12	18	26	35	51	70	84	105	133	160	200	242
			VT	3.9	7.2	10.8	13.9	23	37	48	64	80	94	120	150	186	240	280
Rated output voltage				3-phase 200 to 240 V (Cannot exceed that of incoming voltage)														
Rated output current (A)			CT	3.0	5.0	7.5	10.5	16.5	24	32	46	64	76	95	121	145	182	220
			VT	3.7	6.3	9.4	12	19.6	30	44	58	73	85	113	140	169	210	270
EMC Noise Filter				Built-in (EMC Directive EN61800-3 Category C3)														
Weight (kg)				3.5	3.5	3.5	3.5	3.5	6	6	6	14	14	14	22	30	30	43
Braking Resistor circuit	Regenerative braking			Built-in Braking Resistor circuit (separate Discharge Resistor)											Separate Regenerative Braking Unit			
	Min. connectable resistance (Ω)			50	50	35	35	35	16	10	10	7.5	7.5	5				
Maximum leakage current (mA)	EMC filter enabled			2.5					48			23						
	EMC filter disabled			0.1														

High-function General-purpose Inverters RX Series V1 Type

3-phase 400-V Class
CT: Heavy load rating VT: Light load rating

Item Model name (3G3RX-)				3-phase 400-V class										
				A4004-V1	A4007-V1	A4015-V1	A4022-V1	A4037-V1	A4055-V1	A4075-V1	A4110-V1	A4150-V1	A4185-V1	A4220-V1
Maximum applicable motor capacity (kW)			CT	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
			VT	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30
Rated output capacity (kVA)		400V	CT	1.0	1.7	2.6	3.6	6.2	9.6	13.1	17.3	22.1	26.3	33.2
		VT	1.3	2.1	3.3	4.6	7.6	11.0	15.2	20.0	25.6	29.7	39.4	
		480V	CT	1.2	2.0	3.1	4.4	7.4	11.6	15.7	20.7	26.6	31.5	39.9
		VT	1.5	2.5	3.9	5.5	9.2	13.3	18.2	24.1	30.7	35.7	47.3	
Rated input voltage				3-phase $380 \mathrm{~V}-15 \%$ to $480 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$										
Rated input current (A)			CT	1.8	2.8	4.2	5.8	9.8	15	21	28	35	42	53
			VT	2.1	4.3	5.9	8.1	13.3	20	24	32	41	47	63
Rated output voltage				3-phase 380 to 480 V (Cannot exceed that of incoming voltage)										
Rated output current (A)			CT	1.5	2.5	3.8	5.3	9.0	14	19	25	32	38	48
			VT	1.9	3.1	4.8	6.7	11.1	16	22	29	37	43	57
EMC Noise Filter				Built-in (EMC Directive EN61800-3 Category C3)										
Weight (kg)				3.5	3.5	3.5	3.5	3.5	6	6	6	14	14	14
Braking Resistor circuit	Regenerative braking			Built-in Braking Resistor circuit (separate Discharge Resistor)										
	Min. connectable resistance (Ω)			100	100	100	100	70	70	35	35	24	24	20
Maximum leakage current (mA)	EMC filter enabled			5					95			56		
	EMC filter disabled			0.2										

Function Specifications

Inverter 3G3RX-V1

*1 Applicable in the sensorless vector control
*2 Applicable in the $0-\mathrm{Hz}$ sensorless vector control
*3 Applicable in the 0 Hz sensorless vector control when using a motor one size smaller in capacity than the inverter
*4 The maximum frequency is set to 9.8 V for a voltage input of 0 to 10 VDC and to 19.8 mA for an current input of 4 to 20 mA , respectively. If this causes any inconvenience, change the default datas.
*5 In the VT mode, the available functions are limited compared with the CT mode. The default setting and setting range of some functions also differ.
*6 The analog voltage and current values for the multi-function monitor output terminals show values that can only be used as a guide for analog meter connection. The maximum output value may differ slightly from 10 V or 20 mA due to the variability of the analog output circuit. If this causes any inconvenience, refer to the RX series V1 type User's Manual. (Man.No.I578) to adjust the default settings.

Function name			Specifications
Operating environment	Ambient operating temperature		Heavy load rating (CT): -10 to $50^{\circ} \mathrm{C}$ Light load rating (VT): -10 to $40^{\circ} \mathrm{C}$
	Ambient storage temperature		-20 to $65^{\circ} \mathrm{C}$
	Ambient operating humidity		20\% to 90% (with no condensation)
	Vibration resistance *7		$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10$ to $55 \mathrm{~Hz} / 0.4$ to 22 kW $2.94 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10$ to $55 \mathrm{~Hz} / 30$ to 132 kW
	Application environment		At a maximum altitude of 1,000 m (without corrosive gases or dust) *8
Options	PG Board		Sensor vector control 3G3AX-PG01
	EtherCAT Communication Unit		3G3AX-RX-ECT
	CompoNet ${ }^{\text {TM }}$ Communication Unit		3G3AX-RX-CRT-E
	DeviceNet ${ }^{\text {TM }}$ Communication Unit		3G3AX-RX-DRT-E
Other options			Braking Resistor, AC reactor, DC reactor, Digital Operator, Digital Operator cables, Noise filter, Regenerative braking unit, etc.
International standard	EC Directive	EMC Directive	EN61800-3: 2004
		Low Voltage Directive	EN61800-5-1: 2003
	UL/cUL		UL508C

*7 Complies with the test method specified in JIS C60068-2-6: 2010 (IEC 60068-2-6: 2007).
*8 If the altitude is higher than $1,000 \mathrm{~m}$, reduce the amount of heat generation because air density decreases by 1% with the increasing altitude by 100 m . For switching devices such as IGBTs, the amount of heat generation is proportional to the current flowing in the device and the applied voltage. Therefore, reduce the value of the rated current by 1% with the increasing altitude by 100 m to use a standard inverter. However, this is applicable to an altitude of $2,500 \mathrm{~m}$ or lower.

Components and Functions

Note: Example of the 3G3RX-A2055-V1/A2075-V1/A2110-V1/A4055-V1/A4075-V1/A4110-V1

Inverter 3G3RX-V1

Digital Operator
Use this to set parameters, view various
 monitor data, run/stop the inverter, etc.

Data Display
This displays the frequency reference value, output frequency, parameter set value, or other relevant data.

Front Cover
Remove this to mount option boards.

Spacer Cover
Remove this to mount optional units or 5-line LCD Digital Operator.

Open the terminal block cover to wire the main circuit terminal block and the control circuit terminal block. Moreover, you can open the front cover to mount option boards.

Connector for mounting option board 1 Use this connector to mount the optional board.

Connector for mounting option board 2
Use this connector to mount the optional board or communications units.

Control circuit terminal blocks
Use this to connect various digital/analog I/O signals
for inverter control.

Main circuit terminal block
Use this to connect the inverter main power supply, motor, braking resistor, and other devices.

Backing plate
Cut off the cutout portions of this plate to connect power supply lines, signal lines, etc.

High-function General-purpose Inverters RX Series V1 Type
Connection Diagram

* Variable volume adjuster (2 k $\Omega 1 / 4 \mathrm{~W}$ or larger recommended)

High-function General-purpose Inverters RX Series V1 Type
Dimensions

Inverter 3G3RX-V1

3G3RX-A2004-V1 3G3RX-A2007-V1 3G3RX-A2015-V1 3G3RX-A2022-V1 3G3RX-A2037-V1 3G3RX-A4004-V1 3G3RX-A4007-V1 3G3RX-A4015-V1 3G3RX-A4022-V1 3G3RX-A4037-V1

3G3RX-A2055-V1 3G3RX-A2075-V1 3G3RX-A2110-V1 3G3RX-A4055-V1 3G3RX-A4075-V1 3G3RX-A4110-V1

3G3RX-A2150-V1 3G3RX-A2185-V1 3G3RX-A2220-V1 3G3RX-A4150-V1 3G3RX-A4185-V1 3G3RX-A4220-V1

High-function General-purpose Inverters RX Series V1 Type

3G3RX-A2300-V1 3G3RX-A4300-V1

3G3RX-A2370-V1 3G3RX-A2450-V1 3G3RX-A4370-V1 3G3RX-A4450-V1 3G3RX-A4550-V1

3G3RX-A2550-V1

High-function General-purpose Inverters RX Series V1 Type

3G3RX-B4750-V1 3G3RX-B4900-V1

3G3RX-B411K-V1 3G3RX-B413K-V1

Communication Unit

RX-Series V1 type EtherCAT Communication Unit 3G3AX-RX-ECT

This is the communication unit to connect the High-function General-purpose Inverters RX-series V1 type to EtherCAT network. This communication unit passed the conformance test of EtherCAT.
Note: 1. It is not possible to use a EtherCAT Communication Unit 3G3AX-RX-ECT with a RX-series (Model without "-V1"). 2. Sysmac Studio version 1.03 or higher is required. Sysmac Studio can be used when using with NJ -series Controller.

Common Specifications

Item		Specifications
Power supply		Supplied from the inverter
Protective structure		Open type (IP20)
Ambient operating temperature		-10 to $50^{\circ} \mathrm{C}$
Ambient storage temperature		-20 to $65^{\circ} \mathrm{C}$
Ambient operating humidity		20\% to 90% RH (with no condensation)
Vibration resistance		$5.9 \mathrm{~m} / \mathrm{s}^{2}$ (0.6 G), 10 to 55 Hz
Application environment		At a maximum altitude of $1,000 \mathrm{~m}$ (without corrosive gases or dust)
Weight		$100 \mathrm{~g} \mathrm{max}$. (Shipping weight: approx. 200 g)
International standard	UL/cUL	UL508C
	EC Directives	EMC Directive :EN61800-3 Low Voltage Directive :EN61800-5-1

EtherCAT Communications Specifications

Item	Specifications
Communications standard	IEC 61158 Type12, IEC 61800-7 CiA 402 drive profile
Physical layer	100BASE-TX (IEEE802.3)
Connector	RJ45 $\times 2$ (shielded type) ECAT IN : EtherCAT input ECAT OUT : EtherCAT output
Communications media	Category 5 or higher (cable with double, aluminum tape and braided shielding) is recommended.
Communications distance	Distance between nodes: 100 m max.
Process data	Fixed PDO mapping PDO mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information
Distributed clock	FreeRun mode (asynchronous)
LED display	L/A IN (Link/Activity IN) $\times 1$ L/A OUT (Link/Activity OUT) $\times 1$ RUN 1 ERR 1
CiA402 drive profile	Velocity mode

Dimensions (mm)

Related Options

Refer to Ordering Information of RX-Series V1 type Inverters for the related Options.

Vision System

FH-Series

Easier to Embed in Machine, Shorter Machine cycle Times

- Calculations are easy to set for the results from four parallel tasks.
- Synchronous control of devices connected via EtherCAT is possible.
- The new Shape Search III processing item enables fast, precise, and stable measurements.
- Microsoft ${ }^{®}$. NET is supported to share machine interface with PC.
- User interface customization is supported.

System configuration

EtherCAT connections for FH series
Example of the FH Sensor Controllers (4-camera type)

[^35]Vision System FH-Series

Ratings and Specifications (Sensor Controllers)

FH Sensor Controllers

Type			High-speed Controllers (4 core)			Standard Controllers (2 core)		
Model		NPN	FH-3050	FH-3050-10	FH-3050-20	FH-1050	FH-1050-10	FH-1050-20
		PNP						
	Controller type		Box-type controllers					
	High-grade Processing items		No					
	No. of Cameras		2	4	8	2	4	8
	Connected Camera		Can be connected to all cameras. (FZ-S series/FH-S series)					
	Processing resolution (FZ-S)	When connected to a intelligent compact camera	752 (H) $\times 480$ (V)					
		When connected to a 300,000-pixel camera	640 (H) $\times 480$ (V)					
		When connected to a 2 million-pixel camera	$1600(\mathrm{H}) \times 1200(\mathrm{~V})$					
		When connected to a 5 million-pixel camera	2448 (H) $\times 2044$ (V)					
	Processing resolution (FH-S)	When connected to a 300,000-pixel camera	640 (H) $\times 480$ (V)					
		When connected to a 2 million-pixel camera	2040 (H) $\times 1088$ (V)					
		When connected to a 4 million-pixel camera	2040 (H) $\times 2048$ (V)					
	No. of scenes		128					
	Number of logged images *1	When connected to a intelligent compact camera	Connected to 1 camera (Color): 232, Connected to 2 camera (Color): 116 Connected to 3 camera (Color): 77, Connected to 4 camera (Color): 58 Connected to 5 camera (Color): 46, Connected to 6 camera (Color): 38 Connected to 7 camera (Color): 33, Connected to 8 camera (Color): 29					
		When connected to a 300,000 -pixel camera (FZ-S/FH-S)	Connected to 1 camera (Color): 270, Connected to 1 camera (Monochrome): 272 Connected to 2 camera (Color): 135, Connected to 2 camera (Monochrome): 136 Connected to 3 camera (Color/Monochrome): 90 Connected to 4 camera (Color): 67, Connected to 4 camera (Monochrome): 68 Connected to 5 camera (Color/Monochrome): 54 Connected to 6 camera (Color/Monochrome): 45 Connected to 7 camera (Color/Monochrome): 38 Connected to 8 camera (Color): 33 , Connected to 8 camera (Monochrome): 34					
Main functions		When connected to a 2 million-pixel camera (FH-S)	Connected to 1 camera (Color/Monochrome): 37 Connected to 2 camera (Color/Monochrome): 18 Connected to 3 camera (Color/Monochrome): 12 Connected to 4 camera (Color/Monochrome): 9 Connected to 5 camera (Color/Monochrome): 7 Connected to 6 camera (Color/Monochrome): 6 Connected to 7 camera (Color/Monochrome): 5 Connected to 8 camera (Color/Monochrome): 4					
		When connected to a 2 million-pixel camera (FZ-S)	Connected to 1 camera (Color/Monochrome): 43 Connected to 2 camera (Color/Monochrome): 21 Connected to 3 camera (Color/Monochrome): 14 Connected to 4 camera (Color/Monochrome): 10 Connected to 5 camera (Color/Monochrome): 8 Connected to 6 camera (Color/Monochrome): 7 Connected to 7 camera (Color/Monochrome): 6 Connected to 8 camera (Color/Monochrome): 5					
		When connected to a 4 million-pixel camera (FH-S)	Connected to 1 camera (Color/Monochrome): 20 Connected to 2 camera (Color/Monochrome): 10 Connected to 3 camera (Color/Monochrome): 6 Connected to 4 camera (Color/Monochrome): 5 Connected to 5 camera (Color/Monochrome): 4 Connected to 6 camera (Color/Monochrome): 3 Connected to 7 camera (Color/Monochrome): 2 Connected to 8 camera (Color/Monochrome): 2					
		When connected to a 5 million-pixel camera (FZ-S)	Connected to 1 camera (Color/Monochrome): 16 Connected to 2 camera (Color/Monochrome): 8 Connected to 3 camera (Color/Monochrome): 5 Connected to 4 camera (Color/Monochrome): 4 Connected to 5 camera (Color/Monochrome): 3 Connected to 6 camera (Color/Monochrome): 2 Connected to 7 camera (Color/Monochrome): 2 Connected to 8 camera (Color/Monochrome): 2					
	Operation		Mouse or similar device					
	Settings		Create series of processing steps by editing the flowchart (Help messages provided).					

Type				High-speed Controllers (4 core)			Standard Controllers (2 core)		
Model			NPN	FH-3050	FH-3050-10	FH-3050-20	FH-1050	FH-1050-10	FH-1050-20
			PNP						
External interface	Serial communications			RS-232C: 1 CH					
	EtherNet communications			No-protocol (TCP/UDP) 1000BASE-T					
				1 port	2 port	2 port	1 port	2port	2port
	EtherNet/IP communications			Ethernet port baud rate: 1 Gbps (1000 BASE-T)					
	EtherCAT communications			EtherCAT protocol (100BASE-TX)					
	Parallel I/O			(In the 2-line random trigger mode) 17 inputs (STEP0/ENCTRIG_Z0, STEP1/ENCTRIG_Z1, ENCTRIG_A0 to 1, ENCTRIG_B0 to 1, DSA0 to 1 , DIO to 7 , DI_LINE0) 37 outputs (RUNO to 1, READY0 to 1, BUSY0 to 1, OR0 to 1, ERRORO to 1, GATE0 to 1 , STGOUT0/SHTOUT0, STGOUT1/SHTOUT1, STGOUT2 to 7 , DO0 to 15 , ACK) (In the 5 -line to 8 -line random trigger mode) 19 inputs, STEPO to 7, DI_LINE0 to 2, DIO to 7) 34 outputs (READY0 to 7, BUSY0 to 7, OR0 to 7, ACK, ERROR, STGOUT/SHTOUT0 to 7)					
	Encoder interface			RS422-A line driver level. Phase A/B: single-phase 4 MHz (multiplying phase difference of 1 MHz by 4 times), Phase Z: 1 MHz					
	Monitor interface			DVI-I output IF $\times 1 \mathrm{ch}$					
	USB interface			4 channels (supports USB 1.1 and 2.0)					
	SD card interface			SDHC card of Class4 or higher rating is recommended.					
Ratings	Power supply voltage			20.4 to 26.4 VDC					
	Current consumption (at 24.0 VDC) *2	When connected to a intelligent compact camera, intelligent or autofocus camera	Connected to 2 cameras	5.0 A max.	5.4 A max.	6.4 A max.	4.7 A max.	5.0 A max.	5.9 A max.
			Connected to 4 cameras	---	7.0 A max.	8.1 A max.	---	6.5 A max.	7.5 A max.
			Connected to 8 cameras	---	---	11.5 A max.	---	---	10.9 A max.
		When connected to a 300,000-pixel camera, 2 million-pixel camera, 4 million-pixel camera or 5 million-pixel camera	Connected to 2 cameras	4.1 A max.	4.2 A max.	5.2 A max.	3.6 A max.	3.7 A max.	4.5 A max.
			Connected to 4 cameras	---	4.8 A max.	5.6 A max.	---	4.3 A max.	5.0 A max.
			Connected to 8 cameras	---	---	6.8 A max.	---	---	6.2 A max.
	Insulation resistance			Between DC power supply and controller FG: $20 \mathrm{M} \Omega$ or higher (rated voltage 250 V)					
Operation Environment	Noise Immunity	Fast transient burst	DC Power Supply	Direct infusion: 2 KV Pulse rising: 5 ns Pulse width: 50 ns Burst continuation time: $15 \mathrm{~ms} / 0.75 \mathrm{~ms}$ Period: 300 ms Application time: 1 min					
			I/O line	Cramp: 1 KV Pulse rising: 5 ns Pulse width: 50 ns Burst continuation time: $15 \mathrm{~ms} / 0.75 \mathrm{~ms}$ Period: 300 ms Application time: 1 min					
	Ambient temperature range			Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: - 20 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)					
	Ambient humidity range			Operating and storage: 35% to 85% (with no condensation)					
	Ambient atmosphere			No corrosive gases					
	Grounding			Type D grounding (100Ω or less grounding resistance) Conventional type 3 grounding					
	Degree of protection			IEC60529 IP20					
Dimensions	Dimensions			$190 \times 115 \times 182.5 \mathrm{~mm}$					
	Weight			Approx. 3.2 kg	Approx. 3.4 kg	Approx. 3.4 kg	Approx. $3.2 \mathrm{~kg}$	Approx. $3.4 \mathrm{~kg}$	Approx. 3.4 kg
	Case materials			Cover: zinc-plated steel plate, side plate: aluminum (A6063)					
Accessories				Controller (1) / user manual (one Japanese and one English versions) / Instruction Installation Manual (1) / Power supply terminal block connector (1) / Ferrite core (2, $\mathrm{FH}-3050$ and $\mathrm{FH}-1050$), 4 ($\mathrm{FH}-3050-10$ and $\mathrm{FH}-1050-10$), and 8 ($\mathrm{FH}-3050-20$ and $\mathrm{FH}-1050-20$)					

Vision System FH-Series

Ratings and Specifications (Cameras)

High-speed CMOS cameras

Model	FH-SM	FH-SC	FH-SM02	FH-SC02	FH-SM04	FH-SC04
Image elements	CMOS image elements (1/3-inch equivalent)		CMOS image elements (2/3-inch equivalent)		CMOS image elements (1-inch equivalent)	
Color/Monochrome	Monochrome	Color	Monochrome	Color	Monochrome	Color
Effective pixels	640 (H) $\times 480$ (V)		2040 (H) $\times 1088$ (V)		2040 (H) × 2048 (V)	
Imaging area $\mathrm{H} \times \mathrm{V}$ (opposing corner)	4.8×3.6 (6.0 mm)		11.26×5.98 (12.76 mm)		11.26×11.26 (15.93 mm)	
Pixel size	$7.4(\mu \mathrm{~m}) \times 7.4(\mu \mathrm{~m})$		$5.5(\mu \mathrm{~m}) \times 5.5(\mu \mathrm{~m})$		$5.5(\mu \mathrm{~m}) \times 5.5(\mu \mathrm{~m})$	
Shutter function	Electronic shutter; Shutter speeds can be set from 20μ s to 100 ms .		Electronic shutter; Shutter speeds can be set from $25 \mu \mathrm{~s}$ to 100 ms .			
Partial function	1 to 480 lines	2 to 480 lines	1 to 1088 lines	2 to 1088 lines	1 to 2048 lines	2 to 2048 lines
Frame rate (image read time)	308 fps (3.3 ms)		$219 \mathrm{fps}(4.6 \mathrm{~ms})^{*}$		$118 \mathrm{fps}(8.5 \mathrm{~ms})^{*}$	
Lens mounting	C mount					
Field of vision, installation distance	Selecting a lens according to the field of vision and installation distance					
Ambient temperature range	Operating: 0 to $40^{\circ} \mathrm{C}$, Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)					
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)					
Weight	Approx. 105 g		Approx. 110 g			
Accessories	Instruction manual					

* For high speed frame rate 2 pieces of FZ-VS- \square M cables are required.

Digital CCD Cameras

Small CCD Digital Cameras

Model	FZ-SF	FZ-SFC	FZ-SP	FZ-SPC
Image elements	Interline transfer reading all pixels, CCD image elements (1/3-inch equivalent)			
Color/Monochrome	Monochrome	Color	Monochrome	Color
Imaging area $\mathrm{Hx}_{\mathbf{~}}$ (opposing corner)	4.8×3.6 (6.0mm)			
Effective pixels	$640(\mathrm{H}) \times 480(\mathrm{~V})$			
Imaging area H x V (opposing corner)	$4.8 \times 3.6(6.0 \mathrm{~mm})$			
Pixel size	$7.4(\mu \mathrm{~m}) \times 7.4(\mu \mathrm{~m})$			
Shutter function	Electronic shutter; select shutter speeds from $20 \mu \mathrm{~m}$ to 100 ms			
Partial function	12 to 480 lines			
Frame rate (image read time)	80 fps (12.5ms)			
Lens mounting	Special mount (M10.5 P0.5)			
Field of vision, installation distance	Selecting a lens according to the field of vision and installation distance			
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$ (camera amp) 0 to $45^{\circ} \mathrm{C}$ (camera head) Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)			
Weight	Approx. 150 g			
Accessories	Instruction manual, installation bracket,Four mounting brackets (M2)		Instruction manual	

High-speed CCD Cameras

Model	FZ-SH	FZ-SHC
Image elements	Interline transfer reading all pixels, CCD image elements (1/3-inch equivalent)	
Color/Monochrome	Monochrome	Color
Effective pixels	$640(\mathrm{H}) \times 480(\mathrm{~V})$	Imaging area H x V (opposing corner)
Pixel size	$4.8 \times 3.6(6.0 \mathrm{~mm})$	
Shutter function	$7.4(\mu \mathrm{~m}) \times 7.4(\mu \mathrm{~m})$	
Partial function	Electronic shutter; select shutter speeds from $1 / 10$ to $1 / 50,000 \mathrm{~s}$	
Frame rate (image read time)	204 fps $(4.9 \mathrm{~ms})$	
Field of vision, installation distance	Selecting a lens according to the field of vision and installation distance	
Ambient temperature range	Operating: 0 to $400^{\circ} \mathrm{C}$ Storage: -25 to $65{ }^{\circ} \mathrm{C}($ with no icing or condensation)	
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)	
Weight	Approx. 105 g	
Accessories	Instruction manual	

Intelligent Compact CMOS Cameras

Model	FZ-SQ010F	FZ-SQ050F	FZ-SQ100F	FZ-SQ100N
Image elements	CMOS image elements (1/3-inch equivalent)			
Color/Monochrome	Color			
Effective pixels	$752(\mathrm{H}) \times 480(\mathrm{~V})$			
Imaging area H x V (opposing corner)	$4.51 \times 2.88(5.35 \mathrm{~mm})$			
Pixel size	$6.0(\mu \mathrm{~m}) \times 6.0(\mu \mathrm{~m})$			
Shutter function	1/250 to 1/32,258			
Partial function	8 to 480 lines			
Frame rate (image read time)	60 fps			
Field of vision	7.5×4.7 to $13 \times 8.2 \mathrm{~mm}$	13×8.2 to $53 \times 33 \mathrm{~mm}$	53×33 to $240 \times 153 \mathrm{~mm}$	29×18 to $300 \times 191 \mathrm{~mm}$
Installation distance	38 to 60 mm	56 to 215 mm	220 to 970 mm	32 to 380 mm
LED class *	Risk Group2			
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: - 25 to $65^{\circ} \mathrm{C}$			
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)			
Weight	Approx. 150 g		Approx. 140 g	
Accessories	Mounting bracket (FQ-XL), polarizing filter attachment (FQ-XF1), instruction manual and warning label			

* Applicable standards: IEC62471-2

Intelligent CCD Cameras, Autofocus CCD Cameras

Model	FZ-SLC100	FZ-SLC15	FZ-SZC100	FZ-SZC15	
Image elements	Interline transfer reading all pixels, CCD image elements (1/3-inch equivalent)				-
Color/Monochrome	Color				$\stackrel{\stackrel{1}{\square}}{\stackrel{\circ}{\text { a }}}$
Effective pixels	659 (H) $\times 494$ (V)				产
Imaging area $\mathrm{H} \mathbf{x}$ V (opposing corner)	4.8×3.6 (6.0 mm)				
Pixel size	$7.4(\mu \mathrm{~m}) \times 7.4(\mu \mathrm{~m})$				$\stackrel{\text { a }}{\text { c. }}$
Shutter function	Electronic shutter; select shutter speeds from 1/10 to 1/50,000 s				
Partial function	12 to 480 lines				
Frame rate (image read time)	80 fps (12.5 ms)				
Field of vision *2	13 to 100 mm *1	2.9 to 14.9 mm *1	13 to 100 mm * 1	2.9 to 14.9 mm * 1	$\stackrel{\text { T }}{ }$
Installation distance	70 to 190 mm *1	35 to 55 mm *1	77.5 to 197.5 mm *1	47.5 to $67.5 \mathrm{~mm} * 1$	
LED class *3 (lighting)	Class 2		-		
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)				
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)				
Weight	Approx. 670 g	Approx. 700 g	Approx. 500 g		
Accessories	Instruction Sheet and hexagonal wrench				

Vision System FH-Series

Ratings and Specifications (LCD Monitor, Cable)

LCD Monitor

Model	FZ-M08
Size	8.4 inches
Type	Liquid crystal color TFT
Resolution	$1,024 \times 768$ dots
Input signal	Analog RGB video input, 1 channel
Power supply voltage	21.6 to 26.4 VDC
Current consumption	Approx. 0.7 A max.
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C} ;$ Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range	Operating and storage: 35 to 85% (with no condensation)
Weight	Approx. 1.2 kg
Accessories	Instruction Sheet and 4 mounting brackets

Camera Cables

Model	FZ-VS (2 m)	FZ-VSB (2 m)	FZ-VSL (2 m)
Shock resistiveness (durability)	10 to 150 Hz single amplitude 0.15 mm 3 directions, 8 strokes, 4 times		
Ambient temperature range	Operation and storage: 0 to $65{ }^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient humidity range	Operation and storage: 40 to $70 \% R H$ (with no condensation)		
Ambient atmosphere	No corrosive gases		
Material	Cable sheath, connector: PVC		
Minimum bending radius	69 mm	69 mm	69 mm
Weight	Approx. 170 g	Approx. 220 g	Approx. 170 g

Monitor Cable

Model	FZ-VM
Vibration resistiveness	10 to 150 Hz single amplitude 0.15 mm 3 directions, 8 strokes, 4 times
Ambient temperature range	Operation: 0 to $50^{\circ} \mathrm{C}$; Storage: -20 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range	Operation and storage: 35 to $85 \% \mathrm{RH}$ (with no condensation)
Ambient atmosphere	No corrosive gases
Material	Cable sheath: heat-resistant PVC Connector: PVC
Minimum bending radius	75 mm
Weight	Approx. 170 g

Cable Extension Unit

Model	FZ-VSJ
Power supply voltage *1	11.5 to 13.5 VDC
Current consumption *2	1.5 A max.
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$; Storage: -25 to $65{ }^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range	Operating and storage: 35 to 85% (with no condensation)
Maximum Units connectable	2 Units per Camera
Weight	Approx. 240 g
Accessories	Instruction Sheet and 4 mounting screws

*1 A 12-VDC power supply must be provided to the Cable Extension Unit when connecting the Intelligent Camera, the Autofocus Camera, the Intelligent Compact Camera, the Strobe Controller, or the Lighting Controller.
*2 The current consumption shows when connecting the Cable Extension Unit to an external power supply.

Long-distance Camera Cables

Model	FZ-VS2 (15 m)	FZ-VSL2 (15 m)
Shock resistiveness (durability)	10 to 150 Hz single amplitude 0.15 mm 3 directions, 8 strokes, 4 times	
Ambient temperature range	Operation and storage: 0 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity range	Operation and storage: 40 to $70 \% \mathrm{RH}$ (with no condensation)	
Ambient atmosphere	No corrosive gases	
Material	Cable sheath, connector: PVC	
Minimum bending radius	93 mm	
Weight	Approx. 1600 g	

Encoder Cable

Model	FH-VR
Vibration resistiveness	10 to 150 Hz single amplitude 0.1 mm 3 directions, 8 strokes, 10 times
Ambient temperature range	Operation: 0 to $50^{\circ} \mathrm{C}$; Storage: -10 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range	Operation and storage: 35 to $85 \% \mathrm{RH}$ (with no condensation)
Ambient atmosphere	No corrosive gases
Material	Cable Jacket: Heat, oil and flame resistant PVC Connector: polycarbonate resin
Minimum bending radius	65 mm
Weight	Approx. 104 g

Cameras / Cables Connection Table

Type of camera	Model	Cable length	High-speed CMOS cameras				
			$\begin{gathered} \text { 300,000-pixel } \\ \hline \text { FH-SM/SC } \end{gathered}$	2 million-pixel FH-SM02/SC02		4 million-pixel FH-SM04/SC04	
				High speed mode of transmission speed select	Standard mode of transmission speed select	High speed mode of transmission speed select	Standard mode of transmission speed select
Camera Cables Right-angle camera cables	$\begin{aligned} & \text { FZ-VS } \\ & \text { FZ-VSL } \end{aligned}$	2 m	Yes	Yes	Yes	Yes	Yes
		5 m	Yes	Yes	Yes	Yes	Yes
		10 m	Yes	No	Yes	No	Yes
Bend resistant camera cables	FZ-VSB	2 m	Yes	Yes	Yes	Yes	Yes
		5 m	Yes	Yes	Yes	Yes	Yes
		10 m	Yes	No	Yes	No	Yes
Long-distance camera cable Long-distance right-angle camera cable	$\begin{aligned} & \text { FZ-VS2 } \\ & \text { FZVSL2 } \end{aligned}$	15 m	Yes	No	Yes	No	Yes

Type of camera	Model	Cable length	Digital CCD cameras			Small digital CCD cameras Pen type / flat type	High-speed CCD cameras	Intelligent compact CMOS cameras	Intelligent CCD cameras Autofocus CCD cameras
			300,000-pixel	2 million-pixel	5 million-pixel				
			FZ-S/SC	FZ-S2M/SC2M	$\begin{aligned} & \text { FZ-S5M2/ } \\ & \text { SC5M2 } \end{aligned}$	$\begin{aligned} & \text { FZ-SF/SFC } \\ & \text { FZ-SP/SPC } \end{aligned}$	FZ-SH/SHC	FZ-SQ \square	$\begin{aligned} & \text { FZ-SLC } \square \\ & \text { FZ-SZC } \square \end{aligned}$
Camera Cables Right-angle camera cables	$\begin{aligned} & \text { FZ-VS } \\ & \text { FZ-VSL } \end{aligned}$	2 m	Yes						
		5 m	Yes						
		10 m	Yes	Yes	No	Yes	Yes	Yes	No
Bend resistant camera cables	FZ-VSB	2 m	Yes						
		5 m	Yes						
		10 m	Yes	Yes	No	Yes	Yes	Yes	No
Long-distance camera cable Long-distance right-angle camera cable	$\begin{aligned} & \text { FZ-VS2 } \\ & \text { FZVSL2 } \end{aligned}$	15 m	Yes	Yes	No	Yes	Yes	Yes	No

EtherCAT Communications Specifications

Item		Specifications
Communications standard		IEC61158 Type 12
Physical layer		100 BASE-TX (IEEE802.3)
Modulation		Base band
Baud rate		100 Mbps
Topology		Depends on the specifications of the EtherCAT master.
Transmission Media		Twisted-pair cable of category 5 or higher (double-shielded straight cable with aluminum tape and braiding)
Transmission Distance		Distance between nodes: 100 m or less
Node address setting		00 to 9
External connection terminals		RJ45 $\times 2$ (shielded) IN: EtherCAT input data, OUT: EtherCAT output data
Send/receive PDO data sizes	Input	56 to 280 bytes/line (including input data, status, and unused areas) Up to 8 lines can be set. *
	Output	28 bytes/line (including output data and unused areas) Up to 8 lines can be set. *
Mailbox data size	Input	512 bytes
	Output	512 bytes
Mailbox		Emergency messages, SDO requests, and SDO information
Refreshing methods		I/O-synchronized refreshing (DC)

* This depends on the upper limit of the master.

Version Information

FH Series and Programming Devices

FH Series	Required Programming Device	
	Sysmac Studio Standard Edition/Vision Edition	
	Ver.1.06	Ver.1.07 or higher
FH-3050 (-ロ)	Not supported	Supported
FH-1050 (- $-\square)$		

Vision System FH-Series

Components and Functions

Example of the FH Sensor Controllers

BOX type
(4-camera type)

	Name	Description
[1]	POWER LED	Lit while power is ON.
[2]	ERROR LED	Lit when an error has occurred.
[3]	RUN LED	Lit while the controller is in Measurement Mode.
[4]	ACCESS LED	Lit while the memory is accessed.
[5]	SD POWER LED	Lit while power is supplied to the SD card and the card is usable.
[6]	SD BUSY LED	Blinks while the SD memory card is accessed.
[7]	EtherCAT RUN LED	Lit while EtherCAT communications are usable.
[8]	EtherCAT LINK/ACT IN LED	Lit when connected with an EtherCAT device, and blinks while performing communications.
[9]	EtherCAT LINK/ACT OUT LED	Lit when connected with an EtherCAT device, and blinks while performing communications.
[10]	EtherCAT ERR LED	Lit when EtherCAT communications have become abnormal.
[11]	EtherNet NET RUN1 LED	Lit while EtherNet communications are usable.
[12]	EtherNet NET LINK/ACK1 LED	Lit when connected with an EtherNet device, and blinks while performing communications.
[13]	EtherNet NET RUN2 LED	Lit when EtherNet communications are usable.
[14]	EtherNet NET LINK/ACK2 LED	Lit when connected with an EtherNet device, and blinks while performing communications.
	Name	Description
A	SD memory card installation connector	Install the SD memory card. Do not plug or unplug the SD card during measurement operation. Otherwise measurement time may be affected or data may be destroyed.
B	EtherNet connector	Connect an EtherNet device.
C	USB connector	Connect a USB device. Do not plug or unplug it during measurement operation. Otherwise measurement time may be affected or data may be destroyed.
D	RS-232C connector	Connect an external device such as a programmable controller.
E	DVI-I connector	Connect a monitor.
F	I/O connector (control lines, data lines)	Connect the controller to external devices such as a sync sensor and PLC.
G	EtherCAT address setup volume	Used to set a node address (00 to 99) as an EtherCAT communication device.
H	EtherCAT communication connector (IN)	Connect the opposed EtherCAT device.
1	EtherCAT communication connector (OUT)	Connect the opposed EtherCAT device.
J	Encoder connector	Connect an encoder.
K	Camera connector	Connect cameras.
L	Power supply terminal connector	Connect a DC power supply. Wire the controller independently on other devices. Wire the ground line. Be sure to ground the controller alone. Perform wiring using the attached power supply connector.

Processing Items

Group	Icon		Processing Item	Corresponding Page in the Catalog
Inspections／ Measurement	宿	Search	Used to identify the shapes and calculate the position of measurement objects．	P16
	禹	Flexible Search	Recognizing the shapes of workpieces with variation and detecting their positions．	P16
	宿	Sensitive Search	Search a small difference by dividing the search model in detail，and calculating the correlation．	P16
	\％	ECM Search	Used to search the similar part of model form input image．Detect the evaluation value and position．	P16
	¢	EC Circle Search	Extract circles using＂round＂shape information and get position，radius and quantity in high preciseness．	P16
	$\stackrel{\Delta}{\Delta}$	Shape Search II	Used to search the similar part of model from input image regardless of environmental changes．Detect the evaluation value and position．	P16
	$\begin{aligned} & \text { III } \\ & \Delta \Delta_{0} \end{aligned}$	Shape Search III	Robust detection of positions is possible at high－speed and with high precision incorporating environmental fluctuations， such as differences in individual shapes of the workpieces，pose fluctuations， noise superimposition and shielding．	P16
	－	EC Corner	This processing item measures a corner position（corner）of a workpiece．	P16
	\dot{x}	Ec Cross	The center position of a crosshair shape is measured using the lines created by the edge information on each side of the crosshair．	P16
	怱	Classification	Used when various kinds of products on the assembly line need to be sorted and identified	P17
	F	Edge Position	Measure position of measurement objects according to the color change in measurement area．	P16
	继	Edge Pitch	Detect edges by color change in measurement area．Used for calculating number of pins of $I C$ and connectors．	P16
	\％	Scan Edge Position	Measure peak／bottom edge position of workpieces according to the color change in separated measurement area	P16
	B	Scan Edge Width	Measure $\mathrm{max} / \mathrm{min} /$ average width of workpieces according to the color change in separated measurement area．	P16
		Circular Scan Edge Position	Measure center axis，diameter and radius of circular workpieces．	P16
	0	Circular Scan Edge Width	Measure center axis，width and thickness of ring workpieces．	P16
	3	Intersection	Calculate approximate lines from the edge information on two sides of a square workpiece to measure the angle formed at the intersection of the two lines．	P16
	8	Color Data	Used for detecting presence and mixed varieties of products by using color average and deviation．	P17
	岛	Gravity and Area	Used to measure area，center of gravity of workpices by extracting the color to be measured．	P17
	娄	Labeling	Used to measure number，area and gravity of workpieces by extracting registered color．	P17
	回淢	Label Data	Selecting one region of extracted Labeling，and get that measurement． Area and Gravity position can be got and judged	
	M	Defect	Used for appearance measurement of plain－color measurement objects such as defects，stains and burrs．	P17
	d	Precise Defect	Check the defect on the object Parameters for extraction defect can be set precisely．	P17
	［國	Fine Matching	Difference can be detected by overlapping and comparing（matching）registered fine images with input images．	P16
	$\widehat{\text { ABS }}$	Character Inspect	Recognize character according correlation search with model image registered in［Model Dictionary］．	P17
		Date Verification	Reading character string is verified with internal date．	P17
	\triangle	Model Dictionary	Register character pattern as dictionary．The pattern is used in ［Character Inspection］．	
	臓	2DCode＊2	Recognize 2D code and display where the code quality is poor．	P17
	｜｜IIIII｜	Barcode＊1	Recognize barcode，verify and output decoded characters．	P17
	Q	Circle Angle	Used for calculating angle of inclination of circular measurement objects．	P17
	0	Glue Bead Inspection	You can inspect coating of a specified color for gaps or runoffs along the coating path．	P17
Image Capturing	噌	Camera Image Input	$\begin{aligned} & \begin{array}{l} \text { To input images from cameras. And } \\ \text { set up the conditions to input images } \\ \text { from cameras. (For FZ5 Sensor } \\ \text { controllers only) } \end{array} \\ & \hline \end{aligned}$	
	榢	Camera Image Input FH	To input images from cameras．And set up the conditions to input images from cameras．（For FH Sensor Con－ trollers only）	

Vision System FH－Series

Group	Icon		Processing Item	Corresponding Page in the Catalog
Assisting inspections／ measurement	兄	Wait	Processing is stopped only at the set time．The standby time is set by the unit of［ms］．	
	4	Focus	Focus setting is supported．	P15
	0	Iris	Focus and aperture setting is supported．	P15
	量	Parallelize＊3	A part of the measurement flow is divided into two or more tasks and processed in parallel to shorten the measurement time．This processing item is placed at the top of processing to be performed in parallel．	
	害	Parallelize Task＊3	A part of the measurement flow is divided into two or more tasks and processed in parallel to shorten the measurement time．This processing item is placed immediately before processing to be performed in parallel between Parallelize and Parallelize End．	
	\triangle	Statistics	Used when you need to calculate an average of multiple measurement results．	
		Referrence Calib Data	Calibration data and distortion compensation data held under other processing items can be referenced	
	\triangle	Position Data Calculation	The specified position angle is calculated from the measured positions．	P14
	\＃	Stage Data	Sets and stores data related to stages．	
	${ }^{4}$	Robot Data	Sets and stores data related to robots．	
	进	Vision Master Calibration	This processing item automatically calculates the entire axis movement amount of the control equipment necessary for calibration．	P15
	4	PLC Mastoer Calibration	Calibration data is created using a communication command from PLC．	P15
		Convert Position Data	The position angle after the specified axis movement is calculated．	P14
	粵	Movement Single Position	The axis movement that is required to match the measured position angle to the reference position angle is calculated．	P14
	葍	Movement Multi Points	The axis movements that are required to match the measured position angles to the corresponding reference position angles are calculated	P14
	$+$	Detection Point	Obtains position／angle information by r eferring to the coordinate values measured with the Measurement Processing Unit．	
	蹅	Camera Calibration	By setting the camera calibration，the measurement result can be converted and output as actual dimensions．	P15
	${ }_{4}^{49}$	Data Save	The set data can be saved in the controller main unit or as scene data．The data is held even after the FH／FZ power is turned off．	

Group	Icon	$\begin{array}{l}\text { Processing Item }\end{array}$		
	Corresponding			
Page in the				
Catalog				

Dimensions

Series Sensor Controllers

FH－series Box－type

FH－3050／－3050－10／－3050－20
FH－1050／－1050－10／－1050－20

Four，M3 mounting holes
with a depth of 4.5 mm

Cameras
High-speed CMOS Camera

Intelligent Compact CMOS Cameras

Mounting Hole Dimensions

Intelligent CCD Camera
FZ-SLC15

Autofocus CCD Camera
FZ-SZC15
FZ-SZC100

Cables

Camera Cable

Camera Cable	Long-distance Camera Cable	Bend resistant Cable
FZ-VS	FZ-VS2	FZ-VSB

Long-distance Right-angle Camera Cable
FZ-VSL2

Right-angle Camera Cable
FZ-VSL

Monitor Cable

FZ-VM

4. cable is available in $2 \mathrm{~m} / 5 \mathrm{~m}$

Encoder Cable
FH-VR

*1. Cable is available in 1.5 m

LCD Monitor
FZ-M08

Camera Cable Extension Unit
FZ-VSJ

Lens for Small Camera

FZ-LES Series

Diaphragm look screw (M1.4)

* Overall length is available in $16.4 \mathrm{~mm} / 19.7 \mathrm{~mm} / 23.1 \mathrm{~mm} / 25.5 \mathrm{~mm}$

Vision System FH-Series

Optical Chart

High-speed CMOS Camera FH-S $\square 04$, 4 million-pixel

High-speed CMOS Camera FH-S $\square 02$, 2 million-pixel

High-speed CMOS Camera FH-S \square, High-speed CCD Camera FZ-SH \square, Digital CCD Camera FZ-S \square 300,000-pixel

Digital CCD Camera FZ-S $\square 5$ M2, 5 million-pixel

Digital CCD Camera FZ-S \square 2M, 2 million-pixel

Small Digital CCD Cameras FZ-SF \square, FZ-SP \square, 300,000-pixel

* The vertical axis represents WD, not installation distance.

Vision System FH-Series

High-speed CMOS Camera FH-S \square, High-speed CCD Camera FZ-SH \square, Digital CCD Camera FZ-S \square 300,000-pixel (Vibrations and shocks resistant)

Digital CCD Camera FZ-S $\square 5$ M2, 5 million-pixel (Vibrations and shocks resistant)

Digital CCD Camera FZ-S $\square 2 \mathrm{M}, 2$ million-pixel (Vibrations and shocks resistant)

Meaning of Optical Chart
The X axis of the optical chart shows the field of vision (mm) (*1),
and the Y axis of the optical chart shows the camera installation distance (mm) (*2).

$Y \xlongequal{\mid c}$| $\begin{array}{c}\text { Field of } \\ \text { vision }\end{array}$ |
| :---: |
| $* 2$. The lengths of the fields of vision given in the optical charts are the lengths of the Y axis. |
| $* 2$ |

Intelligent CCD Cameras, Autofocus CCD Cameras

FZ-SZC15

* Field of Vision of Intelligent Cameras and Autofocus Cameras

The images displayed on the monitor will be rectangular images of 640×480 pixels.
The valid processing area for measurements is the 480×480-pixel area in the middle.
The above figures show the dimensions of the middle 480×480 pixels.
Intelligent Compact Cameras

- Narrow View

FZ-SQ010F

- Wide View (Long-distance) FZ-SQ100F

- Standard FZ-SQ050F

- Wide View (Short-distance) FZ-SQ100N

Smart Camera

FQ-M-Series

Designed for motion tracking

- Connectivity with EtherCAT/Ethernet
- Up to 5000 pieces per minute with 360 degree rotation*
- Vision sensor with encoder input for tracking function
- Calibration function of the complete system
- Flexible data output depending on the output devices
* The processing speed depends on setting conditions.

System configuration

* Sysmac Studio and Touch Finder can not be used together. When both are connected, Sysmac Studio will have a priority.

When you make Machine Automation Controller NJ-series settings with the Sysmac Studio Standard Edition, connect a computer and the NJ via a USB connection or an Ethernet network.
Note: 1. EtherCAT and Ethernet (PLC Link) can not be used simultaneously.
2. It is not possible to configure and adjust the FQ-M via an NJ-series controller, when they are connected via an EtherCAT network. For configuration and adjustment of FQ-M, connect the FQ-M and a computer or a Touch Finder via an Ethernet network.

Smart Camera FQ-M-Series

Specifications

Sensors

Item Type		EtherCAT communication function provided	
		Color	Monochrome
Model	NPN	FQ-MS120-ECT	FQ-MS120-M-ECT
	PNP	FQ-MS125-ECT	FQ-MS125-M-ECT
Field of vision, Installation distance		Selecting a lens according to the field of vision and installation distance. Refer to the "Optical Chart"page.	
Main functions	Inspection items	Shape search, Search, Labeling, Edge position	
	Number of simultaneous inspections	32	
	Number of registered scenes	32 *1	
Image input	Image processing method	Real color	Monochrome
	Image elements	1/3-inch color CMOS	1/3-inch monochrome CMOS
	Image filter	High dynamic range (HDR) and white balance	High dynamic range (HDR)
	Shutter	Electronic shutter; select shutter speeds from 1/10 to 1/30000 (sec)	
	Processing resolution	$752(\mathrm{H}) \times 480(\mathrm{~V})$	
	Pixel size	$6.0(\mu \mathrm{~m}) \times 6.0$ ($\mu \mathrm{m}$)	
	Frame rate (image read time)	60 fps (16.7 ms)	
External Lightings	Connecting method	Connection via a strobe light controller	
	Connectable lighting	FL series	
Data logging	Measurement data	In Sensor: Max. 32000 items *2	
	Images	In Sensor: 20 images *2	
Measurement trigger		I/O trigger, Encoder trigger, Communications trigger (Ethernet No-protocol, PLC Link, or EtherCAT)	
I/O specifications	Input signals	9 signals - Single measurement input (TRIG) - Error clear input (INO) - Encoder counter reset input (IN1) - Encoder input ($\mathrm{A} \pm, \mathrm{B} \pm, \mathrm{Z} \pm$) *4	
	Output signals	5 signals *3 - OUTO Overall judgement output (OR) - OUT1 Control output (BUSY) - OUT2 Error output (ERROR) - OUT3 (Shutter output: SHTOUT) - OUT4 (Strobe trigger output: STGOUT)	
	Ethernet specifications	100BASE-TX/10BASE-TX	
	EtherCAT specifications	Dedicated protocol for EtherCAT 100BASE-TX	
	Connection method	Special connector cables - Power supply and I/O: 1 special connector I/O cable - Touch Finder, Computer and Ethernet: 1 Ethernet cable - EtherCAT: 2 EtherCAT cable	
LED display		- OR: Judgment result indicator - ERR: Error indicator - BUSY: BUSY indicator - ETN: Ethernet communications indicator	
	EtherCAT display	- L/A IN (Link/Activity IN) $\times 1$ - L/A OUT (Link/Activity OUT) $\times 1$ - RUN $\times 1$ - ERR $\times 1$	
Ratings	Power supply voltage	21.6 to 26.4 VDC (including ripple)	
	Insulation resistance	Between all lead wires and case: $0.5 \mathrm{M} \Omega$ (at 250 V)	
	Current consumption	450mA max. (When the FL-series Strobe controller and lighting are used.) 250 mA max. (When external lighting is not used.)	
Environmental immunity	Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$, Storage: -20 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)	
	Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)	
	Ambient atmosphere	No corrosive gas	
	Vibration resistance (destruction)	10 to 150 Hz , single amplitude: $0.35 \mathrm{~mm}, \mathrm{X} / \mathrm{Y} / \mathrm{Z}$ directions, 8 min each, 10 times	
	Shock resistance (destruction)	$150 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 direction (up, down, right, left, forward, and backward)	
	Degree of protection	IEC60529 IP40	
Materials		Case: alminium die casting, Rear cover: alminium plate	
Weight		Approx. 480 g (Sensor only)	
Accessories		Instruction Manual	

*1 The maximum number of registerable scenes depends on settings due to restrictions on memory.
*2 If a Touch Finder is used, results can be saved up to the capacity of an SD card.
*3 The five output signals can be allocated for the judgements of individual inspection items.

*4 Encoder input specifications

Pulse input Specifications (When an open collector type encoder is used.)

Item		Specification		
Input voltage		24 VDC $\pm 10 \%$	$12 \mathrm{VDC} \pm 10 \%$	5 VDC $\pm 5 \%$
Input current		4.8 mA (at 24 VDC , typical value)	2.4 mA (at 12 VDC , typical value)	1.0 mA (at 5 VDC , typical value)
NPN	ON voltage *1	4.8 V max.	2.4 V max.	1.0 V max.
	OFF voltage *2	19.2 V min.	9.6 V min.	4.0 V min.
PNP	ON voltage *1	19.2 V min.	9.6 V min.	4.0 V min.
	OFF voltage *2	4.8 V max.	2.4 V max.	1.0 V max.
Maximum response frequency *3		50 kHz (I/O cable: when the FQ-MWD005 or FQ-MWDL005 cables is used.) 20 kHz (//O cable: when the FQ-MWD010 or FQ-MWDL010 cables is used.)		
Input impedance		$5.1 \mathrm{k} \Omega$		

*1 ON voltage: Voltage to change from OFF to ON state. The ON voltage is the difference of voltages between the GND terminal of the encoder power terminals and each input terminal.
*2 OFF voltage: Voltage to change from ON to OFF state. The ON voltage is the difference of voltages between the GND terminal of the encoder power terminals and each input terminal.
*3 Select maximum response frequency depending on length of the encoder cable and response frequency of the encoder.
Pulse input Specifications (When a line-driver output type encoder is used.)

Item	
Input voltage	EIA standard RS-422-A line driver level
Input impedance *1	$120 \Omega \pm 5 \%$
Differential input voltage	$0.2 \mathrm{~V} \mathrm{min}$.
Hysteresis voltage	50 mV
Maximum response frequency *2	200 kHz (I/O cable: when the FQ-MWD005, FQ-MWDL005, FQ-MWD010, or FQ-MWDL010 cables is used.)
${ }^{*} 1$ When terminating resistance function is used.	
*2 Select maximum response frequency depending on length of the encoder cable and response frequency of the encoder.	

Touch Finder

Item	Type Model		Model with DC power supply	Model with AC/DC/battery power supply
			FQ-MD30	FQ-MD31
Number of connectable Sensors			2 max.	
Main functions	Types of measurement displays		Last result display, Last NG display, trend monitor, histograms	
	Types of display images		Through, frozen, zoom-in, and zoom-out images	
	Data logging		Measurement results, measured images	
	Menu language		English, Japanese	
Indications	LCD	Display device	3.5-inch TFT color LCD	
		Pixels	320×240	
		Display colors	16,777,216	
	Backlight	Life expectancy *1	50,000 hours at $25^{\circ} \mathrm{C}$	
		Brightness adjustment	Provided	
		Screen saver	Provided	
	Indicators	Power indicator (color: green)	POWER	
		Error indicator (color: red)	ERROR	
		SD card access indicator (color: yellow)	SD ACCESS	
		Charge indicator (color: orange)	---	CHARGE
Operation interface	Touch screen	Method	Resistance film	
		Life expectancy *2	1,000,000 operations	
External interface	Ethernet		100 BASE-TX/10 BASE-T	
	SD card		Omron SD card (Model: HMC-SD291/491) or a SDHC card of Class4 or higher rating is recommended.	
Ratings	Power supply voltage	DC power connection	20.4 to 26.4 VDC (including ripple)	
		AC adapter connection	----	100 to 240 VAC, $50 / 60 \mathrm{~Hz}$
		Battery connection	---	FQ-BAT1 Battery (1 cell, 3.7 V)
	Continuous operation on Battery *3		---	1.5 h
	Current consumption		DC power connection: 0.2 A	
	Insulation resistance		Between all lead wires and case: $0.5 \mathrm{M} \Omega$ (at 250 V)	
Environmental immunity	Ambient temperature range		Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: - 25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)	Operating: 0 to $50^{\circ} \mathrm{C}$ when mounted to DIN Track or panel 0 to $40^{\circ} \mathrm{C}$ when operated on a Battery Storage: - 25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
	Ambient humidity range		Operating and storage: 35% to 85% (with no condensation)	

Item		Model with DC power supply	Model with AC/DC/battery power supply
		FQ-MD30	FQ-MD31
Environmental immunity	Ambient atmosphere	No corrosive gas	
	Vibration resistance (destruction)	10 to 150 Hz , single amplitude: $0.35 \mathrm{~mm}, \mathrm{X} / \mathrm{Y} / \mathrm{Z}$ directions 8 min each, 10 times	
	Shock resistance (destruction)	$150 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 direction (up, down, right, left, forward, and backward)	
	Degree of protection	IEC 60529 IP20	
Dimensions		$95 \times 85 \times 33 \mathrm{~mm}$	
Materials		Case: ABS	
Weight		Approx. 270 g (without Battery and hand strap)	
Accessories		Touch Pen (FQ-XT), Instruction Manual	

*1 This is a guideline for the time required for the brightness to diminish to half the initial brightness at room temperature and humidity. No guarantee is implied. The life of the backlight is greatly affected by the ambient temperature and humidity. It will be shorter at lower or higher temperatures.
*2 This value is only a guideline. No guarantee is implied. The value will be affected by operating conditions.
*3 This value is only a guideline. No guarantee is implied. The value will be affected by the operating environment and operating conditions.

Battery Specifications

Item	Model
Battery type	Secondary lithium ion battery
Nominal capacity	1800 mAh
Rated voltage	3.7 V
Dimensions	$35.3 \times 53.1 \times 11.4 \mathrm{~mm}$
Ambient temperature range	Operating: 0 to $40^{\circ} \mathrm{C}$ Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range	Operating and storage: 35% to 85\% (with no condensation)
Charging method	Charged in Touch Finder (FQ-MD31). AC adapter (FQ-ACD) is required.
Charging time *1	2.0 h
Battery backup life *2	300 charging cycles
Weight	50 g max.

*1 This value is only a guideline. No guarantee is implied. The value will be affected by operating conditions.
*2 This is a guideline for the time required for the capacity of the Battery to be reduced to 60% of the initial capacity. No guarantee is implied. The value will be affected by the operating environment and operating conditions.

EtherCAT Communications Specifications

Item	\quad Specifications
Communications standard	IEC 61158 Type12
Physical layer	$100 B A S E-T X$ (IEEE802.3)
Connector	M12 $\times 2$ E-CAT IN $\quad:$ EtherCAT (IN) E-CAT OUT : EtherCAT (OUT)
Communications media	Use the cables for FQ-MWN \square, or FQ-WN $\square \square$ series.
Communications distance	Use the communication cable within the length of FQ-MWN $\square \square$ or FQ-WN $\square \square$ series cables.
Process data	Variable PDO Mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information
Distributed clock	Synchronization with DC mode 1
LED display	L/A IN (Link/Activity IN) $\times 1$ L/A OUT (Link/Activity OUT) $\times 1$ RUN $\times 1$ ERR $\times 1$

Version Information

FQ-M Series and Programming Devices

FQ-M Series	Required Programming Device		
		Sysmac Studio Standard Edition/Vision Edition	
	Ver.1.00	Ver.1.01 or higher	
FQ-MS $\square \square \square(-M)-$ ECT	Not supported	Supported	

Components and Functions

Sensor

* FQ-MS $\square \square \square$-ECT and FQ-MS $\square \square \square$-M-ECT only.

Touch Finder

(5)

No.	Name		Description
(1)	Operation indicators	POWER	Lights green when the Touch Finder is turned ON.
		ERROR	Lights red when an error occurs.
		SD ACCESS	Lights yellow when an SD card is inserted. Flashes yellow when the SD card is being accessed.
		CHARGE *	Lights orange when the Battery is charging.
(2)	LCD/touch panel		Displays the setting menu, measurement results, and images input by the camera.
(3)	SD card slot		An SD card can be inserted.
(4)	Battery cover *		The Battery is inserted behind this cover. Remove the cover when mounting or removing the Battery.
(5)	Power supply switch		The Battery is inserted behind this cover. Remove the cover when mounting or removing the Battery.

No.	Name	Description
(6)	Touch pen holder	The touch pen can be stored here when it is not being used.
(7)	Touch pen	Used to operate the touch panel.
(8)	DC power supply connector	Used to connect a DC power supply.
(9)	Slider	Used to mount the Touch Finder to a DIN Track.
(10)	Ethernet port	Used when connecting the Touch Finder to the Sensor with an Ethernet cable. Insert the connector until it locks in place.
(11)	Strap holder	This is a holder for attaching the strap.
(12)	AC power supply connector *	Used to connect the AC adapter.

[^36]
Smart Camera FQ-M-Series

Dimensions

Sensor

FQ-MS120-ECT/MS120-M-ECT

FQ-MS125-ECT/MS125-M-ECT

MOUNTING SCREW HOLES (1)

MOUNTING SCREW HOLES (2)

Touch Finder

FQ-MD30/MD31

*1 Provided with FQ-MD31 only.
*2 The dimension of the panel mounting adapter does not include that of a FQ-MD $\square \square$.

Cables

- For EtherCAT and Ethernet cable

 Angle:M12/ Straight:RJ45 FQ-MWNL005/010

* Cable is available in $5 \mathrm{~m} / 10 \mathrm{~m}$.

Straight type (M12/RJ45) FQ-WN005/010

- For EtherCAT cable Angle type (M12/M12) FQ-MWNEL005/010

Straight type (M12/M12) FQ-MWNE005/010

* Cable is available in $5 \mathrm{~m} / 10 \mathrm{~m}$.

- I/O Cables

 Angle type FQ-MWDL005/010

* Cable is available in $5 \mathrm{~m} / 10 \mathrm{~m}$.

Straight type FQ-MWD005/010

Smart Camera FQ-M-Series

Optical Chart

Meaning of Optical Chart

The X axis of the optical chart shows the field of vision (mm) *1, and the Y axis of the optical chart shows the camera installation distance (mm).*2

Displacement Sensor ZW-Series

Non-contact measurement of height and position with high precision.
 Uses the new 'White Light Confocal Principle".

- Ultra-compact and ultra-light sensor head
- Stable measurement of any material and superior angle characteristics
- Sensor head with excellent environmental resistance, no noise, and zero heat generation

System configuration

EtherCAT connections

* Prepare commercially available Ethernet cable satisfying the following requirements:
- Category 5e or more, 30 m or less
- RJ45 connector (8-pin modular jack)
- For direct connection: Select cross cable.
- For connection through an industrial switching hub: Select straight cable.

Displacement Sensor ZW-Series

Specifications

Sensor Head

Item		ZW-S07	ZW-S20	ZW-S30	ZW-S40
Measuring center distance		7 mm	20 mm	30 mm	40 mm
Measuring range		$\pm 0.3 \mathrm{~mm}$	$\pm 1 \mathrm{~mm}$	$\pm 3 \mathrm{~mm}$	$\pm 6 \mathrm{~mm}$
Static resolution *1		$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$
Linearity *2		$\pm 0.8 \mu \mathrm{~m}$	$\pm 1.2 \mu \mathrm{~m}$	$\pm 4.5 \mu \mathrm{~m}$	$\pm 7.0 \mu \mathrm{~m}$
Spot diameter *3	Near	$20 \mu \mathrm{~m}$ dia.	$45 \mu \mathrm{~m}$ dia.	$70 \mu \mathrm{~m}$ dia.	$90 \mu \mathrm{~m}$ dia.
	Center	$18 \mu \mathrm{~m}$ dia.	$40 \mu \mathrm{~m}$ dia.	$60 \mu \mathrm{~m}$ dia.	$80 \mu \mathrm{mdia}$
	Far	$20 \mu \mathrm{~m}$ dia.	$45 \mu \mathrm{~m}$ dia.	$70 \mu \mathrm{~m}$ dia.	$90 \mu \mathrm{mdia}$
Measuring cycle		$500 \mu \mathrm{~s}$ to 10 ms			
Operating ambient illumination		Illumination on object surface 10,000 Ix or less: incandescent light			
Ambient temperature range		Operating: 0 to $50^{\circ} \mathrm{C}$, Storage: -15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity range		Operating and storage: 35% to 85% (with no condensation)			
Degree of protection		IP40 (IEC60529)			
Vibration resistance (destructive)		10 to $150 \mathrm{~Hz}, 0.35 \mathrm{~mm}$ single amplitude, 80 min each in X, Y, and Z directions			
Shock resistance (destructive)		$150 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in six directions (up/down, left/right, forward/backward)			
Temperature characteristic *4		$0.6 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$	$1.5 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$	$2.8 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$	$4.8 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$
Materials		Case: aluminum die-castFiber cable sheat: PVCCalibration ROM: PC			
Fiber cable length		$0.3 \mathrm{~m}, 2 \mathrm{~m}$ (Flex-resistant cable)			
Fiber cable minimum bending radius		20 mm			
Insulation resistance (Calibration ROM)		Between case and all terminals: $20 \mathrm{M} \Omega$ (by 250 V megger)			
Dielectric strength (Calibration ROM)		Between case and all terminals: $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}$			
Weight		Approx. 105 g (Chassis, fiber cable total)			
Accessories included with sensor head		Instruction sheet, Fixing screw (M2) for Calibration ROM, Precautions for correct use			

*1. Capacity value when Omron standard mirror surface target is measured at the measurement center distance as the average of 4,096 times.
*2. Material setting for the Omron standard mirror surface target: Error from an ideal straight line when measuring on mirror surface.
The reference values for linearity when targets to measure other than the above are as in the table below.

Item	ZW-S07	ZW-S20	ZW-S30	ZW-S40
Grass	$\pm 1.0 \mu \mathrm{~m}$	$\pm 1.2 \mu \mathrm{~m}$	$\pm 4.5 \mu \mathrm{~m}$	$\pm 7.0 \mu \mathrm{~m}$
SUS BA	$\pm 1.2 \mu \mathrm{~m}$	$\pm 1.4 \mu \mathrm{~m}$	$\pm 5.5 \mu \mathrm{~m}$	$\pm 8.5 \mu \mathrm{~m}$
White ceramic	$\pm 1.6 \mu \mathrm{~m}$	$\pm 1.7 \mu \mathrm{~m}$	$\pm 6.4 \mu \mathrm{~m}$	$\pm 9.5 \mu \mathrm{~m}$

*3. Capacity value defined by $1 / \mathrm{e}^{2}(13.5 \%)$ of the center optical intensity in the measured area.
*4. Temperature characteristic at the measurement center distance when fastened with an aluminum jig between the Sensor Head and the target and the Sensor Head and the controller are set in the same temperature environment.

Controller

Item			ZW-CE10T	ZW-CE15T
Input/Output type			NPN	PNP
Number of connected Sensor Heads			1 per Controller	
Sensor Head compatibility			Available	
Light source for measurement			White LED	
Segment display	Main display		11-segment red display, 6 digits	
	Sub-display		11-segment green display, 6 digits	
LED display	Status indicators		HIGH (orange), PASS (green), LOW (orange), STABILITY (green), ZERO (green), ENABLE (green), THRESHOLD-H (orange), THRESHOLD-L (orange), RUN (green)	
	EtherCAT indicators		L/A IN(Link Activity IN)(green), L/O OUT(Link Activity OUT)(green), ECAT RUN(green), ECAT ERR(red)	
External interface	Ethernet		100BASE-TX, 10BASE-T, No-protocol Communications (TCP/UDP), EtherNet/IPTM	
	EtherCAT		EtherCAT-specific protocol 100BASE-TX	
	RS-232C		115,200 bps max.	
	Analog output terminal block	Analog voltage output (OUT1V)	-10 V to +10 V , output impedance: 100Ω	
		Analog current output (OUT1A)	4 mA to 20 mA , maximum load resistance: 300Ω	

Item				ZW-CE10T	ZW-CE15T
External interface	32-pole extension connector	Judgment output (HIGH1/PASS1/LOW1)		Transistor output system Output voltage: 21.6 to 30 VDC Load current: 50 mA or less Residual voltage when turning ON: 1.2 V or less Leakage voltage when turning OFF: 0.1 mA or les	
		BUSY output (BUSY1)			
		ALARM output (ALARM1)			
		ENABLE output (ENABLE)			
		LED OFF input (LED OFF1)		DC input system Input voltage: 24 VDC • 10% (21.6 to 26.4 VDC) Input current: 7 mA Typ. (24 VDC) Voltage/Current when turning ON: $19 \mathrm{~V} / 3 \mathrm{~mA}$ or more Voltage/Current when turning OFF:5 V/1 mA or less	
		ZERO RESET input (ZERO)			
		TIMING output (TIMING1)			
		RESET output (RESET1)			
		Bank	Selected bank output (BANK_OUT 1 to 3)	Transistor output system Output voltage: 21.6 to 30 VDC Load current: 50 mA or less Residual voltage when turning ON: 1.2 V or less Leakage voltage when turning OFF: 0.1 mA or less	
			Selected bank input (BANK_SEL 1 to 3)	DC input system Input voltage: 21.6 to 26 VDC Input current: 7 mA Typ. (24 Voltage/Current when turning Voltage/Current when turning	
Main functions	Exposure time			Auto/Manual	
	Measuring cycle			$500 \mu \mathrm{~s}$ to 10 ms	
	Material setting			Standard/Mirror/Diffusion surfaces	
	Measurement Item			Height/Thickness/Calculation	
	Filtering			Median/Average/Differentiation/High pass/Low pass/Band pass	
	Outputs			Scaling/Different holds/Zero reset/Logging for a measured value	
	Display			Measured value/Threshold value/Analog output voltage or current value/Judgment result/ Resolution/Exposure time	
	Number of configurable banks			Max. 8 banks	
	Task process			Multi-task (up to 4 tasks per bank)	
	System			Save/Initialization/Display measurement information/Communication settings/Sensor Head calibration/Key-lock/Trigger-key input	
Ratings	Power supply voltage			21.6 to 26.4 VDC (including ripple)	
	Current consumption			600 mA max.	
	Insulation resistance			Across all lead wires and controller case: $20 \mathrm{M} \Omega$ (by 250 V megger)	
	Dialectic strength			Across all lead wires and controller case: $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}$.	
Environmental	Degree of protection			IP20(IEC60529)	
	Vibration resistance (destructive)			10 to $55 \mathrm{~Hz}, 0.35-\mathrm{mm}$ single amplitude, 50 min each in X, Y, and Z directions	
	Shock resistance (destructive)			$150 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in six directions (up/down, left/right, forward/backward)	
	Ambient temperature			Operating: 0 to $40^{\circ} \mathrm{C}$ Storage:- 15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)	
	Ambient humidity			Operating and storage: 35% to 85% (with no condensation)	
Grounding				D-type grounding (Grounding resistance of 100Ω or less) Note: For conventional Class D grounding	
Materials				Case: PC	
Weight				Approx. 750 g (main unit only), Approx. 150 g (Parallel Cable)	
Accessories included with controller				Instruction sheet,Member registration sheet, Parallel cable ZW-XCP2E	

Note: Controllers with binary outputs are also available (ZW-C10T/-C15T). Please contact your OMRON sales representative for details.

ZW Series EtherCAT Communications Specifications

Item	\quad Specification
Communications standard	IEC61158 Type12
Physical layer	100 BASE -TX(IEEE802.3)
Connectors	RJ45 $\times 2$ ECAT IN: EtherCAT input ECAT OUT: EtherCAT output
Communications media	Category 5 or higher (cable with double, aluminum tape and braided shielding) is recommended.
Communications distance	Distance between nodes: 100 m max.
Process data	Variable PDO mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information
Distributed clock	Synchronization in DC mode.
LED display	L/A IN (Link/Activity IN) $\times 1$, AL/A OUT (Link/Activity OUT) $\times 1$, AECAT RUN $\times 1$, AECAT ERR $\times 1$

Displacement Sensor ZW-Series

Characteristic data (typical examples)

Linearity Characteristic by Materials

ZW-S07

Material setting: Mirror surface

Material setting: Diffusion surface

ZW-S20

ZW-S30

Material setting: Normal

Material setting: Mirror surface

Material setting: Diffusion surface

ZW-S40

-Angle Characteristic *

ZW-S07

ZW-S20

Mirror β direction

ZW-S40

Displacement Sensor ZW-Series

Dimensions

Sensor Head

ZW-S07/-S20/-S30/-S40

Note:

Model	L	\mathbf{M}	\mathbf{X}
ZW-S07	7	0.3	12
ZW-S20	20	1	11.8
ZW-S30	30	3	11.7
ZW-S40	40	6	11.7

Mounting hole dimensions

Controller

ZW-CE10T/CE15T

Extension Fiber Cable

ZW-XF02R/-XF05R/-XF10R/-XF20R/-XF30R

Note: The following table lists cable lengths per models.

Model	Cable length	\mathbf{L}
ZW-XF02R	2 m	$2,000 \pm 20$
ZW-XF05R	5 m	$5,000 \pm 50$
ZW-XF10R	10 m	$10,000 \pm 100$
ZW-XF20R	20 m	$20,000 \pm 200$
ZW-XF30R	30 m	$30,000 \pm 300$

Fiber Sensor/Laser Photoelectric Sensors

E3NX-FALE3NC-LEENCC-S For semosoc communcations unt N S Snant

Connect Fiber Sensors and Laser Sensors to EtherCAT at Low Initial Cost.

- Consists of Sensor communications unit with master function + Distributed Sensor Unit with slave function
- Communication between units is by OMRON's unique DS-Bus
- Also supports feedback control with the fastest communication speed in the industry*
- Sensor functions such as present value monitoring, setting changes, and batch tuning are controlled by EtherCAT
* As of February 2013, based on OMRON research

System Configuration

Sensor Communications Unit E3NW

The Next-generation Sensor Networking Units That Revolutionizes the Workplace from Introduction and Startup though Operation

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

- Low initial cost achieved by distributed placement with the Sensor Communications Unit and Distributed Sensor Units (patent pending).
- Programless transmission of ON/OFF signals and detected quantities to host PLC (PDO communications).
- Reading and writing threshold values and function settings, tuning, and other operations are possible (SDO communications).
- Wire saving: simply connect the communications cable and power cable, and slide the Amplifier Units from the side.
- Up to 30 Sensor Amplifier Units can be connected. (total number of Sensor Amplifier Units: 30, number of Sensor Amplifier Units for one Sensor Communications Unit: 30, number of Sensor Amplifier Units for one Distributed Sensor Unit: 10)

General Spesifications

Item	Sensor Communications Unit	Distributed Sensor Unit
	E3NW-ECT	E3NW-DS
Connectable Sensor Amplifier Units	Smart Fiber Amplifier Unit: E3NX-FA0 Smart Laser Amplifier Unit: E3NC-LA0 Smart Laser Amplifier Unit (CMOS type): E3NC-SA0	
Power supply voltage	24 VDC (20.4 to 26.4 V)	
Power and current consumption	2.4 W max. (Not including the power supplied to Sensors.), 100 mA max. (Not including the current supplied to Sensors.)	2 W max. (Not including the power supplied to Sensors.), 80 mA max. (Not including the current supplied to Sensors.)
Indicators	L/A IN indicator (green), L/A OUT indicator (green), PWR indicator (green), RUN indicator (green), ERROR indicator (red), and SS (Sensor Status) indicator (green/red)	RUN indicator (green) and SS (Sensor Status) indicator (green/red)
Vibration resistance (destruction)	10 to 60 Hz with a $0.7-\mathrm{mm}$ double amplitude, $50 \mathrm{~m} / \mathrm{s}^{2}$ at 60 to 150 Hz , for 1.5 hours each in X, Y, and Z directions	
Shock resistance (destruction)	$150 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in X, Y, and Z directions	
Ambient temperature range	Operating: 0 to $55^{\circ} \mathrm{C}$;*1 Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity range	Operating and storage: 25\% to 85\% (with no condensation)	
Maximum connectable Sensors	$30^{* 2}$	10
Maximum connectable Distributed Sensor Units	8	-
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength	500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute	
Mounting method	35-mm DIN track-mounting	
Weight (packed state/Unit only)	Approx. $185 \mathrm{~g} / \mathrm{approx} .95 \mathrm{~g}$	Approx. $160 \mathrm{~g} / \mathrm{approx} .40 \mathrm{~g}$
Materials	Polycarbonate	
Accessories	Power supply connector, communications connector for E3NW-DS connection, DIN Track End Plates (2 pieces), and Instruction manual	Power supply/communications connector, DIN Track End Plates (2 pieces), ferrite cores (2 pieces), and Instruction manual

*1 Temperature Limitations Based on Number of Connected Amplifier Units:
Groups of 1 or 2 Amplifier Units: 0 to $55^{\circ} \mathrm{C}$, Groups of 3 to 10 Amplifier Units: 0 to $50^{\circ} \mathrm{C}$, Groups of 11 to 16 Amplifier Units: 0 to $45^{\circ} \mathrm{C}$
Groups of 17 to 30 Amplifier Units: 0 to $40^{\circ} \mathrm{C}$
*2 You can connect up to 30 Sensors total to the Sensor Communications Unit and Distributed Sensor Units.

Version Information

Sensor Communications Unit and Sysmac Studio

Sensor Communications Unit		Sysmac Studio version	
	Ver.1.04 or lower	Ver.1.05 or higher	
E3NW-ECT	Not supported.	supported.	

Communications Spesifications

Item	Specifications
Communications protocol	Dedicated protocol for EtherCAT
Modulation	Baseband method
Baud rate	100 Mbps
Physical layer	$100 \mathrm{BASE-TX}$ (IEEE 802.3u)
Topology	Daisy chain
Communications media	STP category 5 or higher
Communications distance	Distance between nodes: 100 m max.
Noise immunity	Conforms to IEC 61000-4-4, 1 kV or higher
Node address setting method	Set with decimal rotary switch or software *1
Node address range	000 to 192 *2

*1 The software setting is used when the node address setting switches are set to 0 .
*2 The range depends on the EtherCAT master that is used. Refer to the E3NW-ECT EtherCAT Digital Sensor Communications Unit Operation Manual (E429) for details.

Dimensions
(Unit: mm)

Sensor Communications Unit E3NW-ECT

Connector (provided)
Connector (provided)
(FK-MCP 1,5/4-STF-3,5 A

Smart Fiber Amplifier Unit E3NX-FAO

The Advanced Fiber Sensor That Handles On-site Needs

- Improved basic performance with 1.5 times the sensing distance and approx. 1/10th the minimum sensing object.*
- Ultra-easy setup with Smart Tuning with a dynamic range expanded 20 times to 40,000:1. Optimum stable detection achieved with light level adjustment even for saturated incident light.
- White on black display characters for high visibility.
- Solution Viewer that shows the passing time and difference in incident levels and Change Finder that shows even high-speed workpieces to achieve simple settings and reliable detection.
* Compared to the E3X-HD.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

For details on the Fiber Units that you can connect, refer to product information on your OMRON website.

General Specifications

Item		Specifications
Model		E3NX-FA0
Connecting method		Connector for Sensor Communications Unit
Light source (wavelength)		Red, 4-element LED (625 nm)
Power supply voltage		10 to 30 VDC, including 10\% ripple (p-p)
Power consumption *1		At Power Supply Voltage of 24 VDC Normal mode: 960 mW max. (Current consumption: 40 mA max.), Power saving eco mode: 840 mW max. (Current consumption: 35 mA max.)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	Super-high-speed mode (SHS) *2	Operate or reset: $32 \mu \mathrm{~s}$
	High-speed mode (HS)	Operate or reset: $250 \mu \mathrm{~s}$
	Standard mode (Stnd)	Operate or reset: 1 ms
	Giga-power mode (GIGA)	Operate or reset: 16 ms
No. of Units for mutual interference prevention	Super-high-speed mode (SHS) *2	0
	High-speed mode (HS)	10
	Standard mode (Stnd)	10
	Giga-power mode (GIGA)	10
Auto power control (APC)		Always enabled.
Other functions	Dynamic power control (DPC)	Provided
	Timer	Select from timer disabled, OFF-delay, ON-delay, one-shot, or ON-delay + OFF-delay timer: 1 to $9,999 \mathrm{~ms}$
	Zero reset	Negative values can be displayed. (Threshold value is shifted.)
	Resetting settings *3	Select from initial reset (factory defaults) or user reset (saved settings).
	Eco mode	Select from OFF (digital displays lit) or ECO (digital displays not lit).
	Bank switching	Select from banks 1 to 4.
	Power tuning	Select from ON or OFF.
	Output 1	Select from normal detection mode or area detection mode.
	Output 2	Select from normal detection mode, alarm output mode, or error output mode.
	Hysteresis width	Select from standard setting or user setting. For a user setting, the hysteresis width can be set from 1 to 9,999 .
Ambient illumination		Incandescent lamp: 20,000 Ix max., Sunlight: 30,000 Ix max.
Maximum connectable Units		30
Ambient temperature range		Operating: Groups of 1 or 2 Amplifier Units: 0 to $55^{\circ} \mathrm{C}$, Groups of 3 to 10 Amplifier Units: 0 to $50^{\circ} \mathrm{C}$, Groups of 11 to 16 Amplifier Units: 0 to $45^{\circ} \mathrm{C}$, Groups of 17 to 30 Amplifier Units: 0 to $40^{\circ} \mathrm{C}$ Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)

Amplifier Unit with Connector for Sensor Communications Unit

 E3NX-FAO

Smart Laser Amplifier Unit E3NC-LAO

Long-distance Variable Spot to Match the Application. Stable Detection with Pinpoint 0.1-mm Spot

- Select from two Sensor Heads to match the application from short distance to long distance.
- Product variations with variable spot and pinpoint spot for stable detection of your workpieces.
- Robot cable for reliable application in adverse environments. Laser Class 1 for safe application.
- White on black display characters for high visibility.
- Smart Tuning to achieve stable detection with easy setup.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

General Specifications

Item		Specifications
Model		E3NC-LAO
Connecting method		Connector for Sensor Communications Unit
Power supply voltage		10 to 30 VDC, including 10\% ripple (p-p)
Power consumption *1		At Power Supply Voltage of 24 VDC Normal mode: $1,560 \mathrm{~mW}$ max. (Current consumption: 65 mA max.) Power saving eco mode: 1,200 mW max. (Current consumption: 50 mA max.)
Indicators		7-segment displays (Sub digital display: green, Main digital display: white) Display direction: Switchable between normal and reversed. OUT indicator (orange), L/D indicator (orange), ST indicator (blue), DPC indicator (green), and OUT selection indicator (orange)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	Super-high-speed mode (SHS) *2	Operate or reset: $80 \mu \mathrm{~s}$
	High-speed mode (HS)	Operate or reset: $250 \mu \mathrm{~s}$
	Standard mode (Stnd)	Operate or reset: 1 ms
	Giga-power mode (GIGA)	Operate or reset: 16 ms
Sensitivity adjustment		Smart Tuning (2-point tuning, full auto tuning, position tuning, maximum sensitivity tuning, power tuning, or percentage tuning (-99% to $+99 \%$)), or manual adjustment.
No. of Units for mutual interference prevention	Super-high-speed mode (SHS) *2	0
	High-speed mode (HS)	2
	Standard mode (Stnd)	2
	Giga-power mode (GIGA)	4
Other Functions	Dynamic power control (DPC)	Provided
	Timer	Select from timer disabled, OFF-delay, ON-delay, one-shot, or ON-delay + OFF-delay timer: 1 to 9,999 ms
	Zero reset	Negative values can be displayed. (Threshold value is shifted.)
	Resetting settings *3	Select from initial reset (factory defaults) or user reset (saved settings).
	Eco mode	Select from OFF (digital displays lit) or ECO (digital displays not lit).
	Bank switching	Select from banks 1 to 4.
	Power tuning	Select from ON or OFF.
	Output 1	Select from Normal Detection Mode or Area Detection Mode.
	Output 2	Select from normal detection mode, alarm output mode, or error output mode.
	Hysteresis width	Select from standard setting or user setting.

Amplifier Unit with Connector for Sensor Communications Unit E3NC-LAO

Smart Laser Amplifier Unit (CMOS type) E3NC-SAO

A Ultra-compact CMOS Laser Sensor for Stable Detection without the Influence of Workpiece Color, Material, or Surface Conditions

- Dynamic range of 500,000 times for stable detection without influence from changes in workpieces.
- The industry's smallest CMOS laser head* for installation into small spaces.
- Distance discrimination enables stable detection of level differences as small as 1.5 mm .
- Robot cable for reliable application in adverse environments and IP67 protection.
- Laser Class 1 for safe application.
- White on black display characters for high visibility.
- Smart Tuning to achieve stable detection with easy setup.
* Based on February 2013 OMRON investigation.

For details on the Sensor Heads that you can connect, refer to product information on your OMRON website.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

General Specifications

Item		Specifications
Model		E3NC-SAO
Connecting method		Connector for Sensor Communications Unit
Power supply voltage		10 to 30 VDC, including 10\% ripple (p-p)
Power consumption *1		At Power Supply Voltage of 24 VDC Normal mode: $1,920 \mathrm{~mW}$ max. (Current consumption: 80 mA max.) Power saving eco mode: $1,680 \mathrm{~mW}$ max. (Current consumption: 70 mA max.)
Indicators		7-segment displays (Sub digital display: green, Main digital display: white) Display direction: Switchable between normal and reversed. OUT indicator (orange), L/D indicator (orange), ST indicator (blue), ZERO indicator (green), and OUT selection indicator (orange)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	Super-high-speed mode (SHS) *2	Operate or reset: 1.5 ms
	High-speed mode (HS)	Operate or reset: 5 ms
	Standard mode (Stnd)	Operate or reset: 10 ms
	Giga-power mode (GIGA)	Operate or reset: 50 ms
Sensitivity adjustment		Smart Tuning (2-point tuning, full auto tuning, 1-point tuning, tuning without workpiece, 2-point area tuning, 1-point area tuning, or area tuning without workpiece), or manual adjustment
No. of Units for mutual interference prevention	Super-high-speed mode (SHS) *2	0
	High-speed mode (HS)	2
	Standard mode (Stnd)	2
	Giga-power mode (GIGA)	2
Other Functions	Timer	Select from timer disabled, OFF-delay, ON-delay, one-shot, or ON-delay + OFF-delay timer: 1 to 9,999 ms
	Zero reset	Negative values can be displayed. (Threshold value is shifted.)
	Resetting settings *3	Select from initial reset (factory defaults) or user reset (saved settings).
	Eco mode	Select from OFF (digital displays lit) or ECO (digital displays not lit).
	Bank switching	Select from banks 1 to 4.
	Output 1	Select from Normal detection mode, Area detection mode, or hold mode.
	Output 2	Select from Normal detection mode or Error output mode.
	Keep function *4	Select from ON or OFF.
	Background suppression *5	Select from ON or OFF.
	Hysteresis width	Select from standard setting or user setting.

> Fiber Sensor/Laser Photoelectric Sensors N-Smart Smart Laser Amplifier Unit (CMOS type) E3NC-SA0

Dimensions
Amplifier Unit with Connector for Sensor Communications Unit E3NC-SAO

Fiber Sensors/Laser Photoelectric Sensor/Proximity Sensor E3X/E3C-LDA/E2C-EDA communication unit connection series

Easily connect fiber sensors, laser photoelectric sensors, and proximity sensors to EtherCAT

- Ultra high-speed communication of sensor output
- Sensor functions such as reading present values, changing settings and tuning are controlled by EtherCAT
- Up to 30 amplifiers can be connected

System Configuration

Sensor Communications Unit E3X-ECT

EtherCAT communication unit makes it easy to manage sensor settings

- Programless transmission of ON/OFF signals and detected quantities to host PLC (PDO communications).
- Reading and writing threshold values and function settings, teaching, and other operations are possible (SDO communications).
-Wire saving: simply connect the communications cable and power cable, and slide the Amplifier Units from the side.
- Up to 30 Sensor Amplifier Units can be connected.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Connectable sensors

Type	Model	Features
Fiber Amplifier Unit	E3X-HD0	Standard Fiber Amplifier Unit with easy operation and settings
	E3X-MDA0	Two-channel Fiber Amplifier Unit allows connection of two bundles of fibers
	E3X-DA0-S	High-functionality Fiber Amplifier Unit enables two threshold value settings
Proximity Sensor Amplifier Unit	E3C-LDA0	Laser Amplifier Unit enables connection of 3 types of laser beam sensors.

General Specifications

Item	\quad Specifications
Power supply voltage	20.4 to 26.4 VDC
Power consumption	2.4 W max. (Not include sensors current) 100 mA max. at 24 VDC (Not include sensors current)
Indicators	$\mathrm{L} / \mathrm{A} \mathrm{IN}$ (yellow), L/A OUT (yellow), PWR (green) RUN (green), ERROR (red), SS (Sensor Status) (green/red)
Vibration resistance	10 to 150 Hz with double-amplitude of 0.7 mm or $50 \mathrm{~m} / \mathrm{s}^{2}$ for 80 minutes each in X, Y and Z directions
Shock resistance	$150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in 3 directions
Dielectric strength	500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute
Insulation resistance	$20 \mathrm{M} \Omega$ min.
Ambient operating temperature	0 to $+55{ }^{\circ} \mathrm{C}$
Ambient operating temperature	25 to 85% (with no condensation)
Storage temperature	-30 to $+70{ }^{\circ} \mathrm{C}$ (with no icing or condensation)
Storage humidity	25 to 85% (with no condensation)
Installation	Mounted on $35-\mathrm{mm}$ DIN Track
Accessories	Power supply connector, DIN Track End Plates (2 pieces), and Instruction Manual
Weight (packed state/Amplifier only)	Approx. $220 \mathrm{~g} /$ Approx. 95 g

Fiber Sensors/Laser Photoelectric Sensor/Proximity Sensor
Sensor Communications Unit E3X-ECT
EtherCAT Communications Specifications

Item	\quad Specification
Communication protocol	Dedicated protocol for EtherCAT
Modulation	Baseband method
Baud rate	100 Mbps
Physical layer	$100 B A S E-T X$ (IEEE802.3)
Connectors	RJ45 shielded connector $\times 2$ CN IN: EtherCAT input CN OUT: EtherCAT output
Topology	Daisy chain
Communications media	Category 5 or higher (cable with double, aluminum tape and braided shielding is recommended.)
Communications distance	Distance between nodes (slaves): 100 m max.
Noise resistance	Conforms to IEC 61000-4-4, 1 kV or higher
Node address setting method	Set with decimal rotary switch or Sysmac Studio
Node address range	1 to 999: Set with rotary switch 1 to 65535: Set with Sysmac Studio
LED display	PWR $\times 1$ L/A IN (Link/Activity IN) $\times 1$ L/A OUT (Link/Activity OUT) $\times 1$ RUN $\times 1$ ERR $\times 1$
Process data	Variable PDO Mapping
PDO size/node	36 byte max.
Mailbox	Emergency messages, SDO requests, SDO responses, and SDO information
SYNCHRONIZATION mode	Free Run mode or DC mode 1

Dimensions

E3X-ECT

Version Information

Sensor Communications Unit and Sysmac Studio

Sensor Communications Unit	Sysmac Studio version	
	Ver.1.01 or lower	Ver.1.02 or higher
E3X-ECT	Not supported.	supported.

Standard Fiber Amplifier Unit E3X-HDO

High Functionality Fiber Amplifier Long-term Stable Detection with Your Finger Tip

- Smart Tuning allows of the optimum settings easily.
- High functionality, and easy operation through ultimate usability.
- Long-team stable detection.
- Smart Power Control enables the compensation of the incident level and light intensity automatically by detecting dirt,vibration and LED aged deterioration.
- Lighting element GIGA RAY II provides ample detection capability in a wide range of applications

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

General Specifications

Item		Specifications
Model		E3X-HD0
Connection method		Connector for Sensor Communications Unit
Light source (wavelength)		Red, 4-element LED (625 nm)
Power supply voltage		12 to 24 VDC $\pm 10 \%$, ripple (P-P) 10\% max.
Power consumption		Normal Mode: 720 mW max. (Current consumption: 30 mA max. at $24 \mathrm{VDC}, 60 \mathrm{~mA}$ max. at 12 DVC) Power Saving Eco Mode: 530 mW max. (Current consumption: 22 mA max. at 24 VDC, 44 mA max. at 12 VDC)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	High-speed mode (HS)	Operate or reset: 250μ (default setting)
	Standard mode (Stnd)	Operate or reset: 1 ms
	Giga-power mode (GIGA)	Operate or reset: 16 ms
No. of Units for mutual interference prevention		Possible for up to 10 units (optical communications sync)
Auto power control (APC)		Always ON
Other functions		Power tuning, differential detection, DPC, timer (OFF-delay, ON-delay, or one-shot), zero reset, resetting settings, and Eco Mode
Ambient Illumination (Receiver side)		Incandescent lamp: 20,000 lux max., Sunlight: 30,000 lux max.
Maximum connectable Units		with E3X-ECT: 30 units (Number of connectable amplifiers)
Ambient temperature range		Operating: Groups of 1 to 2 Amplifiers: 0 to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifers: 0 to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifers: 0 to $45^{\circ} \mathrm{C}$ Groups of 17 to 30 Amplifers: 0 to $40^{\circ} \mathrm{C}$ Storage: - 30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range		Operating and storage: 35% to 85% (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance		Destruction: 10 to 150 Hz with a 0.7 -mm double amplitude for 80 minutes each in X, Y and Z directions
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in X, Y, and Z directions
Degree of protection		IEC 60529 IP50 (with Protective Cover attached)
Weight (packed state/Amplifier only)		Approx. $65 \mathrm{~g} /$ Approx. 25 g
Materials	Case	Heat-resistant ABS
	Cover	Polycabonate (PC)
Accessories		Instruction Manual

Dimensions

E3X-HDO

Two-channel Fiber Amplifier Unit E3X-MDAO

Two-channel fiber amplifier on one unit

- Features a Power Tuning function that optimizes light reception at the press of a button.
- Combines newly developed 4-element LEDs with an APC circuit to ensure stable, long-term LED performance.
- 2-channel models achieve the thinnest profile in the industry, at only 5 mm per channel. (According to July 2012)
- 2-channel models also offer AND/OR control output.

For details on the Fiber Units that you can connect, refer to product information on your OMRON website.

or most recent information on models that have been certified for safety standards, refer to your OMRON website.

General Spesifications

Item		Specifications
Model		E3X-MDA0
Connection method		Connector for Sensor Communications Unit
Light source (wavelength)		Red LED (635 nm)
Power supply voltage		12 to 24 VDC $\pm 10 \%$, ripple (P-P) 10\% max.
Power consumption		1,080 mW max. (current consumption: 45 mA max. at power supply voltage of 24 VDC)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	High-speed mode	Operate or reset: $450 \mu \mathrm{~s}$
	Standard mode	Operate or reset: 1 ms
	High-resolution mode	Operate or reset: 4 ms
No. of Units for mutual interference prevention		Possible for up to 9 Units (18 channels) *
Auto power control (APC)		Always ON
Other functions		Power tuning, timer (OFF-delay, ON-delay, or one-shot), zero reset, resetting settings, Eco Mode and output setting (channel 2 output, AND, OR, leading edge sync, falling edge sync, or differential output)
Ambient Illumination (Receiver side)		Incandescent lamp: 10,000 lux max., Sunlight: 20,000 lux max.
Maximum connectable Units		with E3X-ECT: 30 units (Number of connectable amplifiers)
Ambient temperature range		Operating: Groups of 1 to 2 Amplifiers: 0 to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifers: 0 to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifers: 0 to $45^{\circ} \mathrm{C}$ Groups of 17 to 30 Amplifers: 0 to $40^{\circ} \mathrm{C}$ Storage: - 30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range		Operating and storage: 35% to 85% (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$
Dielectric strength		$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance		Destruction: 10 to 150 Hz with a $0.7-\mathrm{mm}$ double amplitude for 80 minutes each in X, Y and Z directions
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in X, Y, and Z directions
Degree of protection		IEC 60529 IP50 (with Protective Cover attached)
Weight (packed state)		Approx. 55 g
Materials	Case	Polybutylene terephthalate (PBT)
	Cover	Polycabonate (PC)
Accessories		Instruction Manual

[^37]
Dimensions

E3X-MDAO

High-functionally Fiber Amplifier Unit E3X-DAO-S

An Extensive of Standard Functions to Support the World's Highest Level of Stable Detection

- "GIGA RAY" Giga Power Lighting Element to create a wide variety of value.
- Power turning to easily set the optimum light level.
- Active Thereshold Control (ATC) reduces incorrect operation due to dust, oil, or other influences.
- Automatic Power Control (APC) is always enabled to stabilize emitter power with high accuracy.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

General Specifications

Item		Specifications
Model		E3X-DA0-S
Connection method		Connector for Sensor Communications Unit
Light source (wavelength)		Red, 4-element LED (625 nm)
Power supply voltage		12 to 24 VDC $\pm 10 \%$, ripple (P-P) 10\% max.
Power consumption		Normal mode: 960 mW max. (Current consumption: 40 mA max. at $24 \mathrm{VDC}, 80 \mathrm{~mA}$ max. at 12 VDC) Power saving ECO1: 720 mW max. (Current consumption: 30 mA max. at 24 VDC, 60 mA max. at 12 VDC) Power saving ECO2: 600 mW max. (Current consumption: 25 mA max. at 24 VDC, 50 mA max. at 12 VDC)
Protection circuits		Power supply reverse polarity protection, output short-circuit protection and output reverse polarity protection
Response time	High-speed mode	Operate or reset: $250 \mu \mathrm{~s}$
	Standard mode	Operate or reset: 1 ms
	High-resolution mode	Operate or reset: 4 ms
	Tough mode	Operate or reset: 16 ms
No. of Units for mutual interference prevention		Possible for up to 10 units
Auto power control (APC)		Always ON
Other functions		Power tuning, differential detection, timer (OFF-delay, ON-delay, One-shot, or ON-delay + OFF-delay timer), zero reset, resetting settings, Eco Mode and output setting (output for each channel, area output, or self-diagnosis)
Ambient Illumination (Receiver side)		Incandescent lamp: 10,000 lux max., Sunlight: 20,000 lux max.
Maximum connectable Units		with E3X-ECT: 30 units (Number of connectable amplifiers)
Ambient temperature range		Operating: Groups of 1 to 2 Amplifiers: 0 to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifers: 0 to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifers: 0 to $45^{\circ} \mathrm{C}$ Groups of 17 to 30 Amplifers: 0 to $40^{\circ} \mathrm{C}$ Storage: - 30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range		Operating and storage: 35\% to 85\% (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength		$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance		Destruction: 10 to 150 Hz with a 0.7-mm double amplitude for 80 minutes each in X, Y and Z directions
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in X, Y, and Z directions
Degree of protection		IEC 60529 IP50 (with Protective Cover attached)
Weight (packed state)		Approx. 55 g
Materials	Case	Polybutylene terephthalate (PBT)
	Cover	Polycabonate (PC)
Accessories		Instruction Manual

[^38]
E3X-DAO-S

Laser Photoelectric Sensor Amplifier Unit
 E3C-LDAO

Three beams are selectable to match the work: spot, line, and area

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

General Specifications

Item		Specifications
Model		E3C-LDA0
Connection method		Connector for Sensor Communications Unit
Power supply voltage		12 to 24 VDC $\pm 10 \%$, ripple (P-P) 10\% max.
Power consumption		1,080 mW max. (current consumption: 45 mA max. at power supply voltage of 24 VDC)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	High-speed mode	Operate or reset: $250 \mu \mathrm{~s}$
	Standard mode	Operate or reset: 1 ms
	High-resolution mode	Operate or reset: 4 ms
No. of Units for mutual interference prevention		Possible for up to 10 units
Auto power control (APC)		Always ON
Other functions		Differential detection, timer (OFF-delay, ON-delay, or one-shot), zero reset, resetting settings, counter and output setting (channel 2 output, area output, or self-diagnosis.)
Maximum connectable Units		with E3X-ECT: 30 units (Number of connectable amplifiers)
Ambient temperature range		Operating: Groups of 1 to 2 Amplifiers: 0 to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifers: 0 to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifers: 0 to $45^{\circ} \mathrm{C}$ Groups of 17 to 30 Amplifers: 0 to $40^{\circ} \mathrm{C}$ Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range		Operating and storage: 35% to 85% (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$
Dielectric strength		$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance		Destruction: 10 to 150 Hz with a 0.7-mm double amplitude for 80 minutes each in X, Y and Z directions
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in X, Y, and Z directions
Degree of protection		IEC 60529 IP50 (with Protective Cover attached)
Weight (packed state)		Approx. 55 g
Materials	Case	Polybutylene terephthalate (PBT)
	Cover	Polycabonate (PC)
Accessories		Instruction Manual

Proximity Sensor Amplifier Unit E2C-EDAO

Proximity Sensor with Separate Amplifier Enables Easily Making High-precision Sensitivity Settings

- Wide variety of Sensor Heads to select according to the application. The Sensor Heads use flexible cable.
- High resistance to changes in ambient temperature. Temperature characteristics of $0.08 \% /{ }^{\circ} \mathrm{C}$ (for 5.4-dia. models).
- Make simple and reliable detection settings with micronlevel precision using the teaching function.
- Check the sensing excess gain level on the digital display.
- Support for high-precision positioning and screening with fine positioning to maximize variations.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

For details on the Sensor Heads that you can connect, refer to product information on your OMRON website.

General Specifications

Item		Specifications
Model		E2C-EDA0
Connection method		Connector for Sensor Communications Unit
Power supply voltage		12 to 24 VDC $\pm 10 \%$, ripple (P-P) 10\% max.
Power consumption		1,080 mW max. (current consumption: 45 mA max. at power supply voltage of 24 VDC)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	High-speed mode	Operate or reset: $300 \mu \mathrm{~s}$
	Standard mode	Operate or reset: 1 ms
	High-resolution mode	Operate or reset: 4 ms
No. of Units for mutual interference prevention		Possible for up to 5 units
Other functions		Differential detection,timer (OFF-delay, ON-delay, or one-shot), zero reset, resetting settings, Hysteresis settings and output setting (channel 2 output, area output, self-diagnosis, or open circuit detection.)
Maximum connectable Units		with E3X-ECT: 30 units (Number of connectable amplifiers)
Ambient temperature range		Operating: When connecting 1 to 2 Units: 0 to $55^{\circ} \mathrm{C}$ When connecting 3 to 5 Units: 0 to $50^{\circ} \mathrm{C}$ When connecting 6 to 16 Units: 0 to $45^{\circ} \mathrm{C}$ When connecting 17 to 30 Units: 0 to $40^{\circ} \mathrm{C}$ When used in combination with an E2C-EDR6-F When connecting 3 to 4 Units: 0 to $50^{\circ} \mathrm{C}$ When connecting 5 to 8 Units: 0 to $45^{\circ} \mathrm{C}$ When connecting 9 to 16 Units: 0 to $40^{\circ} \mathrm{C}$ When connecting 17 to 30 Units: 0 to $35^{\circ} \mathrm{C}$ Storage: - 30 to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity range		Operating and storage: 35% to 85% (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength		1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance		Destruction: 10 to 150 Hz with a 0.7-mm double amplitude for 80 minutes each in X, Y and Z directions
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in X, Y, and Z directions
Degree of protection		IEC 60529 IP50 (with Protective Cover attached)
Weight (packed state)		Approx. 55 g
Materials	Case	Polybutylene terephthalate (PBT)
	Cover	Polycabonate (PC)
Accessories		Instruction Manual

EtherCAT Remote I/O Terminals
 GX-Series

Realizes high-speed communication to match a variety of applications

- Digital I/O Terminals

Inputs/Outputs the digital ON/OFF signals.

- Analog I/O Terminals

Inputs/Outputs the analog signal of $0-5 \mathrm{~V}$ or $4-20 \mathrm{~mA}$, etc., and executes A/D or D/A conversion.

- Encoder Input Terminal

Performs conversion for pulse input signals from an encoder.

- Expansion Units

Attached to the Digital I/O Unit to expands the I/O points.
Can be attached to a two-tier terminal block type with 16 inputs, 16 outputs, and 16 relay outputs.

General Specifications

It is common specifications of EtherCAT Remote I/O Terminal GX-Series. Refer to the pages of specifications for individual I/O terminals for details.

Item	Specification
Unit power supply voltage	20.4 to 26.4 VDC (24 VDC - 15% to +10\%)
I/O power supply voltage	20.4 to 26.4 VDC (24 VDC -15\% to +10\%)
Noise resistance	Conforms to IEC 61000-4-4, 2 kV (power line)
Vibration resistance	Malfunction 10 to 60 Hz with amplitude of $0.7 \mathrm{~mm}, 60$ to 150 Hz and $50 \mathrm{~m} / \mathrm{s}^{2}$ in X, Y, and Z directions for 80 minutes <Relay Output Unit GX-OC1601 only> 10 to 55 Hz with double-amplitude of 0.7 mm
Impact resistance	$150 \mathrm{~m} / \mathrm{s}^{2}$ with amplitude of 0.7 mm <Relay Output Unit GX-OC1601 only> $100 \mathrm{~m} / \mathrm{s}^{2}$ (3 times each in 6 directions on 3 axes)
Dielectric strength	600 VAC (between isolated circuits)
Isolation resistance	$20 \mathrm{M} \Omega$ or more (between isolated circuits)
Ambient operating temperature	-10 to $55^{\circ} \mathrm{C}$
Operating humidity	25\% to 85\% (with no condensation)
Operating atmosphere	No corrosive gases
Storage temperature	-25 to $65^{\circ} \mathrm{C}$
Storage humidity	25\% to 85\% (with no condensation)
Terminal block screws tightening torque *	M3 wiring screws: $0.5 \mathrm{~N} \bullet \mathrm{~m}$ M3 terminal block mounting screws: $0.5 \mathrm{~N} \bullet \mathrm{~m}$
Mounting method	35-mm DIN track mounting

* Applicable only to 2-tier terminal block and 3-tier terminal block type slaves.

EtherCAT Communications Specifications

Communications Specifications of GX-Series EtherCAT Remote I/O Terminal

Item	
Communication protocol	Dedicated protocol for EtherCAT
Modulation	Base band
Baud rate	100 Mbps
Physical layer	100 BASE-TX (IEEE802.3)
Connectors	RJ45 shielded connector $\times 2$ CN IN: EtherCAT input CN OUT: EtherCAT output
Communications media	Category 5 or higher (cable with double, aluminum tape and braided shielding is recommended.)
Communications distance	Distance between nodes (slaves): 100 m max.
Noise resistance	Conforms to IEC 61000-4-4, 1 kV or higher
Node address setting method	Set with decimal rotary switch or Sysmac Studio
Node address range	1 to 99: Set with rotary switch 1 to 65535: Set with Sysmac Studio
LED display	PWR $\times 1$ L/A IN (Link/Activity IN) $\times 1$ L/A OUT (Link/Activity OUT) $\times 1$ RUN $\times 1$ ERR $\times 1$
Process data	Fixed PDO mapping
PDO size/node	2 bit to 256 byte
Mailbox	Emergency messages, SDO requests, SDO responses, and SDO information
SYNCHRONIZATION mode	Digital I/O Slave Unit and Analog I/O Slave Unit: Free Run mode (asynchronous) Encoder Input Slave Unit: DC mode 1

Version Information

Unit Versions

Units	Models	Unit Version	
		Unit version 1.0	Unit version 1.1
GX-Series EtherCAT Slave Units	GX- $\square \square \square \square \square$	Supported	Supported
Compatible Sysmac Studio version		Version1.00 or higher*	Version1.00 or higher

* The function that was enhanced by the upgrade for Unit version1.1 can not be used. For detail, refer to "Function Support by Unit Version".

Function Support by Unit Version

The following tables show the relationship between unit versions and CX-Programmer versions.
Unit Versions and Programming Devices

Unit	GX-Series EtherCAT Slave Units	
Model	GX-Unit version Item	Unit version $\mathbf{1 . 0}$
Sysmac error status	No Supported	Unit version $\mathbf{1 . 1}$
Save the node address setting	No Supported	Supported
Serial Number Display	No Supported	Supported
ESI standard (1.0)	Supported	Supported
SII data check	No Supported	Supported

Digital I/O Terminal 2-tier Terminal Block Type GX- \square D16 $\square 1 / 0 C 1601$

High-speed digital I/O terminal with the screw type terminal block for EtherCAT communications

- Detachable screw terminal block facilitates the maintenance.
- The expansion unit can be connected.
(One expansion unit per one I/O terminal unit.) Input/output point can be flexibly increased depending on the system.
- Input response time can be switched for high-speed processing.
- Selectable node address setting methods: setting with rotary switch and with tool software.
When setting the nodes with rotary switch, setting is easy and node identification becomes possible for maintenance.

Expansion Units

One Expansion Unit can be combined with one Digital I/O Terminal (GX-ID16 $\square 1 / O D 16 \square 1 / O C 1601$). The following Expansion Units are available. They can be combined in various ways for flexible I/O capacity expansion.

Model	I/O points	Input capacity	Output capacity
XWT-ID08	8 DC inputs (NPN)	8	0
XWT-ID08-1	8 DC inputs (PNP)	8	0
XWT-OD08	8 transistor outputs (NPN)	0	8
XWT-OD08-1	8 transistor outputs (PNP)	0	8
XWT-ID16	16 DC inputs (NPN)	16	0
XWT-ID16-1	16 DC inputs (PNP)	16	0
XWT-OD16	16 transistor outputs (NPN)	0	16
XWT-OD16-1	16 transistor outputs (PNP)	0	16

EthercAT Remote I/O Terminals GX-Series Digital I/O Terminal 2-tier Terminal Block Type

General Specifications

For Common Specifications of I/O terminals, refer to page 302.

Input Section Specifications

16-point Input Terminals

Item	Specification	
	GX-ID1611	GX-ID1621
Input capacity	16 points	
Internal I/O common	NPN	PNP
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max. /input (at 24-VDC) 3.0 mA max. /input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}$ (D	efault setting: 1 ms)
Number of circuits per common	16 inputs/common	
Input indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Unit power supply current consumption	90 mA max . (for 20.4 to 26.4-VDC power supply voltage)	
I/O power supply current consumption	5 mA max . (for 20.4 to 26.4-VDC power supply voltage)	
Weight	180 g max .	
Expansion functions	Enabled	
Short-circuit protection function	No	

Output Section Specifications

16-point Output Terminals

Item	Specification	
	GX-OD1611	GX-OD1621
Output capacity	16 points	
Rated current (ON current)	0.5 A/output, 4.0 A/common	
Internal I/O common	NPN	PNP
Residual voltage	1.2 V max. (0.5 ADC, between each output terminal and the G terminal)	1.2 V max. (0.5 ADC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	16 points/common	
Output indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight	180 g max.	
Expansion functions	Enabled	
Output handling for communications errors	Select either hold or clear	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

Relay 16-point Output Terminals

Item	Specification
	GX-0C1601
Output capacity	16 points
Mounted relays	NY-5W-K-IE (Fujitsu Component) *
Rated load	Resistance load 250 VAC 2 A/output, common 8 A 30 VDC 2 A/output, common 8 A
Rated ON current	3 A/output
Maximum contact voltage	250 VAC, 125 VDC
Maximum contact current	3 A/output
Maximum switching capacity	750 VAAC, 90 WDC
Minimum applicable load (reference value)	5 VDC 1mA
Mechanical service life	20,000,000 operations min.
Electrical service life	100,000 operations min.
Number of circuits per common	16 points/common
Output indicators	LED display (yellow)
Isolation method	Relay isolation
I/O power supply method	The relay drive power is supplied from the unit power supply.
Unit power supply current consumption	210 mA max. (for 20.4 to 26.4-VDC power supply voltage)
Weight	290 g max.
Expansion functions	Enabled
Output handling for communications errors	Select either hold or clear
Short-circuit protection function	No

* For the specification of individual relay, refer to the data sheet of published by manufacturers.

Precautions for Correct Use

- With a current of between 2 and 3 A (8 to 10 A per common), either ensure that the number of points per common that simultaneously turn ON does not exceed 4 or ensure that the ambient temperature does not exceed $45^{\circ} \mathrm{C}$. Also, there are no restrictions if the current does not exceed 2 A (8 A per common).
- The rated current is the value for assuring normal operation, and not for assuring durability of the relays. The relay service life depends greatly on factors such as the operating temperature, the type of load, and switching conditions. The actual equipment must be checked under actual operating conditions.

EtherCAT Remote I/O Terminals GX-Series
Digital I/O Terminal 2-tier Terminal Block Type

Input and Output Section Specifications

8 -point Input and 8-point output Terminals

General Specifications

Item	Specification	
	GX-MD1611	GX-MD1621
Internal I/O common	NPN	PNP
I/O indicators	LED display (yellow)	
Unit power supply current consumption	80 mA max. (for 20.4 to 26.4-VDC power supply volt- age)	
Weight	190 g max.	
Expansion functions	No	
Short-circuit protec- tion function	No	

Input Section

Item	Specification	
	GX-MD1611	GX-MD1621
Input capacity	8 points	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, 32 ms (Default setting: 1 ms)	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4 -VDC power supply voltage)	

Output Section

Item	Specification	
	GX-MD1611	GX-MD1621
Output capacity	8 points	
Rated output current	$0.5 \mathrm{~A} /$ output, 2.0 A/common	
Residual voltage	1.2 V max. (0.5 ADC, be- tween each output termi- nal and the G terminal)	1.2 V max. (0.5 ADC, be- tween each output termi- nal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
I/O power supply cur- rent consumption	5 mA max. (for 20.4 to 26.4-VDC power supply volt- age)	
Output handling for communications er- rors	Select either hold or clear	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

EtherCAT Remote I/O Terminals GX-Series Digital I/O Terminal 2-tier Terminal Block Type
Components and Functions
$\begin{array}{ll}16 \text { Inputs Terminal } & \text { GX-ID1611/ID1621 } \\ 16 \text { Outputs Terminal } & \text { GX-OD1611/OD1621 }\end{array}$

Relay 16-point Output Terminals GX-OC1601

8 Inputs Terminal / 8 Outputs Terminal GX-MD1611/MD1621

No.	Name	Function
$\mathbf{1}$	Communica- tions connector	(CN IN)Connects the communications cable which comes from the Master Unit side. (CN OUT) Connects the communications cable of the next I/O terminal. $\mathbf{2}$Unit Power Sup- ply Connector
$\mathbf{3}$	Status indicator	It indicates the communication state and the opera- (ion state of I/O terminals.
$\mathbf{4}$	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
$\mathbf{5}$	Input terminal: Input indicator (0 to 15) Output terminal: Output indicator (0 to 15)	Indicates the state of input/output contact (ON/OFF). Input terminal: Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state) Output terminal: Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state)
$\mathbf{6}$	Terminal Block	Connects external devices and the I/O power supply. V, G: I/O power supply terminals O to 15: Input terminals
$\mathbf{7}$	DIN track mounting hook	Fixes a slave to a DIN track.

No.	Name	Function
$\mathbf{1}$	Communica- tions connector	(CN IN)Connects the communications cable which comes from the Master Unit side. (CN OUT) Connects the communications cable of the next I/O terminal. $\mathbf{2}$Unit Power Sup- ply Connector
$\mathbf{3}$	Status indicator	It indicates the communication state and the opera- tion state of I/O terminals.
$\mathbf{4}$	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
$\mathbf{5}$	Output indicator (0 to 15)	Indicates the state of output contact (ON/OFF). Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state)
$\mathbf{6}$	Output Relay	Turn ON/OFF the contacts.
$\mathbf{7}$	Terminal Block	Connects external devices and the I/O power supply. COMO, COM1: Common terminals 0 to 15: Output terminals
$\mathbf{8}$	DIN track mounting hook	Fixes a slave to a DIN track.

EtherCAT Remote I/O Terminals GX-Series
Digital I/O Terminal 2-tier Terminal Block Type

Wiring

GX-OD1611 (NPN)

GX-OC1601

GX-MD1611 (NPN)

GX-MD1621 (PNP)

Note: Wire colors have been changed according to revisions in the JIS standards for photoelectric and proximity sensors. The colors in parentheses are the wire colors prior to the revisions.

Dimensions

GX-ID1611/ID1621
GX-OD1611/OD1621

GX-OC1601

Digital I/O Terminal 3-tier Terminal Block Type
 GX-ID16 2/OD16 $2 /$ MD16 $\square 2$

A common terminal is provided for each contact.
 It eliminate the needs for relay terminal blocks

- It is unnecessary to share the common terminal among multiple contacts.
Easy-to-find wiring locations.
- Detachable screw terminal block facilitates the maintenance.
- Input response time can be switched for high-speed processing.
- Selectable node address setting methods: setting with rotary switch and with tool software.
When setting the nodes with rotary switch, setting is easy and node identification becomes possible for maintenance.

General Specifications

For Common Specifications of I/O terminals, refer to page 302.

Input Section Specifications 16-point Input Terminals

Item	Specification	
	GX-ID1612	GX-ID1622
Input capacity	16 points	
Internal I/O common	NPN	PNP
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, 32 ms (Default setting: 1 ms)	
Number of circuits per common	8 points/common	
Input indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Input device supply current	$100 \mathrm{~mA} / \mathrm{point}$	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight	370 g max .	
Expansion functions	No	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

Output Section Specifications 16-point Output Terminals

Item	Specification	
	GX-OD1612	GX-OD1622
Output capacity	16 points	
Rated current (ON current)	0.5 A/output, 4.0 A/common	
Internal I/O common	NPN	PNP
Residual voltage	1.2 V max. (0.5 ADC, between each output terminal and the G terminal)	1.2 V max. (0.5 ADC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	8 points/common	
Output indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Output device supply current	$100 \mathrm{~mA} /$ point	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4 -VDC power supply voltage)	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4 -VDC power supply voltage)	
Weight	370 g max.	
Expansion functions	No	
Output handling for communications errors	Select either hold or clear	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

EtherCAT Remote I/O Terminals GX-Series Digital I/O Terminal 3-tier Terminal Block Type

Input and Output Section Specifications
8 -point Input and 8-point output Terminals
General Specifications

Item	Specification	
	GX-MD1612	GX-MD1622
Internal I/O com- mon	NPN	PNP
I/O indicators	LED display (yellow)	
Unit power supply current consump- tion	90 mA max. (for 20.4 to 26.4-VDC power supply volt- age)	
Weight	370 g max.	
Expansion func- tions	No	
Short-circuit pro- tection function	No	

Input Section

Item	Specification	
	GX-MD1612	GX-MD1622
Input capacity	8 points	15 VDC min. (between each input ter- minal and the V terminal)
ON voltage	15 VDC min. (between each input ter- minal and the G terminal)	
OFF voltage	5 VDC max. (between each input ter- minal and the V terminal)	5 VDC max. (between each input ter- minal and the G terminal)
OFF current	1.0 mA max./input	
Input current	6.0 mA max./input (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, 0.5 ms, 1 ms, $2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, $32 \mathrm{~ms} \mathrm{(Default} \mathrm{setting:} \mathrm{1} \mathrm{ms)}$	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Input device supply current	$100 \mathrm{~mA} /$ point	
I/O power supply current consump- tion	$5 \mathrm{~mA} \mathrm{max}. \mathrm{(for} \mathrm{20.4} \mathrm{to} \mathrm{26.4-VDC} \mathrm{power} \mathrm{supply} \mathrm{volt-}$ age)	

Output Section

Item	Specification	
	GX-MD1612	GX-MD1622
Output capacity	8 points	
Rated output cur- rent	$0.5 \mathrm{~A} /$ output, $2.0 \mathrm{~A} /$ common	
Residual voltage	1.2 V max. (0.5 ADC, be- tween each output termi- nal and the G terminal)	1.2 V max. (0.5 ADC, be- tween each output termi- nal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Output device sup- ply current	$100 \mathrm{~mA} /$ point	
I/O power supply current consump- tion	5 mA max. (for 20.4 to 26.4-VDC power supply volt-	
Output handling for age errors	Select either hold or clear	

Note: For the I/O power supply current value to V and G terminals, refer to GX-Series Operation Manual (Cat. No. W488).

EtherCAT Remote I/O Terminals GX-Series
Digital I/O Terminal 3-tier Terminal Block Type

Components and Functions

16 Inputs Terminal	GX-ID1612/ID1622
16 Outputs Terminal	GX-OD1612/OD1622

No.	Name	Function
$\mathbf{1}$	Communications connector	(CN IN) Connects the communications cable which comes from the Master Unit side. (CN OUT) Connects the communications cable of the next I/O terminal.
$\mathbf{2}$	Unit Power Supply Connector	Connect the unit power supply (24 VDC).
$\mathbf{3}$	Status indicator	It indicates the communication state and the operation state of I/O terminals.
$\mathbf{4}$	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
$\mathbf{5}$	Input terminal: Input indicator (0 to 15) Output terminal: Output indicator (0 to 15)	Indicates the state of input/output contact (ON/OFF). Input terminal: Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state) Output terminal: Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state)
$\mathbf{6}$	Terminal Block	Connects external devices and the I/O power supply. <Left side> V1, G1: I/O power supply terminals 0 to 7: Input terminals (Output terminals)
$\mathbf{7}$	Dight side>	
V2, G2: I/O power supply terminals		
8 to 15: Input terminals (Output terminals)		

8 Inputs Terminal / 8 Outputs Terminal GX-MD1612/MD1622

No.	Name	Function
$\mathbf{1}$	Communications connector	(CN IN) Connects the communications cable which comes from the Master Unit side. (CN OUT) Connects the communications cable of the next I/O terminal.
$\mathbf{2}$	Unit Power Supply Connector	Connect the unit power supply (24 VDC).
$\mathbf{3}$	Status indicator	It indicates the communication state and the operation state of I/O terminals.
$\mathbf{4}$	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
$\mathbf{5}$	Input indicator (0 to 7)	Indicates the state of input contact (ON/OFF). Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state)
$\mathbf{6}$	Output indicator (0 to 7)	Indicates the state of output contact (ON/OFF). Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state)
$\mathbf{7}$	Terminal Block	Connects external devices and the I/O power supply. <Left side> V1, G1: Input I/O puwer supply terminals 0 to 7: Input terminals
<Right side>		
V2, G2: Output I/O power supply terminals		
0 to 7: Output terminals		

EtherCAT Remote I/O Terminals GX-Series Digital I/O Terminal 3-tier Terminal Block Type
Wiring

GX-ID1612 (NPN)

GX-OD1612 (NPN)

GX-ID1622 (PNP)

GX-OD1622 (PNP)

GX-ID1612/ID1622
GX-OD1612/OD1622
GX-MD1612/MD1622

Dimensions

: Wire colors have been changed according to revisions in the JIS standards for photoelectric and proximity sensors. The colors in parentheses are the wire colors prior to the revisions.

Digital I/O Terminal e-CON Connector Type GX- \square D16 $\square 8 / \square$ D32 $\square 8$

Easy wiring using industry standard e-CON connectors. Special wiring tool is not necessary

- Digital I/O terminal with industry standard e-CON connectors.
- A common terminal is provided for each connector. The I/O terminal and the sensors can be connected directly.
- Input response time can be switched for high-speed processing.
- Selectable node address setting methods: setting with rotary switch and with tool software.
When setting the nodes with rotary switch, setting is easy and node identification becomes possible for maintenance.

General Specifications

For Common Specifications of I/O terminals, refer to page 302.

Input Section Specifications

16-point Input Terminals

Item	Specification	
	GX-ID1618	GX-ID1628
Input capacity	16 points	
Internal I/O common	NPN	PNP
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max .	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}$, $8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}$ (Default setting: 1 ms)	
Number of circuits per common	16 points/common	
Input indicators	LED display (yellow)	
Isolation method	No isolation	
I/O power supply method	Supplied from unit power supply	
Input device supply current	$50 \mathrm{~mA} /$ point	
Unit power supply current consumption	150 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight	140 g max.	
Expansion functions	No	
Short-circuit protection function	Available (Operates at $50 \mathrm{~mA} /$ point min.)	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

32-point Input Terminals

Item	Specification	
	GX-ID3218	GX-ID3228
Input capacity	32 points	
Internal I/O common	NPN	PNP
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max. inp put (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}$, $8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}$ (Default setting: 1 ms)	
Number of circuits per common	32 points/common	
Input indicators	LED display (yellow)	
Isolation method	No isolation	
I/O power supply method	Supplied from unit power supply	
Input device supply current	$50 \mathrm{~mA} /$ point	
Unit power supply current consumption	230 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight	220 g max.	
Expansion functions	No	
Short-circuit protection function	Available (Operates at $50 \mathrm{~mA} /$ point min.)	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

EtherCAT Remote I/O Terminals GX-Series Digital I/O Terminal e-CON Connector Type

Output Section Specifications
16-point Output Terminals

Item	Specification	
	GX-OD1618	GX-OD1628
Output capacity	16 points	
Rated current (ON current)	0.5 A/output, 4.0 A/common	
Internal I/O common	NPN	PNP
Residual voltage	1.2 V max. (0.5 ADC, between each output terminal and the G terminal)	1.2 V max. (0.5 ADC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	16 points/common	
Output indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Output device supply current	$100 \mathrm{~mA} /$ point	
Unit power supply current consumption	80 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight	130 g max.	
Expansion functions	No	
Output handling for communications errors	Select either hold or clear	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

Input and Output Section Specifications
8 -point Input and 8-point output Terminals
General Specifications

Item	Specification	
	GX-MD1618	GX-MD1628
Internal I/O common	NPN	PNP
I/O indicators	LED display (yellow)	
Unit power supply current con- sumption	120 mA max. (for 20.4 to 26.4-VDC pow- er supply voltage)	
Weight	$140 \mathrm{~g} \mathrm{max}$.	
Expansion functions	No	
Short-circuit protection function	Available at input section only (Operates at $50 \mathrm{~mA} /$ point min.)	

32-point Output Terminals

Item	Specification	
	GX-OD3218	GX-OD3228
Output capacity	32 points	
Rated current (ON current)	0.5 A/output, 4.0 A/common	
Internal I/O common	NPN	PNP
Residual voltage	1.2 V max. (0.5 ADC, between each output terminal and the G terminal)	1.2 V max. (0.5 ADC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max .	
OFF delay	1.5 ms max.	
Number of circuits per common	16 points/common	
Output indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by l/O power supply	
Output device supply current	$100 \mathrm{~mA} /$ point	
Unit power supply current consumption	100 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight	210 g max.	
Expansion functions	No	
Output handling for communications errors	Select either hold or clear	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

EtherCAT Remote I/O Terminals GX-Series Digital I/O Terminal e-CON Connector Type

Input Section

Item	Specification	
	GX-MD1618	GX-MD1628
Input capacity	8 points	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, 32 ms (Default setting: 1 ms)	
Number of circuits per common	8 points/common	
Isolation method	No-isolation	
I/O power supply method	Supplied from unit power supply	
Input device supply current	$50 \mathrm{~mA} /$ point	
1/O power supply current consumption	5 mA max. (for 20.4 to 26.4-VDC power supply voltage)	

16-point Input and 16-point output Terminals General Specifications

Item	Specification	
	GX-MD3218	GX-MD3228
Internal I/O common	NPN	PNP
I/O indicators	LED display (yellow)	
Unit power supply current consumption	140 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight	220 g max.	
Expansion functions	No	
Short-circuit protec- tion function	Available at input section only (Operates at $50 \mathrm{~mA} /$ point min.)	

Input Section

Item	Specification	
	GX-MD3218	GX-MD3228
Input capacity	16 points	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}$, 32 ms (Default setting: 1 ms)	
Number of circuits per common	16 points/common	
Isolation method	No-isolation	
I/O power supply method	Supplied from unit power supply	
Input device supply current	$50 \mathrm{~mA} /$ point	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4-VDC power supply voltage)	

Output Section

Item	Specification	
	GX-MD1618	GX-MD1628
Output capacity	8 points	
Rated output current	$0.5 \mathrm{~A} /$ output, 2.0 A/common	
Residual voltage	1.2 V max. (0.5 ADC, be- tween each output termi- nal and the G terminal)	$1.2 \mathrm{~V} \mathrm{max}. \mathrm{(0.5} \mathrm{ADC}, \mathrm{be-}$ tween each output termi- nal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	$0.5 \mathrm{~ms} \mathrm{max}$.	
OFF delay	1.5 ms max.	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Output device supply current	$100 \mathrm{~mA} /$ point	
I/O power supply cur- rent consumption	5 mA max. (for 20.4 to 26.4-VDC power supply volt-	
age)		

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

Output Section

Item	Specification	
	GX-MD3218	GX-MD3228
Output capacity	16 points	
Rated output current	$0.5 \mathrm{~A} /$ output, $2.0 \mathrm{~A} /$ common	
Residual voltage	$1.2 \mathrm{~V} \mathrm{max}. \mathrm{(0.5} \mathrm{ADC}, \mathrm{be-}$ tween each output termi- nal and the G terminal)	$1.2 \mathrm{~V} \mathrm{max}. \mathrm{(0.5} \mathrm{ADC}, \mathrm{be-}$ tween each output termi- nal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	16 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Output device supply current	$100 \mathrm{~mA} /$ point	
I/O power supply cur- rent consumption	$5 \mathrm{~mA} \mathrm{max}. \mathrm{(for} \mathrm{20.4} \mathrm{to} \mathrm{26.4-VDC} \mathrm{power} \mathrm{supply} \mathrm{volt-}$	
age)		

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

16 Inputs Terminal GX-ID1618/ID1628

No.	Name	Function
$\mathbf{1}$	$\begin{array}{l}\text { Communications } \\ \text { connector }\end{array}$	$\begin{array}{l}\text { (CN IN) } \begin{array}{l}\text { Connects the communications cable which comes } \\ \text { from the Master Unit side. } \\ \text { (CN OUT) Connects the communications cable of the next I/ } \\ \text { O terminal. }\end{array} \\ \hline \mathbf{2}\end{array} \begin{array}{l}\text { Unit Power Supply } \\ \text { Connector }\end{array}$
$\mathbf{3}$	Status indicator	$\begin{array}{l}\text { Connect the unit power supply (24 VDC). }\end{array}$
$\mathbf{4}$	Node address Switch	$\begin{array}{l}\text { It sets node addresses of terminals (decimal). } \\ \text { of I/O terminals. }\end{array}$
$\mathbf{5}$	Input indicator (0 to 15)	$\begin{array}{l}\text { Inding range is 00 to 99. }\end{array}$
$\mathbf{6}$	I/O connector the state of input contact (ON/OFF). to 15)	Contact OFF (input OFF state)
Lit in yellow: Contact ON (input ON state)		

8 Inputs/8 Outputs Terminal GX-MD1618/MD1628

No.	Name	Function
1	Communications connector	(CN IN) Connects the communications cable which comes from the Master Unit side. (CN OUT) Connects the communications cable of the next I/ O terminal.
2	Unit Power Supply Connector	Connect the unit power supply (24 VDC).
3	Status indicator	It indicates the communication state and the operation state of I / O terminals.
4	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99 .
5	Input indicator (0 to 7)	Indicates the state of input contact (ON/OFF). Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state)
6	Output indicator (0 to 7)	Indicates the state of output contact (ON/OFF). Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state)
7	I/O connector (0 to 15)	Connects an external device. <Top side> For input device <Bottom side> For output device
8	I/O power supply connector	Supplies the I/O power. (For output device)
9	DIN track mounting hook	Fixes a slave to a DIN track.

EtherCAT Remote I/O Terminals GX-Series Digital I/O Terminal e-CON Connector Type

32 Inputs Terminal GX-ID3218/ID3228

No.	Name	Function
$\mathbf{1}$	Communications connector	(CN IN)Connects the communications ca- ble which comes from the Master Unit side. (CN OUT) Connects the communications ca- ble of the next I/O terminal.
$\mathbf{2}$	Unit Power Sup- ply Connector	Connect the unit power supply (24 VDC).
$\mathbf{3}$	Status indicator	It indicates the communication state and the operation state of I/O terminals.
$\mathbf{4}$	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
$\mathbf{5}$	Input indicator (IN1 0 to 15, IN2 0 to 15)	Indicates the state of input contact (ON/OFF). Input terminal: Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state)
$\mathbf{6}$	I/O connector (0 to 15 2)	Connects an external device.
$\mathbf{7}$	DIN track mounting hook	Fixes a slave to a DIN track.

32 Outputs Terminal GX-OD3218/OD3228

No.	Name	Function
$\mathbf{1}$	Communications connector	(CN IN)Connects the communications ca- ble which comes from the Master Unit side. (CN OUT) Connects the communications ca- ble of the next I/O terminal. $\mathbf{2}$ $\mathbf{3}$ Unit Power Sup- ply ConnectorConnect the unit power supply (24 VDC). $\mathbf{4}$ $\mathbf{5}$ Node address indicator SwitchOutput indicator indicates the communication state and the (OUT1 0 to 15, OUT2 OUT2 0 to 15)
It sets node addresses of terminals (decimal). Setting range is 00 to 99.		
$\mathbf{6}$	Indicates the state of output contact (ON/OFF). Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state) (0 to 15 $\times 2$ 2)	Connects an external device.
$\mathbf{7}$	I/O power supply connector	Supplies the I/O power.
$\mathbf{8}$	DIN track mounting hook	Fixes a slave to a DIN track.

16 Inputs/16 Outputs Terminal GX-MD3218/MD3228

No.	Name	Function
$\mathbf{1}$	Communications connector	(CN IN)Connects the communications ca- ble which comes from the Master Unit side. (CN OUT) Connects the communications ca- ble of the next I/O terminal. $\mathbf{2}$Unit Power Sup- ply Connector
$\mathbf{3}$	Status indicator	Connect the unit power supply (24 VDC). $\mathbf{4}$ indicates the communication state and the operation state of I/O terminals.
$\mathbf{5}$	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
to 15) indicator (0	Indicates the state of input contact (ON/OFF). Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state)	
$\mathbf{6}$	Output indicator (0 to 15)	Indicates the state of output contact (ON/OFF). Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state)
$\mathbf{7}$	I/O connector (0 to 15×2)	Connects an external device. <Top side> For input device <Bottom side> For output device
$\mathbf{8}$	I/O power supply connector	Supplies the I/O power. (For output device)
$\mathbf{9}$	DIN track mount- ing hook	Fixes a slave to a DIN track.

Wiring

GX-ID1618 (NPN)

GX-OD1618 (NPN)

GX-ID3218 (NPN)

GX-OD3218 (NPN)

GX-ID1628 (PNP)

GX-OD1628 (PNP)

GX-ID3228 (PNP)

GX-OD3228 (PNP)

EtherCAT Remote I/O Terminals GX-Series
Digital I/O Terminal e-CON Connector Type

GX-MD1618 (NPN)

GX-MD3218 (NPN)

GX-MD1628 (PNP)

GX-MD3228 (PNP)

Note: Wire colors have been changed according to revisions in the JIS standards for photoelectric and proximity sensors. The colors in parentheses are the wire colors prior to the revisions.

EtherCAT Remote I/O Terminals GX-Series Digital I/O Terminal e-CON Connector Type

Dimensions

GX-ID1618/ID1628

GX-OD1618/OD1628 GX-MD1618/MD1628

GX-ID3218/ID3228

GX-OD3218/OD3228

GX-MD3218/MD3228

Analog I/O Terminal 2-tier Terminal Block Type GX-AD0471/DA0271

Analog I/O terminal with screw terminal block for EtherCAT communicaitons

- The input/output range can be easily changed by the setting with the switch.
- Detachable screw terminal block facilitates the maintenance.
- Moving average calculation function.

Settings within the range of $100 \mu \mathrm{~s}-64 \mathrm{~ms}$. (For input only.)

- Disconnection detection function.
(For input only and for usage with $1-5 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ ranges.)
- Selectable node address setting methods: setting with rotary switch and with tool software.
When setting the nodes with rotary switch, setting is easy and node identification becomes possible for maintenance.

General Specifications

For Common Specifications of I/O terminals, refer to page 302.

Input Section Specifications
4-point Input Terminals

Item		Specification	
		Voltage input	Current input
Input capacity		4 points (possible to set number of enabled channels)	
Input range		$\begin{array}{\|l\|} \hline 0 \text { to } 5 \mathrm{~V} \\ 1 \text { to } 5 \mathrm{~V} \\ 0 \text { to } 10 \mathrm{~V} \\ -10 \text { to }+10 \mathrm{~V} \end{array}$	4 to 20 mA
Input range setting method		Input range switch: Common to input CH1/ CH 2 , common to input $\mathrm{CH} 3 / \mathrm{CH} 4$ SDO communication: Possible to set input CH 1 to CH 4 individually	
Maximum signal input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
Input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. 250Ω
Resolution		1/8000 (full scale)	
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ FS	$\pm 0.4 \%$ FS
	-10 to $+55^{\circ} \mathrm{C}$	$\pm 0.6 \%$ FS	$\pm 0.8 \%$ FS
Analog conversion cycle		$500 \mu \mathrm{~s} /$ input When 4 points are used: 2 ms max.	
A/D converted data		Other than $\pm 10 \mathrm{~V}$: 0000 to 1 F 40 Hex full scale (0 to 8000) ± 10 V: F060 to 0FA0 Hex full scale (-4000 to +4000) A/D conversion range: $\pm 5 \% \mathrm{FS}$ of the above data ranges.	
Isolation method		Photocoupler isolation (between input and communications lines) No isolation between input signals	
Unit power supply current consumption		120 mA max. (for 20.4 to 26.4 -VDC power supply voltage)	
Weight		180 g max.	
Accessories		Four short-circuit metal fixtures (for current input) *	

[^39]Output Section Specifications
2-point Output Terminals

Item		Specification	
		Voltage output	Current output
Output capacity		2 points (possible to set number of enabled channels)	
Output range		$\begin{aligned} & 0 \text { to } 5 \mathrm{~V} \\ & 1 \text { to } 5 \mathrm{~V} \\ & 0 \text { to } 10 \mathrm{~V} \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	4 to 20 mA
Output range setting method		Output range switch, SDO communications: Possible to set outputs CH 1 and CH 2 separately.	
External output allowable load resistance		$5 \mathrm{k} \Omega \mathrm{min}$.	600Ω max.
Resolution		1/8000 (full scale)	
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.4 \%$ FS	
	-10 to $+55^{\circ} \mathrm{C}$	$\pm 0.8 \%$ FS	
Analog conversion cycle		$500 \mu \mathrm{~s} /$ input When 2 points are used: 1 ms max.	
D/A converted data		Other than $\pm 10 \mathrm{~V}$: 0000 to 1 F40 Hex full scale (0 to 8000) $\pm 10 \mathrm{~V}$: F 060 to 0 FAO Hex full scale (-4000 to +4000) D/A conversion range: $\pm 5 \%$ FS of the above data ranges	
Isolation method		Photocoupler isolation (between output and communications lines) No isolation between output signals	
Unit power supply current consumption		150 mA max. (for 20.4 to 26.4-VDC power supply voltage)	
Weight		190 g max.	

EtherCAT Remote I/O Terminals GX-Series Analog I/O Terminal 2-tier Terminal Block Type

Components and functions

4-points Analog Inputs Terminal GX-AD0471

2-points Analog Inputs Terminal GX-DA0271

No.	Name	Function
$\mathbf{1}$	Communications connector	(CN IN)Connects the communications cable which comes from the Master Unit side. (CN OUT) Connects the communications cable of the next I/O terminal. $\mathbf{2}$Unit Power Supply Connector
$\mathbf{3}$	Status indicator	Connect the unit power supply (24 VDC). It indicates the communication state and the opera- tion state of I/O terminals.
$\mathbf{4}$	Node address Switch	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
$\mathbf{5}$	Output range switch	DIP switch for setting output range.
$\mathbf{6}$	Terminal Block	Terminal block for analog output signals V1+, V2+: Voltage output positive terminals I1+, I2+: Current output positive terminals $1-, 2-:$ Voltage/current output negative terminals NC: Not used
$\mathbf{7}$	DIN track mounting hook	Fixes a slave to a DIN track.

GX-AD0471

* Short-circuit the "V positive" terminal and "I positive" terminal at current input.
Use the attached short-circuit metal fixture to short-circuit terminals.

GX-DA0271

EtherCAT Remote I/O Terminals GX-Series
Analog I/O Terminal 2-tier Terminal Block Type
Dimensions
GX-AD0471
GX-DA0271

Encoder Input Terminal 3-tier Terminal Block Type GX-EC0211/EC0241

EtherCAT-compatible encoder input terminal which enables high-speed and accurate control

- Two counter function available. Pulse count within 32 bit range.
- Maximum input pulse frequency of 4 MHz (Line driver input after quadrature). High-speed network EtherCAT enables high-speed and accurate control.
- Selectable two input types: Open collector input and line driver input.
- Built-in two external latch inputs and one reset input .
- Selectable node address settings: setting with rotary switches and setting on tool software.
- Detachable screw terminal will facilitate the maintenance work.

General Specifications

For Common Specifications of I/O terminals, refer to page 302.
Open collector inputs Type
Terminal specifications

Item	Specification
Counter point	2 points
Input signal	Counter phase A Counter phase B Counter phase Z Latch input (A/B) Counter reset input
Counter enabled status display	LED display (green)
Input indicators	LED display (yellow)
Unit power supply current consumption	130 mA max. (for 20.4 to 26.4 VDC power supply voltage)
Weight	390 g max.

Pulse input specifications

Item	Specification			
	Counter phase A/B		Counter phase Z	
Input voltage	$\begin{aligned} & \hline 20.4 \text { to } 26.4 \text { VDC } \\ & \text { (24 VDC }-15 \text { to +10\%) } \end{aligned}$	$\begin{aligned} & 4.5 \text { to } 5.5 \text { VDC } \\ & \text { (5 VDC } \pm 5 \% \text {) } \end{aligned}$	$\begin{aligned} & \text { 20.4 to } 26.4 \text { VDC } \\ & \text { (24 VDC }-15 \text { to +10\%) } \end{aligned}$	$\begin{aligned} & 4.5 \text { to } 5.5 \text { VDC } \\ & \text { (5 VDC } \pm 5 \% \text {) } \\ & \hline \end{aligned}$
Input current	$\begin{aligned} & 8.4 \mathrm{~mA} \\ & \text { (at } 24 \mathrm{VDC} \text {) } \end{aligned}$	8.6 mA (at 5 VDC)	$\begin{aligned} & 8.4 \mathrm{~mA} \\ & \text { (at } 24 \mathrm{VDC} \text {) } \end{aligned}$	$\begin{aligned} & 8.6 \mathrm{~mA} \\ & \text { (at } 5 \mathrm{VDC} \text {) } \end{aligned}$
ON voltage	19.6 V min.	4.5 V min.	18.6 V min.	4.5 V min.
OFF voltage	4 V max.	1.5 V max.	4 V max.	1.5 V max.
Input restriction resistance	$2.7 \mathrm{k} \Omega$	430Ω	$2.7 \mathrm{k} \Omega$	430Ω
Maximum response frequency	Single phase 500 kHz (phase difference Multiplication $\times 4,125 \mathrm{kHz}$)		125 kHz	
Filter switching	NA		NA	

Latch/reset input specifications

Item	Specification	
	Latch input (A/B)	Reset input
Internal I/O common	NPN	
Input voltage	20.4 to 26.4 VDC (24 VDC -15 to +10\%)	20.4 to 26.4 VDC (24 VDC -15 to +10\%)
Input impedance	$4.0 \mathrm{k} \Omega$	$3.3 \mathrm{k} \Omega$
Input current	5.5 mA (at 24 VDC)	7 mA (at 24 VDC)
ON voltage/ON current	17.4 VDC min./3 mA min.	14.4 VDC min./3 mA min.
OFF voltage/OFF current	5 VDC max./1 mA max.	5 VDC max./1 mA max.
ON response time	$3 \mu \mathrm{~s}$ max.	$15 \mu \mathrm{~s}$ max.
OFF response time	$3 \mu \mathrm{~s}$ max.	$90 \mu \mathrm{~s}$ max.

Note: For the pulse input timing specifications, refer to USER'S MANUAL (Cat. No. W488).

EtherCAT Remote I/O Terminals GX-Series
Encoder Input Terminal 3-tier Terminal Block Type

Line Driver inputs Type

Terminal specifications

Item	\quad Specification
Counter point	2 points
	Counter phase A Counter phase B Counter phase Z Latch input (A/B) Counter reset input
Counter enabled status display	LED display (green)
Input indicators	LED display (yellow)
Unit power supply current consumption	100 mA max. (for 20.4 to 26.4 VDC power supply voltage)
Weight	$390 \mathrm{~g} \mathrm{max}$.

Pulse input specifications

Item	Specification	
	Counter phase A/B	Counter phase Z
Input voltage	EIA standard RS-422-A line driver level	
Input impedance	$120 \Omega \pm 5 \%$	
gH level input voltage	0.1 V	
gL level input voltage	-0.1 V	1 MHz
Hysteresis voltage	60 mV	
Maximum response frequency	Single phase 4 MHz (phase difference Multiplication $\times 4,1 \mathrm{MHz}$	
Filter switching	NA	

Latch/reset input specifications

Item	Specification	
	Latch input (A/B)	Reset input
Internal I/O common	PNP	
Input voltage	20.4 to 26.4 VDC (24 VDC -15 to +10\%)	20.4 to 26.4 VDC (24 VDC -15 to +10\%)
Input impedance	$4.0 \mathrm{k} \Omega$	$3.3 \mathrm{k} \Omega$
Input current	5.5 mA (at 24 VDC)	7 mA (at 24 VDC)
ON voltage/ON current	17.4 VDC min./3 mA min.	14.4 VDC min./3 mA min.
OFF voltage/OFF current	5 VDC max./1 mA max.	5 VDC max./1 mA max.
ON response time	$3 \mu \mathrm{~s}$ max.	15 \% max.
OFF response time	$3 \mu \mathrm{~s}$ max.	$90 \mu \mathrm{~s}$ max.

Note: For the pulse input timing specifications, refer to USER'S MANUAL (Cat. No. W488).

Components and functions

Open collector inputs Type GX-EC0211
Line driver inputs Type GX-EC0241

No.	Name	Function
$\mathbf{1}$	Communications Connectors	(CN IN) Connects the communications cable which comes from the Master Unit side. (CN OUT) Connects the communications cable of the next I/O terminal.
$\mathbf{2}$	Unit Power Supply Connector	Connect the unit power supply (24 VDC).
$\mathbf{3}$	Status Indicators	It indicates the communication state and the operation state of I/O terminals.
$\mathbf{4}$	Node address Switches	It sets node addresses of terminals (decimal). Setting range is 00 to 99.
$\mathbf{5}$	Inputs Indicators	The indicators show the status of the inputs of each channel. For details, refer to GX Series Operation Manual (Cat.No.W488).
$\mathbf{6}$	Terminal Block	Connects external devices and the I/O power supply. For details, refer to GX Series Operation Manual (Cat.No.W488).
$\mathbf{7}$	DIN track mounting hook	Fixes Slave Unit to a DIN track.

Wiring

Open collector inputs Type GX-EC0211

Line driver inputs Type GX-EC0241

Dimensions

Expansion Units
 XWT- \square D08(-1)/ \square D16(-16)

Expansion I/O Units make expansion easy!

- Flexible expansion with many different combinations.
- Removable I/O terminal block enables faster startup time and improved maintainability.
- Common expansion unit with DeviceNet (DRT2-Series) and CompoNet (CRT1-Series).

General Specifications

For Common Specifications of I/O terminals, refer to page 302.

Input Section Specifications
8-point Input Expansion Units

Item	Specification	
	XWT-ID08	XWT-ID08-1
Internal I/O common	NPN	PNP
I/O capacity	8 inputs	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	At 24 VDC: 6.0 mA max./input At 17 VDC: 3.0 mA max. .input	
ON delay	1.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	8 inputs/common	
Communications power supply current consumption	5 mA	
Weight	80 g max.	

Output Section Specifications

 8-point Input Expansion Units| Item | Specification | |
| :--- | :--- | :--- |
| | XWT-OD08 | XWT-OD08-1 |
| Internal I/O common | NPN | PNP |
| I/O capacity | 8 outputs | |
| Rated output current | $0.5 \mathrm{~A} /$ output, $2.0 \mathrm{~A} /$ common | |
| Residual voltage | 1.2 V max. (0.5 A DC,
 between each output
 terminal and the G
 terminal) | 1.2 V max. (0.5 A DC,
 between each output
 terminal and the V
 terminal) |
| Leakage current | 0.1 mA max. | |
| ON delay | 0.5 ms max. | |
| OFF delay | 1.5 ms max. | |
| Number of circuits per
 common | 8 outputs/common | |
| Communications
 power supply
 current consumption | 5 mA | |
| Weight | $80 \mathrm{~g} \mathrm{max}$. | |

16-point Input Expansion Units

$\left.$| Item | Specification | |
| :--- | :--- | :--- |
| | XWT-ID16 | XWT-ID16-1 |
| Internal I/O common | NPN | PNP |
| I/O capacity | 16 inputs | 15 VDC min.
 (between each input
 terminal and the V termi-
 nal) |
| ON voltage | 5 VDC max.
 (between each input
 terminal and the G termi-
 nal) | |
| (between each input | | |
| terminal and the V termi- | | |
| nal) | | |\quad| 5 VDC max. |
| :--- |
| (between each input |
| terminal and the G termi- |
| nal) | \right\rvert\,

16-point Input Expansion Units

Item	Specification	
	XWT-OD16	XWT-OD16-1
Internal I/O common	NPN	PNP
I/O capacity	16 outputs	
Rated output current	0.5 A/output, $4.0 \mathrm{~A} /$ common	
Residual voltage	1.2 V max. (0.5 A DC, between each output terminal and the G terminal)	1.2 V max. (0.5 A DC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	16 outputs/common	
Communications power supply current consumption	10 mA	
Weight	$120 \mathrm{~g} \mathrm{max}$.	

XWT-ID08/ID08-1

XWT-ID16/ID16-1

No.	Name	Function
$\mathbf{1}$	Input indicator (0 to 7)	Indicates the state of input contact (ON/OFF). Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state)
$\mathbf{2}$	Terminal connector	Connects the connector on the right side of the slave.
$\mathbf{3}$	Terminal block	Connects external devices and the I/O power supply. V, G: I/O power supply terminals 0 to 7: Input terminals
$\mathbf{4}$	DIN track mounting hook	Fixes a slave to a DIN track.

No.	Name	Function
$\mathbf{1}$	Input indicator (0 to 15)	Indicates the state of input contact (ON/OFF). Not lit: Contact OFF (input OFF state) Lit in yellow: Contact ON (input ON state)
$\mathbf{2}$	Terminal connector	Connects the connector on the right side of the slave.
$\mathbf{3}$	Terminal block	Connects external devices and the I/O power supply. V, G: I/O power supply terminals 0 to 15: Input terminals
$\mathbf{4}$	DIN track mounting hook	Fixes a slave to a DIN track.

XWT-OD08/OD08-1

No.	Name	Function
$\mathbf{1}$	Output indicator $(0$ to 7)	Indicates the state of output contact (ON/OFF). Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state)
$\mathbf{2}$	Terminal connector	Connects the connector on the right side of the slave.
$\mathbf{3}$	Terminal block	Connects external devices and the I/O power supply. V, G: I/O power supply terminals 0 to 7: Output terminals
$\mathbf{4}$	DIN track mounting hook	Fixes a slave to a DIN track.

XWT-OD16/OD16-1

No.	Name	Function
$\mathbf{1}$	Output indicator (0 to 15)	Indicates the state of output contact (ON/OFF). Not lit: Contact OFF (output OFF state) Lit in yellow: Contact ON (output ON state)
$\mathbf{2}$	Terminal connector	Connects the connector on the right side of the slave.
$\mathbf{3}$	Terminal block	Connects external devices and the I/O power supply. V, G: I/O power supply terminals 0 to 15: Output terminals
$\mathbf{4}$	DIN track mounting hook	Fixes a slave to a DIN track.

-

EtherCAT Remote I/O Terminals GX-Series
Expansion Unit

Wiring

XWT-ID16 (NPN)

XWT-OD08 (NPN)

XWT-OD16 (NPN)

XWT-ID08-1 (PNP)

XWT-ID16-1 (PNP)

XWT-OD08-1 (PNP)

XWT-OD016-1 (PNP)

Note: Wire colors have been changed according to revisions in the JIS standards for photoelectric and proximity sensors. The colors in parentheses are the wire colors prior to the revisions.

Dimensions

XWT-ID08/ID08-1
XWT-OD08/OD08-1

XWT-ID16/ID16-1 XWT-OD16/OD16-1

Ordering Information

Ordering InformationMachine Automation Controller NJ-Series 334
Automation Software Sysmac Studio 350
FA Communications Software CX-Compolet / SYSMAC Gateway 351
EtherCAT Slave Terminals NX Series 352
Safety Control Units NX Series 360
AC Servomotor/Linear Motor/Drives G5-Series 362
Multi-function Compact Inverter MX2-Series V1 type 380
High-function General-purpose Inverter RX-Series V1 type 386
Vision System FH-Series 390
Smart Camera FQ-M-Series 396
Displacement Sensor ZW-Series 398
Fiber Sensor/Laser Photoelectric Sensors N-Smart
(Sensor Communications Unit connection series.) 399
Fiber Sensors/Laser Photoelectric Sensor/Proximity Sensor
(Sensor Communications Unit Connection series.) 399
EtherCAT Remote I/O Terminal GX-Series 400
Programmable Terminals NS-Series 402
Related Manuals

International Standards

- The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus (Class I Division 2
Products for Hazardous Locations), CU: cUL, N: NK, KC: KC Registration
L: Lloyd, and CE: EC Directives.
- Contact your OMRON representative for further details and applicable conditions for these standards.
- EC Directives

The EC Directives applicable to PLCs include the EMC Directives and the Low Voltage Directive. OMRON complies with these directives as described below.

- EMC Directives

Applicable Standards
EMI: EN61000-6-4, EN61131-2
EMS: EN61000-6-2, EN61131-2
PLCs are electrical devices that are incorporated in machines and manufacturing installations. OMRON PLCs conform to the related EMC standards so that the devices and machines into which they are built can more easily conform to EMC standards. The actual PLCs have been checked for conformity to EMC standards. Whether these
standards are satisfied for the actual system, however, must be checked by the customer.
EMC-related performance will vary depending on the configuration, wiring, and other conditions of the equipment or control panel in which the PLC is installed. The customer must, therefore, perform final checks to confirm that the overall machine or device conforms to EMC standards.

- Low Voltage Directive

Applicable Standard:EN61131-2
VDC must satisfy the appropriate safety requirements. With PLCs, this applies to Power Supply Units and I/O Units that operate in these voltage ranges.
These Units have been designed to conform to EN61131-2, which is the applicable standard for PLCs.

- Conformance to EC Directives

The NJ/NX-series I/O Units conform to the Common Emission Standards (EN 61131-2) of the EMC Directives. However, noise generated by relay output switching may not satisfy these Standards when the Unit is incorporated in to a system.
In such a case, appropriate countermeasures must be provided externally to the Output Unit, such as connecting a contact protection circuit. Countermeasures taken to satisfy the standards vary depending on the devices on the load side, wiring, configuration of machines, etc.

Machine Automation Controller
 NJ -Series

Ordering Information

Basic Configuration Units

CPU Rack

CPU Units

Product name	Specifications					Current consumption (A)		Model	Standards
	I/O capacity / maximum umber of configuration Units (Expansion Racks)	Program capacity	Memory capacity for variables	Number of motion axes	Database Connection function	5 VDC	24 VDC		
NJ501 CPU Units	2,560 points / 40 Units (3 Expansion Racks)	20 MB	2 MB : Retained during power interruption 4 MB: Not retained during power interruption	64	No	1.90	---	NJ501-1500	UC1, N, L, CE, KC
				32				NJ501-1400	
				16				NJ501-1300	
NJ501 Database Connection CPU Units				64	Yes			NJ501-1520	
				32				NJ501-1420	
				16				NJ501-1320	
NJ301 CPU Units		5 MB	0.5 MB : Retained during power interruption 2 MB : Not retained during power interruption	8	No			NJ301-1200	
				4				NJ501-1100	

Accessories

The following accessories come with the CPU Unit.

Item	
Battery	CJ1W-BAT01
End Cover	CJ1W-TER01 (necessary to be connected to the right end of the CPU Rack.)
End Plate	PFP-M (2 pcs)
SD Memory Card (Flash Memory 2 GB)	HMC-SD291

* NJ501-1 $\square 20$ only.

- Power Supply Units

One Power Supply Unit is required for each Rack.

Product name		Power supply voltage	Output current		Output capacity	Options			Model	Standards	
		5-VDC output capacity	24-VDC output capacity	Total power consumption	24-VDC service power supply	RUN output	Maintenance forecast monitor				
AC Power Supply Unit			$\begin{gathered} 100 \text { to } 240 \\ \text { VAC } \end{gathered}$	6.0 A	1.0 A	30 W	No	Yes	No	NJ-PA3001	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
Power Supply Unit		24 VDC	NJ-PD3001								

Note: Power supply units for the CJ-Series cannot be used as a power supply for a CPU rack of the NJ system or as a power supply for an expansion rack.

Expansion Racks

Select the I/O Control Unit, I/O Interface Unit, Expansion Connecting Cable, and CJ-Series Power Supply Unit.
CJ-Series I/O Control Unit (Mounted on CPU Rack when Connecting Expansion Racks)

Product name	Specifications	Current consumption (A)		Model	Standards
		5 V	24 V		
CJ-Series I/O Control Unit	Mount one I/O Control Unit on the CJ-Series CPU Rack when connecting one NJ-Series Expansion Racks. Connecting Cable: CS1W-CN $\square \square 3$ Expansion Connecting Cable Connected Unit: CJ1W-II101 I/O Interface Unit Mount to the right of the CPU Unit.	0.02	---	CJ1W-IC101	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

Note: Mounting the I/O Control Unit in any other location may cause faulty operation.
■ CJ-Series I/O Interface Unit (Mounted on Expansion Rack)

Product Name	Specifications	Current consumption (A)		Model	Standards
		5 V	24 V		
CJ-Series I/O Interface Unit					
	One I/O Interface Unit is required on each Expansion Rack. Connecting Cable: CS1W-CN $\square \square 3$ Expansion Connecting Cable Mount to the right of the Power Supply Unit.	0.13	---	CJ1W-II101	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

Note: Mounting the I/O Interface Unit in any other location may cause faulty operation.
■ I/O Connecting Cables

Product name	Specifications		Model	Standards
I/O Connecting Cable	- Connects an I/O Control Unit on NJ-Series CPU Rack to an I/O Interface Unit on a NJ-Series Expansion Rack. or - Connects an I/O Interface Unit on NJ-Series Expansion Rack to an I/O Interface Unit on another NJ-Series Expansion Rack.	Cable length: 0.3 m	CS1W-CN313	N, L, CE
		Cable length: 0.7 m	CS1W-CN713	
		Cable length: 2 m	CS1W-CN223	
		Cable length: 3 m	CS1W-CN323	
		Cable length: 5 m	CS1W-CN523	
		Cable length: 10 m	CS1W-CN133	
		Cable length: 12 m	CS1W-CN133-B2	

Optional Products and Maintenance Products

Product name	Specifications	Model	Standards
	SD memory card, 2GB	HMC-SD291	N, L, CE
	SD memory card, 4GB	HMC-SD491	CE

Product name	Specifications		Model	Standards
Battery Set	Battery for NJ501- $\square \square \square \square / \mathrm{NJ} 301-\square \square \square \square$ NJ-Series CPU Unit maintenance	Note: 1. The battery is included as a standard accessory with the CPU Unit. 2. The battery service life is 5 years at $25^{\circ} \mathrm{C}$. (The service life depends on the ambient operating temperature and the power conditions.) 3. Use batteries within two years of manufacture.	CJ1W-BAT01	---
End Cover	Mounted to the right-hand side of NJ -Series CPU Racks or Expansion Racks.	One End Cover is provided as a standard accessory with each CPU Unit and I/O Interface Unit.	CJ1W-TER01	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

DIN Track Accessories

Product name		Specifications	Model
DIN Track	Length: 0.5 m ; Height: 7.3 mm	PFP-50N	
	Length: $1 \mathrm{~m} ;$ Height: 7.3 mm	PFP-100N	
	Length: 1 m ; Height: 16 mm	PFP-100N2	
End Plate	There $a r e ~ 2 ~ s t o p p e r s ~ p r o v i d e d ~ w i t h ~ C P U ~ U n i t s ~ a n d ~ I / O ~ I n t e r f a c e ~ U n i t s ~ a s ~ s t a n d a r d ~ a c c e s s o r i e s ~ t o ~$ secure the Units on the DIN Track.	PFP-M	

Connecting Cable

Peripheral (USB) Port

Use commercially available USB cable.
Specifications: USB 1.1 or 2.0 cable (A connector - B connector), 5.0 m max.

Recommended EtherCAT and EtherNet/IP Communications Cables

Use Straight STP (shielded twisted-pair) cable of category 5 or higher with double shielding (braiding and aluminum foil tape) for EtherCAT. Use Straight or cross STP (shielded twisted-pair) cable of category 5 or higher for EtherNet/IP.

Cabel with Connectors

Item			Recommended manufacturer	Cable length (m)	Model
For EtherCAT	Wire Gauge and Number of Pairs: AWG27, 4-pair Cable Cable Sheath material: LSZH *2 Cable color: Yellow *3	Standard type Cable with Connectors on Both Ends (RJ45/RJ45)	OMRON	0.3	XS6W-6LSZH8SS30CM-Y
				0.5	XS6W-6LSZH8SS50CM-Y
				1	XS6W-6LSZH8SS100CM-Y
				2	XS6W-6LSZH8SS200CM-Y
				3	XS6W-6LSZH8SS300CM-Y
				5	XS6W-6LSZH8SS500CM-Y
	Wire Gauge and Number of Pairs: AWG22, 2-pair Cable	Rugged type Cable with Connectors on Both Ends (RJ45/RJ45)	OMRON	0.3	XS5W-T421-AMD-K
				0.5	XS5W-T421-BMD-K
				1	XS5W-T421-CMD-K
				2	XS5W-T421-DMD-K
				5	XS5W-T421-GMD-K
				10	XS5W-T421-JMD-K
		Rugged type Cable with Connectors on Both Ends (M12/RJ45)	OMRON	0.3	XS5W-T421-AMC-K
				0.5	XS5W-T421-BMC-K
				1	XS5W-T421-CMC-K
				2	XS5W-T421-DMC-K
				5	XS5W-T421-GMC-K
				10	XS5W-T421-JMC-K
		Rugged type Cable with Connectors on Both Ends (M12 L/RJ45)	OMRON	0.3	XS5W-T422-AMC-K
				0.5	XS5W-T422-BMC-K
				1	XS5W-T422-CMC-K
				2	XS5W-T422-DMC-K
				5	XS5W-T422-GMC-K
				10	XS5W-T422-JMC-K

*1. Standard type cables length $0.2,0.3,0.5,1,1.5,2,3,5,7.5,10,15$ and 20 m are available.
Rugged type cables length $0.3,0.5,1,2,3,5,10$ and 15 m are available.
*2. The lineup features Low Smoke Zero Halogen cables for in-cabinet use and PUR cables for out-of-cabinet use.
*3. Cables colors are available in blue, yellow, or Green
Note: For details, refer to Cat.No.G019.
Cables / Connectors

Item			Recommended manufacturer	Model
For EtherCAT and EtherNet/IP	Wire Gauge and Number of Pairs: AWG24, 4-pair Cable	Cables	Hitachi Cable, Ltd.	$\text { NETSTAR-C5E SAB } 0.5 \times 4 \mathrm{P}$ *1
			Kuramo Electric Co.	KETH-SB *1
			SWCC Showa Cable Systems Co.	FAE-5004*1
		RJ45 Connectors	Panduit Corporation	MPS588-C *1
	Wire Gauge and Number of Pairs: AWG22, 2-pair Cable	Cables	Kuramo Electric Co.	KETH-PSB-OMR *2
			Nihon Electric Wire\&Cable Co.,Ltd.	PNET/B *2
		RJ45 Assembly Connector	OMRON	XS6G-T421-1 *2
For EtherNet/IP	Wire Gauge and Number of Pairs: 0.5 mm , 4-pair Cable	Cables	Fujikura Ltd.	F-LINK-E 0.5mm * 4P *3
		RJ45 Connectors	Panduit Corporation	MPS588 *3

*1. We recommend you to use above cable for EtherCAT and EtherNet/IP, and RJ45 Connector together.
*2. We recommend you to use above cable for EtherCAT and EtherNet/IP, and RJ45 Assembly Connector together.
*3. We recommend you to use above cable For EtherNet/IP and RJ45 Connectors together.
Note: Please be careful while cable processing, for EtherCAT, connectors on both ends should be shield connected and for EtherNet/IP, connectors on only one end should be shield connected.

Basic I/O Units

- Input Units

Unit classification	Product name	Specifications				Number of bits allocated	Response time *1		Current consumption (A)		Model	Standards
		I/O points	Input voltage and current	Commons	External connection		ON	OFF	5 V	24 V		
CJ1 Basic I/O Units	DC Input Units	8 inputs	$\begin{aligned} & 12 \text { to } 24 \mathrm{VDC}, \\ & 10 \mathrm{~mA} \end{aligned}$	Independent contacts	Removable terminal block	16	$20 \mu \mathrm{~s}$ max.	$400 \mu \mathrm{~s}$ max.	0.08	---	CJ1W-ID201	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		16 inputs	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	Removable terminal block	16	$20 \mu \mathrm{~s}$ max.	$400 \mu \mathrm{~s}$ max.	0.08	---	CJ1W-ID211	
		16 inputs High-speed tipe	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	Removable terminal block	16	$15 \mu \mathrm{~s}$ max.	$90 \mu \mathrm{~s}$ max.	0.13	---	CJ1W-ID212	
		32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	32	$20 \mu \mathrm{~s}$ $\max .$	$400 \mu \mathrm{~s}$ max.	0.09	---	$\begin{aligned} & \text { CJ1W-ID231 } \\ & \text { *2 } \end{aligned}$	
		32 inputs	24 VDC, 4.1 mA	16 points, 1 common	MIL connector	32	$20 \mu \mathrm{~s}$ $\max .$	$400 \mu \mathrm{~s}$ max.	0.09	---	$\begin{aligned} & \text { CJ1W-ID232 } \\ & \text { *2 } \end{aligned}$	
		32 inputs High-speed type	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	32	$15 \mu \mathrm{~s}$ max.	$90 \mu \mathrm{~s}$ max.	0.20	---	CJ1W-ID233 *2	
		64 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	64	120 us max.	$400 \mu s$ max.	0.09	---	$\begin{aligned} & \text { CJ1W-ID261 } \\ & \text { *2 } \end{aligned}$	
		64 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	64	120 us max.	$400 \mu \mathrm{~s}$ max.	0.09	---	$\begin{aligned} & \text { CJ1W-ID262 } \\ & \text { *2 } \end{aligned}$	
	AC Input Units	8 inputs	$\begin{aligned} & 200 \text { to } 24 \mathrm{VAC}, \\ & 10 \mathrm{~mA} \\ & (200 \mathrm{~V}, 50 \mathrm{~Hz}) \end{aligned}$	8 points, 1 common	Removable Terminal Block	16	$10 \mu \mathrm{~s}$ max.	$40 \mu \mathrm{~s}$ max.	0.08	---	CJ1W-IA201	
		16 inputs	100 to 120 VAC, 7 mA ($100 \mathrm{~V}, 50 \mathrm{~Hz}$)	16 points, 1 common	Removable Terminal Block	16	$10 \mu \mathrm{~s}$ max.	$40 \mu \mathrm{~s}$ max.	0.09	---	CJ1W-IA111	

[^40]
Output Units

Unit classification	Product name	Specifications					Number of bits allocated	Current consumption (A)		Model	Standards
		Output type	I/O points	Maximum switching capacity	Commons	External connection		5 V	24 V		
CJ1 Basic I/O Units	Relay Contact Output Units	-	8 outputs	250 VAC/24 VDC, 2 A	Independent contacts	Removable terminal block	16	0.09	$\begin{aligned} & 0.048 \\ & \max . \end{aligned}$	CJ1W-OC201	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		-	$\begin{gathered} 16 \\ \text { outputs } \end{gathered}$	250 VAC/24 VDC, 2 A	16 points, 1 common	Removable terminal block	16	0.11	$\begin{aligned} & 0.096 \\ & \max . \end{aligned}$	CJ1W-OC211	
	Triac Output Unit	-	8 outputs	$250 \mathrm{VAC}, 0.6 \mathrm{~A}$	8 points, 1 common	Removable terminal block	16	0.22	-	CJ1W-OA201	
	Transistor Output Units	Sinking	8 outputs	12 to $24 \mathrm{VDC}, 2 \mathrm{~A}$	4 points, 1 common	Removable terminal block	16	0.09	-	CJ1W-OD201	
		Sinking	8 outputs	12 to $24 \mathrm{VDC}, 0.5 \mathrm{~A}$	8 points, 1 common	Removable terminal block	16	0.10	-	CJ1W-OD203	
		Sinking		12 to $24 \mathrm{VDC}, 0.5 \mathrm{~A}$	16 points, 1 common	Removable terminal block	16	0.10	-	CJ1W-OD211 *1	
		Sinking	16 outputs	$24 \mathrm{VDC}, 0.5 \mathrm{~A}$	16 points, 1 common	Removable terminal block	16	0.15	-	$\underset{{ }_{* 1}}{\text { CJ1W-OD213 }}$	
		Sinking	$\begin{gathered} 32 \\ \text { outputs } \end{gathered}$	12 to $24 \mathrm{VDC}, 0.5 \mathrm{~A}$	16 points, 1 common	Fujitsu connector	32	0.14	-	$\begin{aligned} & \text { CJ1W-OD231 } \\ & \text { *2 } \end{aligned}$	
		Sinking	$\begin{gathered} 32 \\ \text { outputs } \end{gathered}$	12 to $24 \mathrm{VDC}, 0.5 \mathrm{~A}$	16 points, 1 common	MIL connector	32	0.14	-	$\begin{aligned} & \text { CJ1W-OD233 } \\ & \text { *1, *2 } \end{aligned}$	
		Sinking	32 outputs	$24 \mathrm{VDC}, 0.5 \mathrm{~A}$	16 points, 1 common	MIL connector	32	0.22	-	CJ1W-OD234 *1, *2	
		Sinking	$\begin{gathered} 64 \\ \text { outputs } \end{gathered}$	12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$	16 points, 1 common	Fujitsu connector	64	0.17	-	$\begin{aligned} & \text { CJ1W-OD261 } \\ & \text { *2 } \end{aligned}$	
		Sinking	$\begin{gathered} 64 \\ \text { outputs } \end{gathered}$	12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$	16 points, 1 common	MIL connector	64	0.17	-	$\begin{aligned} & \text { CJ1W-OD263 } \\ & \text { *2 } \end{aligned}$	
		Sourcing	8 outputs	24 VDC, 2 A Short-circuit protection	4 points, 1 common	Removable terminal block	16 *1	0.11	-	CJ1W-OD202	
		Sourcing	8 outputs	$24 \mathrm{VDC}, 0.5 \mathrm{~A}$ Short-circuit protection	8 points, 1 common	Removable terminal block	16 *1	0.10	-	CJ1W-OD204	
		Sourcing	16 outputs	$24 \mathrm{VDC}, 0.5 \mathrm{~A}$ Short-circuit protection	16 points, 1 common	Removable terminal block	16	0.10	-	CJ1W-OD212	
		Sourcing	$\begin{gathered} 32 \\ \text { outputs } \end{gathered}$	24 VDC, 0.5 A Short-circuit protection	16 points, 1 common	MIL connector	32	0.15	-	$\begin{aligned} & \text { CJ1W-OD232 } \\ & \text { *2 } \end{aligned}$	
		Sourcing	$\begin{gathered} 64 \\ \text { outputs } \end{gathered}$	12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$	16 points, 1 common	MIL connector	64	0.17	-	$\begin{aligned} & \text { CJ1W-OD262 } \\ & \text { *2 } \end{aligned}$	

[^41]I/O Units

Unit classification	Product name	Specifications					Number of bits allocated	Current consumption (A)		Model	Standards
		Output type	I/O points	Input voltage, Input current Maximum switching capacity	Commons	External connection		5 V	24 V		
CJ1 Basic I/O Units	DC Input/ Transistor Output Units	Sinking	16 inputs 16 outputs	$\begin{aligned} & 24 \mathrm{VDC}, 7 \mathrm{~mA} \\ & \hline 250 \mathrm{VAC} / 24 \mathrm{VDC}, \\ & 0.5 \mathrm{~A} \end{aligned}$	16 points, 1 common 16 points, 1 common	Fujitsu connector	32	0.13	---	$\begin{aligned} & \text { CJ1W-MD231 } \\ & \text { *2 } \end{aligned}$	$\begin{aligned} & \text { UC1, N, } \\ & \text { CE } \end{aligned}$
		Sinking	16 inputs 16 outputs	$24 \mathrm{VDC}, 7 \mathrm{~mA}$ 12 to $24 \mathrm{VDC}, 0.5 \mathrm{~A}$	16 points, 1 common 16 points, 1 common	MIL connector	64	0.13	---	$\begin{aligned} & \text { CJ1W-MD233 } \\ & \text { *2 } \end{aligned}$	$\begin{aligned} & \text { UC1, N, } \\ & \text { CE } \end{aligned}$
		Sinking	32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	32	0.14	---	$\begin{aligned} & \text { CJ1W-MD261 } \\ & { }_{\text {*1 }} \end{aligned}$	
			32 outputs	12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$	16 points, 1 common						
		Sinking	32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	64	0.14	---	$\begin{aligned} & \text { CJ1W-MD263 } \\ & { }_{1} \end{aligned}$	
			32 outputs	12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$	16 points, 1 common						
		Sourcing	16 inputs	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	MIL connector	32	0.13	---	$\begin{aligned} & \text { CJ1W-MD232 } \\ & \text { *2 } \end{aligned}$	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
			16 outputs	$24 \mathrm{VDC}, 0.5 \mathrm{~A}$ Short-circuit protection	16 points, 1 common						
	TTL I/O Units	---	32 inputs	$5 \mathrm{VDC}, 35 \mathrm{~mA}$	16 points, 1 common	MIL connector	64	0.19	---	$\underset{* 1}{\text { CJ1W-MD563 }}$	$\begin{aligned} & \text { UC1, N, } \\ & \text { CE } \end{aligned}$
			32 outputs	$5 \mathrm{VDC}, 35 \mathrm{~mA}$	16 points, 1 common						

*1 Connectors are not provided with these connector models. Either purchase one of the following 40-pin Connectors, or use an OMRON XW2 \square Connector-Terminal Block Conversion Unit or a G7 \square I/O Relay Terminal.
*2 Connectors are not provided with these connector models. Either purchase one of the following 20-pin or 24-pin Connectors, or use an OMRON XW2 \square Connector-Terminal Block Conversion Unit or a G7 \square I/O Relay Terminal.

- Applicable Connectors

Fujitsu Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

Name	Connection	Remarks	Applicable Units	Model	Standards
40-pin Connectors	Soldered	FCN-361J040-AU Connector FCN-360C040-J2 Connector Cover	Fujitsu Connectors: CJ1W-ID231(32 inputs): 1 per Unit CJ1W-ID261 (64 inputs) 2 per Unit CJ1W-OD231 (32 outputs):1 per Unit CJ1W-OD261 (64 outputs): 2 per Unit CJ1W-MD261 (32 inputs, 32 outputs): 2 per Unit	C500-CE404	---
	Crimped	FCN-363J040 Housing FCN-363J-AU Contactor FCN-360C040-J2 Connector Cover		C500-CE405	
	Pressure welded	FCN-367J040-AU/F		C500-CE403	
$\begin{aligned} & \text { 24-pin } \\ & \text { Connectors } \end{aligned}$	Soldered	FCN-361J024-AU Connector FCN-360C024-J2 Connector Cover	Fujitsu Connectors: CJ1W-MD231 (16 inputs, 16 outputs): 2 per Unit	C500-CE241	
	Crimped	FCN-363J024 Housing FCN-363J-AU Contactor FCN-360C024-J2 Connector Cover		C500-CE242	
	Pressure welded	FCN-367J024-AU/F		C500-CE243	

MIL Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

Name	Connection	Remarks	Applicable Units	Model	Standards
$\begin{aligned} & \text { 40-pin } \\ & \text { Connectors } \end{aligned}$	Pressure welded	FRC5-AO40-3TOS	MIL Connectors: CJ1W-ID232/233 (32 inputs): 1 per Unit CJ1W-OD232/233/234 (32 outputs):1 per Unit CJ1W-ID262 (64 inputs): 2 per Unit CJ1W-OD262/263 (64 outputs): 2 per Unit CJ1W-MD263/563 (32 inputs, 32 outputs): 2 per Unit	XG4M-4030-T	---
20-pin Connectors	Pressure welded	FRC5-AO20-3TOS	MIL Connectors: CJ1W-MD232/233 (16 inputs, 16 outputs): 2 per Unit	XG4M-2030-T	

- Applicable Connector-terminal block conversion unit

Example: With OMRON Connector-terminal block conversion unit

Only main products are shown here.
More detail informations are shown in XW2R series Connector-terminal block conversion unit Catalog (Web Catalog number: G077)

32-point Input Unit or Output Unit
CJ1W-ID231 32-point

64-point Input Unit or Output Unit
CJ1W-ID261 64-point

64-point Output Unit
CJ1W-MD563 IN 32 Points, OUT 32 Points

Choose the wiring method.
Choose $\square \square$ from a following combination table PLC type.

Wiring method	Model
Models with Phillips screw	XW2R-J34G- $\square \square$
Models with Slotted screw (rise up)	XW2R-E34G- $\square \square$
Models with Push-in spring	XW2R-P34G- $\square \square$

Combination table

PLC Type	1/0	I/O Points	I/O unit model	Connecting cables
C1	Input	32	CJ1W-ID231	XW2Z- $\square \square \square B$ 32-point Unit: 1 Cable 64-point Unit: 2 Cables
			CS1W-ID231	
			C200H-ID216	
			C200H-ID218	
			CQM1-ID112	
			CQM1-ID213	
			CQM1-ID214	
			CJ1W-ID261	
			CS1W-ID261	
			C200H-ID217	
		64	C200H-ID219	
			C200H-ID111	
			C500-ID114	
			C500-ID219	
	Input/Output	32	CJ1W-MD261 (inputs)	
			CS1W-MD261 (inputs)	
			CS1W-MD262 (inputs)	
			CS1W-MD561 (inputs)	
C2	Input	32	CJ1W-ID232	XW2Z-पПロK 32-point Unit: 1 Cable 64-point Unit: 2 Cables
			CJ1W-ID233	
		64	CJ1W-ID262	
	Input/Output	32	CJ1W-MD263 (inputs)	
			CJ1W-MD563 (inputs)	
C3	Output	32	CJ1W-OD231	XW2Z-पПロB 32-point Unit: 1 Cable 64-point Unit: 2 Cables
			CS1W-OD231	
			CS1W-OD232	
			C200H-OD218	
			CQM1-OD213	
		64	CJ1W-OD261	
			CS1W-OD261	
			CS1W-OD262	
			C200H-OD219	
			C500-OD213	
	Input/Output	32	CJ1W-MD261 (outputs)	
			CS1W-MD261 (outputs)	
			CS1W-MD262 (outputs)	
			CS1W-MD561 (outputs)	

Note: 1. $\square \square \square$ is replaced by the cable length.
2. There is one common for each 32 points.

Machine Automation Controller NJ-Series

PLC Type	1/0	I/O Points	I/O unit model	Connecting cables
C4	Output	32	CJ1W-OD232	XW2Z- $\square \square \square K$ 32-point Unit: 1 Cable 64-point Unit: 2 Cables
			CJ1W-OD233	
			CJ1W-OD234	
		64	CJ1W-OD262	
			CJ1W-OD263	
	Input/Output	32	CJ1W-MD263 (outputs)	
			CJ1W-MD563 (outputs)	

Note: 1. $\square \square \square$ is replaced by the cable length.
2. There is one common for each 32 points.

Connector-terminal block conversion unit

Product name	Wiring method	I/O Points (number of poles)	Model
Connector terminal block conversion unit	Models with Phillips screw	32 (34)	XW2R-J34G-C1
		32 (34)	XW2R-J34G-C2
		32 (34)	XW2R-J34G-C3
		32 (34)	XW2R-J34G-C4
	Models with Slotted screw (rise up)	32 (34)	XW2R-E34G-C1
		32 (34)	XW2R-E34G-C2
		32 (34)	XW2R-E34G-C3
		32 (34)	XW2R-E34G-C4
	Models with Push-in spring	32 (34)	XW2R-P34G-C1
		32 (34)	XW2R-P34G-C2
		32 (34)	XW2R-P34G-C3
		32 (34)	XW2R-P34G-C4

Connecting cables

Product name	Appearance	Connectors	Model	Cable length (m)
For I/O Unit Connecting Cable	XW2Z-■ด口B	One 40-pin MIL Connector to One 40 -pin Connector Made by Fujitsu Component, Ltd.	XW2Z-050B	0.5
			XW2Z-100B	1
			XW2Z-150B	1.5
			XW2Z-200B	2
			XW2Z-300B	3
			XW2Z-500B	5
	xW2Z-■ด口K	One 40-pin MIL Connector to One 40-pin MIL Connector	XW2Z-C50K	0.5
			XW2Z-100K	1
			XW2Z-150K	1.5
			XW2Z-200K	2
			XW2Z-300K	3
			XW2Z-500K	5

Quick-response Input Units

Unit classification	Product name	Specifications				Number of bits allocated	Response time		Current consumption (A)		Model	Standards
		I/O points	Input voltage, Input current	Commons	External connection		ON	OFF	5 V	24 V		
CJ1 Basic I/O Units	Quickresponse Input Unit	$\begin{gathered} 16 \\ \text { inputs } \end{gathered}$	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	Removable terminal block	16	$\begin{gathered} 0.05 \mathrm{~ms} \\ \text { max. } \end{gathered}$	$\begin{aligned} & 0.5 \mathrm{~ms} \\ & \text { max. } \end{aligned}$	0.08	---	CJ1W-IDP01	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

B7A Interface Units

Unit classification	Product name	Specifications		Number of bits allocated	Current consumption (A)		Model	Standards
		I/O points	External connection		5 V	24 V		
CJ1 Basic I/O Units	B7A Interface Units	64 inputs	Removable terminal block	64	0.07	---	CJ1W-B7A14	UC1, CE
		64 outputs			0.07	---	CJ1W-B7A04	
		32 inputs/outputs			0.07	---	CJ1W-B7A22	

Special I/O Units and CPU Bus Units

■ Process I/O Units

- Isolated-type Units with Universal Inputs

Unit classification	Product name	Input points	Signal range selection	Signal range	Conversion speed (resolution)	Accuracy (at ambient temperature of $25^{\circ} \mathrm{C}$)	External connection	No. of unit numbers allocated	Current consumption (A)		Model	Standards
									5 V	24 V		
CJ1 Special I/O Units	Process Input Units (Isolatedtype Units with Universal Inputs)	4 inputs	Set separately for each input	Universal inputs: Pt100 (3-wire), JPt100 (3-wire), Pt1000 (3-wire), Pt100 (4-wire), K, J, T, E, L, U, N, R, S, B, WRe5-26, PL II, 4 to 20 mA , 0 to 20 mA , 1 to 5 V , 0 to 1.25 V , 0 to $5 \mathrm{~V}, 0$ to 10 V , $\pm 100 \mathrm{mV}$ selectable range -1.25 to 1.25 V , -5 to 5 V , -10 to 10 V , $\pm 10 \mathrm{~V}$ selectable range, potentiometer	Resolution (conversion speed): 1/256,000 (conversion cycle: $60 \mathrm{~ms} /$ 4 inputs) 1/64,000 (conversion cycle: $10 \mathrm{~ms} /$ 4 inputs) 1/16,000 (conversion cycle: $5 \mathrm{~ms} /$ 4 inputs)	Standard accuracy: $\pm 0.05 \%$ of F.S.	Removable terminal block	1	0.30	---	CJ1W-PH41U *1	UC1, CE
		4 inputs	Set separately for each input	Universal inputs: Pt100, JPt100, Pt1000, K, J, T, L, R, S, B, 4 to 20 mA, 0 to 20 mA , 1 to $5 \mathrm{~V}, 0$ to 5 V , 0 to 10 V	Conversion speed: $250 \mathrm{~ms} /$ 4 inputs	Accuracy: Platinum resistance thermometer input: ($\pm 0.3 \%$ of PV or $\pm 0.8^{\circ} \mathrm{C}$, whichever is larger) ± 1 digit max. Thermocouple input: ($\pm 0.3 \%$ of PV or $\pm 1.5^{\circ} \mathrm{C}$, whichever is larger) ± 1 digit max. *2 Voltage or current input: $\pm 0.3 \%$ of F.S. ± 1 digit max.			0.32	---	CJ1W-AD04U	$\begin{aligned} & \text { UC1, L, } \\ & \text { CE } \end{aligned}$

*1 Do not connect a Relay Output Unit to the same CPU Rack or to the same Expansion Rack as the CJ1W-PH41U.
${ }^{*} 2 \mathrm{~L}$ and $-100^{\circ} \mathrm{C}$ or less for K and T are $\pm 2^{\circ} \mathrm{C} \pm 1$ digit max., and $200^{\circ} \mathrm{C}$ or less for R and S is $\pm 3^{\circ} \mathrm{C} \pm 1$ digit max. No accuracy is specified for $400^{\circ} \mathrm{C}$ or less for B.

- Isolated-type DC Input Units

Unit classification	Product name	Input points	Signal range selection	Conversion speed (resolution)	Accuracy (at ambient temperature of $25^{\circ} \mathrm{C}$)	External connection	No. of unit numbers allocated	Current consumption (A)		Model	Standards
								5 V	24 V		
CJ1 Special I/O Units	Isolatedtype DC Input Units	$\begin{gathered} 2 \\ \text { inputs } \end{gathered}$	DC voltage: 0 to $1.25 \mathrm{~V},-1.25$ to 1.25 V , 0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V},-5$ to 5 V , 0 to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$ selectable range DC current: 0 to $20 \mathrm{~mA}, 4$ to 20 mA	Conversion speed: $10 \mathrm{~ms} /$ 2 inputs Resolution: 1/64,000	Standard accuracy: $\pm 0.05 \%$ of F.S.	Removable terminal block	1	0.18	0.09 *	CJ1W-PDC15	UC1, CE

[^42]Analog I/O Units
Analog Input Units

Unit classification	Product name	Input points	Signal range selection	Signal range	Resolution	Conversion speed	Accuracy (at ambient temperature of $25^{\circ} \mathrm{C}$)	External connection	No. of unit numbers allocated	Current consumption (A)		Model	Standards
										5 V	24 V		
CJ1 Special I/O Units	Analog Input Units High-speed type	$\begin{gathered} 4 \\ \text { inputs } \end{gathered}$	Set separately for each input	```1 to 5 V (1/10,000), 0 to 10 V (1/20,000), -5 to 5 V (1/20,000), -10 to 10 V (1/40,000), and 4 to 20 mA (1/10,000)```		$20 \mu \mathrm{~s} / 1$ point, $25 \mu \mathrm{~s} / 2$ points, $30 \mu \mathrm{~s} / 3$ points, $35 \mu \mathrm{~s} / 4$ points	Voltage: $\pm 0.2 \%$ of F.S. Current: $\pm 0.4 \%$ of F.S.	Removable termi- nal block	1	0.52	---	CJ1W-AD042 *1	UC1, CE
	Analog Input Units	8 inputs 4 inputs		$\begin{aligned} & 1 \text { to } 5 \mathrm{~V} \text {, } \\ & 0 \text { to } 5 \mathrm{~V} \text {, } \\ & 0 \text { to } 10 \mathrm{~V} \text {, } \\ & -10 \text { to } \\ & 10 \mathrm{~V}, 4 \text { to } \\ & 20 \mathrm{~mA} \end{aligned}$	1/4000, (Settable to 1/8000) *2	$1 \mathrm{~ms} /$ point max. (Settable to $250 \mu \mathrm{~s} /$ point) *2	Voltage: $\pm 0.2 \%$ of F.S. Current: $\pm 0.4 \% \text { of F.S. }$ *3			0.42 0.42	---	CJ1W-AD081-V1 CJ1W-AD041-V1	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

*1 The direct conversion function using the AIDC instruction cannot be used.
*2 The resolution and conversion speed cannot be set independently. If the resolution is set to $1 / 4,000$, then the conversion speed will be $1 \mathrm{~ms} /$ point.
*3 At $23 \pm 2^{\circ} \mathrm{C}$

- Analog Output Units

						Conver-	Accuracy	External	External	No. of unit	Curre sump	nt contion (A)	Model	Standards
sification	name	points	selection	range	tion	sion speed	temperature of $25^{\circ} \mathrm{C}$)	connection	power supply	bers allocated	5 V	24 V		
CJ1 Special 1/0 Units	Analog Output Units	$\begin{gathered} 4 \\ \text { outputs } \end{gathered}$	Set separately for each input	```1 to 5 V (1/10,000), 0 to 10 V (1/20,000), and -10 to 10 V (1/40,000)```		$20 \mu \mathrm{~s} /$ 1 point, $25 \mu \mathrm{~s} /$ 2 points, $30 \mu \mathrm{~s} /$ 3 points, $35 \mu \mathrm{~s} /$ 4 points	$\begin{aligned} & \pm 0.3 \% \text { of } \\ & \text { F.S. } \end{aligned}$	Removable terminal block	---	1	0.40	---	CJ1W-DA042V *1	UC1, CE
	Analog Output Units	8 outputs		$\begin{aligned} & 1 \text { to } 5 \mathrm{~V}, \\ & 05 \text { to } 5 \mathrm{~V}, \\ & 0 \text { to } 10 \mathrm{~V}, \\ & -10 \text { to } 10 \mathrm{~V} \end{aligned}$	$1 / 4,000$ (Settable	$1 \mathrm{~ms} /$ point max.			$\begin{aligned} & 24 \\ & \text { VDC } \\ & +10 \% \\ & 15 \% \\ & 140 \mathrm{~mA} \\ & \text { max. } \end{aligned}$		0.14	$\begin{aligned} & 0.14 \\ & \text { *2 } \end{aligned}$	CJ1W-DA08V	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		8 outputs		4 to 20 mA	$\begin{aligned} & \text { to } \\ & 1 / 8,000) \end{aligned}$	(Settable to 250 $\mu \mathrm{s} /$ point)			$\begin{aligned} & 24 \\ & \text { VDC } \\ & +10 \% \\ & -15 \% \\ & 170 \mathrm{~mA} \\ & \text { max. } \end{aligned}$		0.14	$\begin{aligned} & 0.17 \\ & { }^{2} 2 \end{aligned}$	CJ1W-DA08C	UC1, N, CE
		4 outputs		$\begin{aligned} & 1 \text { to } 5 \mathrm{~V}, \\ & 0 \text { to } 5 \mathrm{~V}, \end{aligned}$			Voltage output: $\pm 0.3 \%$ of F.S.		$\begin{aligned} & 24 \\ & \text { VDC } \\ & +10 \% \\ & -15 \% \\ & 200 \mathrm{~mA} \\ & \text { max. } \end{aligned}$		0.12	0.2 *2	CJ1W-DA041	UC1, N, L,
		2 outputs		$\begin{aligned} & 0 \text { to } 10 \mathrm{~V}, \\ & -10 \text { to } 10 \mathrm{~V}, \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$	1/4000	point max.	Current output: $\pm 0.5 \%$ of F.S.		$\begin{aligned} & 24 \\ & \text { VDC } \\ & +10 \% \\ & -15 \% \\ & 140 \mathrm{~mA} \\ & \text { max. } \end{aligned}$		0.12	$\begin{array}{\|l} 0.14 \\ \text { *2 } \end{array}$	CJ1W-DA021	

*1 The direct conversion function using the AODC instruction cannot be used.
*2 This is for an external power supply, and not for internal current consumption

Machine Automation Controller NJ-Series

- Analog I/O Units

Unit classification	Product name	No. of points	Signal range selection	Signal range	```Resolu- tion (See note.)```	Conversion speed (See note.)	Accuracy (at ambient temperature of $25^{\circ} \mathrm{C}$)	External connection	No. of unit numbers allocated	Current consumption (A)		Model	Standards
										5 V	24 V		
CJ1 Special 1/O Units	Analog I/O Units	4 inputs	Set separately for each input	1 to 5 V , 0 to 5 V , 0 to 10 V , -10 to 10 V , 4 to 20 mA	1/4,000 (Settable to $1 / 8,000)$	$1 \mathrm{~ms} /$ point (Settable to $500 \mu \mathrm{~s} /$ point max.)	Voltage input: $\pm 0.2 \%$ of F.S. Current input: $\pm 0.2 \%$ of F.S.	Removable terminal block					
		$\begin{array}{\|c\|} 2 \\ \text { outputs } \end{array}$					Voltage output: $\pm 0.3 \%$ of F.S. Current output: $\pm 0.3 \%$ of F.S.		1	0.58	---	CJ1W-MAD42	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

Note: The resolution and conversion speed cannot be set independently. If the resolution is set to $1 / 4,000$, then the conversion speed will be 1 $\mathrm{ms} /$ point.

■ Temperature Control Units

Unit classification	Product name	Specifications			No. of unit numbers allocated	Current consumption (A)		Model	Standards
		No. of loops	Temperature sensor inputs	Control outputs		5 V	24 V		
CJ1 Spe- cial I/O Units	Temperature Control Units	2 loops, heater burnout detection function	Thermocouple input (R, S, K, J, T, B, L)	Open collector NPN outputs (pulses)	2	0.25	---	CJ1W-TC003	UC1, N, L, CE
				Open collector PNP outputs (pulses)		0.25	---	CJ1W-TC004	
			Platinum resistance thermometer input (JPt100, Pt100)	Open collector NPN outputs (pulses)		0.25	---	CJ1W-TC103	
				Open collector PNP outputs (pulses)		0.25	---	CJ1W-TC104	

■ High-speed Counter Unit

Unit classification	Product name	Specifications			No. of unit numbers allocated	Current consumption (A)		Model	Standards
		Countable channels	Encoder A and B inputs, pulse input Z signals	Max. counting rate		5 V	24 V		
CJ1 Spe- cial I/O Units	Highspeed Counter Unit	2	Open collector Input voltage: $5 \mathrm{VDC}, 12 \mathrm{~V}$, or 24 V (5 V and 12 V are each for one axis only.)	50 kHz	4	0.28	---	CJ1W-CT021	UC1, N, L, CE
			RS-422 line driver	500 kHz					

Note: The following functions become unavailable when it is used with the NJ-Series CPU unit.

- Counter value capture using allocation area(CIO)
- The capture, Stop/capture/continue, Stop/capture/reset/continue, and Capture/reset functions using External Control Input Function
- Pulse rate range control using Output Control Mode
- The pulse rate measurement function
- Because the NJ-Series has no power OFF interrupt task, operation cannot be restarted from the position at which the power was interrupted.
- Read or write the data using IORD/IOWR instruction
- Starting of External Interrupt Task by Output and External Control Input

Serial Communications Units

Note: Simple Backup Function and Interrupt notification function cannot be used.
*1 You can activate protocol macro trace function when the CPU Unit is set to the RUN Mode. (MONITOR Mode is not available with the NJ-Series CPU Units.)
*2 When an NT-AL001 RS-232C/RS-422A Conversion Unit is used, this value increases by 0.15 A/Unit. Add 0.20A/Unit when using NV3W-M $\square 20 \mathrm{~L}$ Programmable Terminals. Add 0.04A/Unit when using CJ1W-CIF11 RS-422A Adapters.
*3 Supported only by the SerialRcvNoClear Instructions with Serial communication unit version 2.1 or later, CPU Units with unit version 1.03 or later and the Sysmac Studio version 1.04 or higher.

EtherNet/IP Unit

Unit classification	Product name	Specifications			No. of unit numbers allocated	Current consumption (A)		Model	Standards
		Communications cable	Communications functions	Max. Units mountable per CPU Unit		5 V	24 V		
CJ1 CPU Bus Unit	EtherNet/IP Unit	STP (shielded twisted-pair) cable of category $5,5 e$, or higher	Tag data link message service	4	1	0.41	---	CJ1W-EIP21 *	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

* Supported only by the EtherNet/IP Units with unit version 2.1 or later , CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.

DeviceNet Unit

Unit classification	Product name	Specifications	Communications type	No. of unit numbers allocated	Current consumption (A)		Model	Standards
					5 V	24 V		
CJ1 CPU Bus Units	DeviceNet Unit	Functions as master and/or slave; allows control of 32,000 points max. per master.	- Remote I/O communications master (fixed or user-set allocations) - Remote I/O communications slave (fixed or user-set allocations) - Message communications	1	0.29	---	CJ1W-DRM21	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

Note: 1. Simple backup function cannot be used.
2. DeviceNet configurator cannot be used. Use CX-Integrator.

Machine Automation Controller NJ-Series

■ CompoNet Master Unit

Unit classification	Product name	Specifications		No. of unit numbers allocated	Current consumption (A)		Model	Standards
		Communications functions	No. of I/O points per Master Unit		5 V	24 V		
CJ1 Special I/O Units	CompoNet Master Unit	Remote I/O communications Message communications	Word Slaves: 2,048 max. (1.024 inputs and 1,024 outputs) Bit Slaves: 512 max. (256 inputs and 256 outputs)	1,2,4, or 8	0.4	---	CJ1W-CRM21 *	$\begin{aligned} & \mathrm{U}, \mathrm{U} 1, \mathrm{~N}, \mathrm{~L}, \\ & \mathrm{CE} \end{aligned}$

Note: 1. Simple backup function cannot be used.
2. The FINS command to the CompoNet Master Unit cannot be issued.

* Supported only by the CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.

■ ID Sensor Units

Unit classification	Product name	Specifications			No. of unit numbers allocated	Current consumption (A)		Model	Standards
		Connected ID Systems	No. of connected R/W heads	External power supply		5 V	24 V		
	ID Sensor Units		1		1	0.26	0.13 *	CJ1W-V680C11	
CJ1 CPU Bus Units		V680-Series RFID System	2	Not required.	2	0.32	0.26	CJ1W-V680C12	UC, CE

Note: The data transfer function using intelligent I/O commands can not be used.

* To use a V680-H01 Antenna, refer to the V680 Series RFID System Catalog (Cat. No. Q151).

Peripheral Devices

EtherCAT junction slaves

Product name		No. of ports	Power supply voltage	Current consumption (A)	Model	Standards
EtherCAT junction slaves	E	3	$\begin{gathered} 20.4 \text { to } 28.8 \text { VDC } \\ (24 \text { VDC -15 to }+20 \%) \end{gathered}$	0.08	GX-JC03	CE, UC1
	㫛	6		0.17	GX-JC06	

Note: 1. Please do not connect EtherCAT junction slaves with OMRON position control unit, Model CJ1W-NC $\square 81 / \square 82$.
2. EtherCAT junction slaves cannot be used for EtherNet/IP and Ethernet.

Industrial Switching Hubs for EtherNet/IP and Ethernet

Product name		Specifications			Accessories	Current consumption (A)	Model	Standards
		Functions	No. of	Failure				
Industrial Switching Hubs		Quality of Service (QoS): EtherNet/IP control data priority Failure detection: Broadcast storm and LSI error detection 10/100BASE-TX, Auto-Negotiation	3	No	- Power supply connector	0.22	W4S1-03B	UC, CE
			5	No		0.22	W4S1-05B	
			5	Yes	- Power supply connector - Connector for informing error	0.22	W4S1-05C	CE

Note: Industrial switching hubs cannot be used for EtherCAT.

WE70 FA WIRELESS LAN UNITS

Product name	Applicable region	Type	Model	Standards
WE70 FA WIRELESS LAN UNITS	Japan	Access Point (Master)	WE70-AP	---
		Client (Slave)	WE70-CL	
	Europe	Access Point (Master)	WE70-AP-EU	CE
		Client (Slave)	WE70-CL-EU	
	U.S	Access Point (Master)	WE70-AP-US	UC
		Client (Slave)	WE70-CL-US	
	Canada	Access Point (Master)	WE70-AP-CA	
		Client (Slave)	WE70-CL-CA	
	China	Access Point (Master)	WE70-AP-CN	---
		Client (Slave)	WE70-CL-CN	

Note: 1. A Pencil Antenna, mounting magnet, and screw mounting bracket are included as accessories.
2. Always use a model that is applicable in your region. For example, using the WE70-AP-US outside of the United States is illegal in terms of the usage of electromagnetic waves. Refer to the WE70 Catalog (Cat. No. N154).

Automation Software Sysmac Studio

Ordering Information

Automation Software

Please purchase a DVD and licenses the first time you purchase the Sysmac Studio. DVDs and licenses are available individually. The license does not include the DVD.

Product	Specifications			Model	Standards
		Number of licenses	Media		
Sysmac Studio Standard Edition Ver.1.	The Sysmac Studio provides an integrated development environment to set up, program, debug, and maintain NJ -series Controllers and other Machine Automation Controllers, as well as EtherCAT slaves. Sysmac Studio runs on the following OS. Windows XP (Service Pack 3 or higher, 32-bit version) / Vista (32-bit version) / 7 (32-bit/64-bit version)	- (Media only)	DVD *1	SYSMAC-SE200D	-
		1 license	-	SYSMAC-SE201L	-
		3 licenses	-	SYSMAC-SE203L	-
		10 licenses	-	SYSMAC-SE210L	-
		30 licenses	-	SYSMAC-SE230L	-
		50 licenses	-	SYSMAC-SE250L	-
Sysmac Studio Vision Edition Ver.1. \square 2 $* 4$	Sysmac Studio Vision Edition is a limited license that provides selected functions required for FQ-M-series and FH-series Vision Sensor settings.	1 license	-	SYSMAC-VE001L	-
Sysmac Studio Measurement Sensor Edition Ver.1. $\quad * 3 * 4$	Sysmac Studio Measurement Sensor Edition is a limited license that provides selected functions required for ZW-series Displacement Sensor settings.	1 license	-	SYSMAC-ME001L	-
		3 licenses	-	SYSMAC-ME003L	-

Note: Site licenses are available for users who will run Sysmac Studio on multiple computers. Ask your OMRON sales representative for details. *1. The same media is used for both the Standard Edition and the Vision Edition.
*2. With the Vision Edition, you can use only the setup functions for FQ-M-series and FH-series Vision Sensors.
*3. With the Measurement Sensor Edition, you can use only the setup functions for ZW-series Displacement Sensors.
*4. This product is a license only. You need the Sysmac Studio Standard Edition DVD media to install it.

Components

DVD (SYSMAC-SE200D)

Components	Details
Introduction	An introduction about components, installation/uninstallation, user registration and auto update of the Sysmac Studio is provided.
Setup disk (DVD-ROM)	1
License (SYSMAC-SE2 $\square \square$ LVE0 $\square \square$ L/ME0 $\square \square L$)	
Components	Details
License agreement	The license agreement gives the usage conditions and warranty for the Sysmac Studio.
License card	A model number, version, license number, and number of licenses are described.
User registration card	Two cards are contained. One is for users in Japan and the other is for users in other countries.

Included Support Software

DVD media of Sysmac Studio includes the following support software.

Included Support Software		Outline
CX-Designer	Ver.3. \square	The CX-Designer is used to create screens for NS-series PTs.
CX-Integrator	Ver.2. \square	The CX-Integrator is used to set up FA networks.
CX-Protocol	Ver.1. \square	The CX-Protocol is used for protocol macros for Serial Communications Units.
Network Configurator	Ver.3. \square	The Network Configurator is used for tag data links on the built-in EtherNet/IP port.

fa communications sotware CX-Compolet / SYSMAC Gateway

Ordering Information

CX-Compolet

Product name	Specification	Model	Standards
CX-Compolet*1	Software components that can make it easy to create programs for communications between a computer and controllers. This packaged product bundles CX-Compolet and SYSMAC Gateway with 1 license each. Supported execution environment: .NET Framework (1.1, 2.0, 3.0, 3.5 or 4.0) Development environment: Visual Studio .NET*2 /.NET2003/.NET2005/.NET2008/.NET2010 Development languages: Visual Basic .NET, Visual C\#.NET, Visual Basic Ver. 5/6*3 Supported communications: Equal to SYSMAC Gateway.	WS02-CPLC1	-
	3 additional licenses (This product provides only additional licenses. The software must be purchased in advance.)	WS02-CPLC1-L3	
	5 additional licenses (This product provides only additional licenses. The software must be purchased in advance.)	WS02-CPLC1-L5	
	10 additional licenses (This product provides only additional licenses. The software must be purchased in advance.)	WS02-CPLC1-L10	
	Software components only. This package includes CX-Compolet with 1 license. SYSMAC Gateway is not included.	WS02-CPLC2	

Note: Supported only by the CPU Units with unit version 1.01 or later and the CX-Compolet version 1.31 or higher.
*1 One license is required per computer.
*2 Only the components compatible with CX-Compolet version 2003 are supported.
A development environment of .NET 2003 or higher is required for CIP communications.
*3 Only functions provided by SYSMAC Compolet V2 as ActiveX controls are supported for Visual Basic version 5 or 6. (Windows XP only.)

SYSMAC Gateway (Communications Middleware)

Product name	Specification	Model	Standards
	Communications middleware for personal computers running Windows. Supports CIP communications and tag data links (EtherNet/IP) in addition to FinsGateway functions. This package includes SYSMAC Gateway with 1 licence. (Fins Gateway is also included.) Supported communications:RS-232C, USB, Controller Link, SYSMAC LINK, Ethernet, EtherNet/IP	WS02-SGWC1	

Note: Supported only by the CPU Units with unit version 1.01 or later and the SYSMAC Gateway version 1.31 or higher.

* One license is required per computer.

System Requirements (CX-Compolet / SYSMAC Gateway)

Item	Requirement				
Operating system (OS) Japanese or English system	Microsoft Windows XP SP3 (32bit)	Microsoft Windows Server 2003 (32bit)	Microsoft Windows Vista (32bit)	Microsoft Windows 7 (32bit/64bit *)	Microsoft Windows Server 2008 (32bit/ 64bit *) or Microsoft Windows Server 2008 R2 (64bit *)
Personal compute	Windows computers with Intel x86 processor			Windows computers with Intel 32bit (x86) processor or 64bit (x64) -based processor	
CPU	Processor recommended by Microsoft. (1 GHz or faster recommended.)			Processor recommended by Microsoft. (2 GHz or faster recommended.)	
Memory	512 MB minimum (1 GB min. recommended.)			1 GB minimum (2 GB min. recommended.)	
Hard disk	At least 400 MB of available space				

Note: USB Port on the PC can not be shared between SYSMAC Gateway and CX-One in Windows Vista or higher.
*This software runs on WOW64 (Windows-On-Windows 64). Customer application must be run as 32bit process.

Correspondence between Controller Models and Connected Networks

Controller Model	RS-232C				USB	Ethernet (LAN)		Controller Link
	SYSWAY (Host Link C Mode)	SYSWAY-CV (Host Link FINS)	CompoWay/F (master at personal computer)	Peripheral Bus	FINS	Ethernet (FINS)	EtherNet/IP	FINS
NJ5 (unit version 1.01 or later)*1	No	No	No	No	No	No	Yes*2	No
NJ3 (unit version 1.01 or later)* ${ }^{*}$	No	No	No	No	No	No	Yes*2	No

*1. To connect the NJ Controller, CX-Compolet / SYSMAC Gateway version 1.31 or higher is required.
*2. Tag data links between SYSMAC Gateway and the NJ-series CPU Unit can be created within the CJ-series specifications for variable with basic data type, array variable, and structure variable. SYSMAC Gateway memory allocation of structure variable is the same as the CJ-series.

EtherCAT Slave Terminals NX Series

Ordering Information

EtherCAT Coupler Unit

Unit type	Product Name	Current consumption	Maximum I/O power supply current	Model	Standards
NX Series EtherCAT Coupler Unit	EtherCAT Coupler Unit	1.45 W or lower	4 A	NX-ECC201	UC1, N, L, CE, KC
			10 A	NX-ECC202	

The following accessories come with the CPU Unit.

Item	Specification
End Cover	NX-END01 (1 pcs)

Digital Input Unit

- DC Input Unit

Unit type	Product Name	Specification					Model	Standards
		Number of points	Internal I/O common	Rated input voltage	I/O refreshing method	ON/OFF response time		
NX Series Digital Input Units	DC Input Units	4 points	NPN	12 to 24 VDC	Switching Synchronous I/O refreshing and Free-Run refreshing	20 нs max./400 $\mu \mathrm{s}$ max.	NX-ID3317	UC1, N, L, CE, KC
				24 VDC		100 ns max./ 100 ns max.	NX-ID3343	
					Input refreshing with input changed time only*		NX-ID3344	
			PNP	12 to 24 VDC	Switching Synchronous I/O refreshing and Free-Run refreshing	20 s max. $/ 400$ $\mu \mathrm{s}$ max.	NX-ID3417	
				24 VDC	Input refreshing with input changed time only*	100 ns max./ 100 ns max.	NX-ID3443	
							NX-ID3444	
		8 points	NPN		Switching Synchronous I/O refreshing and Free-Run refreshing	20 ss max. $/ 400$ $\mu \mathrm{s}$ max.	NX-ID4342	
			PNP				NX-ID4442	
			NPN				NX-ID5342	
		16 points	PNP				NX-ID5442	

* To use input refreshing with input changed time, NJ CPU Unit with unit version 1.06 or later, EtherCAT Coupler Unit with unit version 1.1 or later, and Sysmac Studio version 1.07 or higher are required.

- AC Input Unit

Unit type	Product Name	Specification				Model	Standards
		Number of points	Rated input voltage	I/O refreshing method	ON/OFF response time		
NX Series Digital Input Unit	AC Input Units	4 points	200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ (170 to $264 \mathrm{VAC}, \pm 3 \mathrm{~Hz}$)	Free-Run refreshing	10 ms max./40 ms max.	NX-IA3317	UC1,CE, KC

Digital Output Unit

- Transistor Output Unit

Unit type	Product Name	Specification						Model	Standards
		Number of points	Internal I/O common	Maximum value of load current	Rated voltage	I/O refreshing method	ON/OFF response time		
NX Series Digital output Units	Transistor Output Unit	2 points	NPN	0.5 A/point, 1 A/Unit	24 VDC	Output refreshing with specified time stamp only*	300 ns max./ 300 ns max.	NX-OD2154	UC1, N, L, CE, KC
			PNP					NX-OD2258	
		4 points	NPN	0.5 A/point, 2 A/Unit	12 to 24 VDC	Switching Synchronous I/O refreshing and Free-Run refreshing	$\begin{aligned} & 0.1 \mathrm{~ms} \text { max./ } \\ & 0.8 \mathrm{~ms} \text { max. } \end{aligned}$	NX-OD3121	
					24 VDC		300 ns max./ 300 ns max.	NX-OD3153	
			PNP				0.5 ms max./ 1.0 ms max.	NX-OD3256	
							300 ns max./ 300 ns max.	NX-OD3257	
		8 points	NPN	0.5 A/point, 4 A/Unit	12 to 24 VDC		0.1 ms max./ 0.8 ms max.	NX-OD4121	
			PNP		24 VDC		0.5 ms max./ 1.0 ms max.	NX-OD4256	
		16 points	NPN		12 to 24 VDC		0.1 ms max./ 0.8 ms max.	NX-OD5121	
			PNP		24 VDC		$\begin{aligned} & 0.5 \mathrm{~ms} \text { max./ } \\ & 1.0 \mathrm{~ms} \text { max. } \end{aligned}$	NX-OD5256	

* To use output refreshing with specified time stamp, NJ CPU Unit with unit version 1.06 or later, EtherCAT Coupler Unit with unit version 1.1 or later, and Sysmac Studio version 1.07 or higher are required.
- Relay Output Unit

Unit type	Product Name	Specification					Model	Standards
		Capacity	Relay type	Maximum switching capacity	I/O refreshing method	ON/OFF response time		
NX Series Digital output Units	Relay Output Unit	2 points	N.O.	$\begin{aligned} & \mathrm{AC} 250 \mathrm{~V} / 2 \mathrm{~A}(\cos \phi=1) \\ & \mathrm{AC} 250 \mathrm{~V} / 2 \mathrm{~A}(\cos \phi=0.4) \\ & \mathrm{DC} 24 \mathrm{~V} / 2 \mathrm{~A} \\ & 4 \mathrm{~A} / \mathrm{NX} \text { Unit } \end{aligned}$	Free-Run refreshing	15ms max./ 15 ms max.	NX-OC2633	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE, KC } \end{aligned}$
			NO+NC				NX-OC2733	UC1,CE,KC

EtherCAT Slave Terminals NX Series

Analog Input Unit

Analog Output Unit

Unit type	Product Name	Specification							NX Unit power consumption	Model	Standards
		Capacity	Input range	Resolution	Output setting value, decimal number (0 to 100\%)	Over all accuracy ($25^{\circ} \mathrm{C}$)	Conversion time	I/O refreshing method			
NX Series Analog Output Unit	Voltage Output Unit	2 points	$\begin{aligned} & -10 \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	1/8000	-4000 to 4000	$\begin{aligned} & \hline \pm 0.3 \% \\ & \text { (full scale) } \\ & \hline \end{aligned}$	$250 \mu \mathrm{~s} / \mathrm{point}$	Free-Run refreshing	1.10W max.	NX-DA2603	UC1,N, L, CE,KC
				1/30000	$\begin{aligned} & -15000 \text { to } \\ & 15000 \end{aligned}$	$\begin{aligned} & \pm 0.1 \% \\ & \text { (full scale) } \end{aligned}$	$10 \mu \mathrm{~s} / \mathrm{point}$	Selectable Synchronous I/O refreshing or Free-Run refreshing	1.10W max.	NX-DA2605	
				1/8000	-4000 to 4000	$\begin{array}{\|l} \pm 0.3 \% \\ \text { (full scale) } \\ \hline \end{array}$	$250 \mu \mathrm{~s} / \mathrm{point}$	Free-Run refreshing	1.25 W max.	NX-DA3603	
		4 points		1/30000	$\begin{aligned} & -15000 \text { to } \\ & 15000 \end{aligned}$	$\begin{aligned} & \pm 0.1 \% \\ & \text { (full scale) } \end{aligned}$	$10 \mu \mathrm{~s} / \mathrm{point}$	Selectable Synchronous I/O refreshing or Free-Run refreshing	1.25W max.	NX-DA3605	
	Current Output Unit	2 points	$\begin{aligned} & 4 \text { to } \\ & 20 \mathrm{~mA} \end{aligned}$	1/8000	0 to 8000	$\begin{array}{\|l} \pm 0.3 \% \\ \text { (full scale) } \\ \hline \end{array}$	$250 \mu \mathrm{~s} / \mathrm{point}$	Free-Run refreshing	1.75W max.	NX-DA2203	
				1/30000	0 to 30000	$\begin{aligned} & \pm 0.1 \% \\ & \text { (full scale) } \end{aligned}$	$10 \mu \mathrm{~s} / \mathrm{point}$	Selectable Synchronous I/O refreshing or Free-Run refreshing	1.75 W max.	NX-DA2205	
				1/8000	0 to 8000	$\begin{array}{\|l\|} \hline \pm 0.3 \% \\ \text { (full scale) } \\ \hline \end{array}$	$250 \mu \mathrm{~s} / \mathrm{point}$	Free-Run refreshing	1.80W max.	NX-DA3203	
		4 points		1/30000	0 to 30000	$\begin{aligned} & \pm 0.1 \% \\ & \text { (full scale) } \end{aligned}$	$10 \mu \mathrm{~s} / \mathrm{point}$	Selectable Synchronous I/O refreshing or Free-Run refreshing	1.80W max.	NX-DA3205	

EtherCAT Slave Terminals NX Series

Temperature Input Unit

Unit type	Product Name	Specification							NX Unit power consumption	Model	Standards
		Capacity	Input type	$\begin{aligned} & \text { Resolution } \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	Over all accuracy ($25^{\circ} \mathrm{C}$)	Conversion time	I/O refreshing method	Terminals			
NX Series Temperature Input Unit	Thermocouple Input type	2 points	Thermocouple	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \\ & \max . \end{aligned}$	Refer to Reference accuracy and temperature coefficient according to the input type and measurement temperature	$250 \mathrm{~ms} /$ Unit	Free-Run refreshing	$\begin{aligned} & 16 \\ & \text { Terminals } \end{aligned}$	0.90W max.	NX-TS2101	UC1, N, L, CE, KC
		4 points						$\begin{array}{\|l} 16 \\ \text { Terminals } \\ \text { x } 2 \end{array}$	1.30W max.	NX-TS3101	
		2 points		$0.01^{\circ} \mathrm{C}$ max.		$10 \mathrm{~ms} /$ Unit		$\begin{array}{\|l\|} \hline 16 \\ \text { Terminals } \end{array}$	0.80W max.	NX-TS2102	
		4 points						$\begin{array}{\|l} 16 \\ \text { Terminals } \\ x 2 \end{array}$	1.10W max.	NX-TS3102	
		2 points		$\begin{aligned} & 0.001^{\circ} \mathrm{C} \\ & \max . \end{aligned}$		$60 \mathrm{~ms} /$ Unit		$\begin{array}{\|l\|} \hline 16 \\ \text { Terminals } \end{array}$	0.80W max.	NX-TS2104	
		4 points						$\begin{aligned} & 16 \\ & \text { Terminals } \\ & \text { x } 2 \end{aligned}$	1.10W max.	NX-TS3104	
	Resistance Thermometer Input type	2 points	Resistance Thermometer (Pt100/ Pt1000, three-wire) *2	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \\ & \max . \end{aligned}$		$250 \mathrm{~ms} /$ Unit		$\begin{array}{\|l\|} \hline 16 \\ \text { Terminals } \end{array}$	0.90W max.	NX-TS2201	
		4 points						$\begin{array}{\|l} 16 \\ \text { Terminals } \\ \text { x } 2 \end{array}$	1.30W max.	NX-TS3201	
		2 points						$\begin{aligned} & 16 \\ & \text { Terminals } \end{aligned}$	0.75 W max.	NX-TS2202	
		4 points						$\begin{array}{\|l} 16 \\ \text { Terminals } \\ x 2 \end{array}$	1.05 W max.	NX-TS3202	
		2 points						$\begin{array}{\|l\|} \hline 16 \\ \text { Terminals } \end{array}$	0.75W max.	NX-TS2204	
		4 points						$\begin{array}{\|l} 16 \\ \text { Terminals } \\ \text { x } 2 \end{array}$	1.05W max.	NX-TS3204	

[^43]
Incremental Encoder Input Unit

Unit type	Product Name	Specification						Model	Standards
		Number of channels	Input form	Maximum response frequency	External Inputs	Encoder power supply	Type of external connections		
NX Series Position Interface Unit	Increme ntal Encoder Input Units	1	Voltage input (24 V)	Phases A and B: Single-phase 500 kHz (phase difference pulse input x4: 125 kHz), Phase Z: 125 kHz	3	$\begin{aligned} & \text { DC24V, } \\ & 0.3 \mathrm{~A} / \mathrm{CH} \end{aligned}$	Screwless push-in terminal block (16 terminals)	NX-EC0122	$\begin{aligned} & \text { UC1, N, L, CE, } \\ & \text { KC } \end{aligned}$
		2	Voltage input (24 V)	Phases A and B: Single-phase 500 kHz (phase difference pulse input x4: 125 kHz), Phase Z: 125 kHz	-	$\begin{aligned} & \mathrm{DC} 24 \mathrm{~V}, \\ & 0.3 \mathrm{~A} / \mathrm{CH} \end{aligned}$	Screwless push-in terminal block (12 terminals)	NX-EC0222	$\begin{aligned} & \text { UC1, N, L, CE, } \\ & \text { KC } \end{aligned}$
		1	Line receiver input	Phases A and B: Single-phase 4 MHz (phase difference pulse input $x 4: 1 \mathrm{MHz}$), Phase Z: 1 MHz	3	$\begin{aligned} & \text { DC5V, } \\ & 0.5 \mathrm{~A} / \mathrm{CH} \end{aligned}$	Screwless push-in terminal block (24 terminals)	NX-EC0142	$\begin{aligned} & \text { UC1, N, L, CE, } \\ & \text { KC } \end{aligned}$

SSI Input Unit

Unit type	Product Name	Specification					Model	Standards
		Number of channels	Input/Output form	Maximum data length	Encoder power supply	Type of external connections		
NX Series Position Interface Unit	SSI Input Units	1	EIA standard RS-422-A	32 bits	DC24V, 0.3A/CH	Screwless push-in terminal block (12 terminals)	NX-ECS112	UC1, N, L, CE, KC
		2	EIA standard RS-422-A	32 bits	DC24V, 0.3A/CH	Screwless push-in terminal block (12 terminals)	NX-ECS212	UC1, N, L, CE, KC

Pulse Output Unit

Unit type	Product Name	Specification					Model	Standards
		Number of axes	Pulse Output form	Maximum pulse output speed	I/O signals	Type of external connections		
NX Series Position Interface Unit	Pulse Output Units	1	Open collector output	500 kpps	External inputs: 2 External outputs: 3	Screwless pushin terminal block (16 terminals)	NX-PG0122	UC1, N, L, CE, KC

EtherCAT Slave Terminals NX Series

System Unit

- Additional NX Unit Power Supply Unit

Unit type	Product Name	Power supply voltage	NX Bus power supply capacity	NX Unit power consumption	Model	Standards
NX Series System Unit	Additional NX Unit Power Supply Unit	$\begin{aligned} & 24 \text { VDC } \\ & \text { (20.4 to } 28.8 \text { VDC) } \end{aligned}$	10 W max.	0.45 W max.	NX-PD1000	UC1, N, L, CE, KC

- Additional I/O Power Supply Unit

Unit type	Product Name	Power supply voltage	I/O power feed maximum current	NX Unit power consumption	Model	Standards
NX Series System Unit	Additional I/O Power Supply Unit	5 to 24 VDC (4.5 to 28.8 VDC)	4 A	0.45 W max.	NX-PF0630	
			10 A		NX-PF0730	

- I/O Power Supply Connection Unit

Unit type	Product Name	Number of I/O power terminals	Current capacity of I/O power terminal	NX Unit power consumption	Model	Standards
NX Series System Unit	I/O Power Supply Connection Unit	IOG: 16 terminals	4 A/terminal max.	0.45 W max.	NX-PC0010	UC1, N, L, CE, KC
		IOV: 16 terminals	4 A/terminal max.	0.45 W max.	NX-PC0020	UC1, N, L, CE, KC
		IOV:8 terminals IOG:8 terminals	4 A/terminal max.	0.45 W max.	NX-PC0030	UC1, N, L, CE, KC

- Shield Connection Unit

Unit type	Product Name	Number of shield terminals	NX Unit power consumption	Model	Standards
	Shield Connection Unit		14 terminals (The following two terminals are functional ground terminals.)	0.45 W max.	NX-TBX01
NX Series System Unit			UC1, N, L, CE, KC		

Optional Products and Maintenance Products

Product Name	Specification	Model	Standards
Unit/Terminal Block Coding Pins	For 10 Units (Terminal Block: 30 pins, Unit: 30 pins)	NX-AUX02	---
End Cover	One End Cover is provided as a standard accessory with EtherCAT Coupler Unit.	NX-END01	---
DIN Track Insulation Spacers	A Spacer to insulate the control panel from the DIN Track. To insulate the EtherCAT Slave Terminal from the control panel, use Din Track Insulation Spacers.	NX-AUX01	---

Product Name	Specification				Model	Standards
	No. of terminals	Terminal number indications	Ground terminal mark	Terminal current capacity		
Terminal Blocks	8	A/B	None	10A	NX-TBA082	---
	12	A/B			NX-TBA122	
	16	A/B			NX-TBA162	
	12	C/D			NX-TBB122	
	16	C/D			NX-TBB162	
	8	A/B	Provided		NX-TBC082	
	16	A/B			NX-TBC162	

Safety control Units NX Series

Ordering Information

Safety CPU Unit

Unit type	Appearance	Specifications				Model
		Maximum number of safety I/O points	Program capacity	Number of safety master connections	I/O refreshing method	
Safety CPU Unit		256 points	512KB	32	Free-Run refreshing	NX-SL3300
		1024 points	2048KB	128	Free-Run refreshing	NX-SL3500

Safety Input Units

Unit type	Appearance	Specifications							Model
		Number of safety input points	Number of test output points	Internal I/O common	Rated input voltage	OMRON special safety input devices	Number of safety slave connections	I/Orefreshing method	
Safety Input Units		4 points	2 points	Sinking inputs (PNP)	24 VDC	Can be connected. *	1	Free-Run refreshing	NX-SIH400
		8 points	2 points	Sinking inputs (PNP)	24 VDC	Cannot be connected.	1	Free-Run refreshing	NX-SID800

* The following OMRON special safety input devices can be connected directly without a special controller.

For detail of connectable OMRON special safety input devices,refer to NX-series Safety Control Units User's Manual(No.Z930-E1).

Type	Model and corresponding PL and safety category
OMRON Single-beam Safety Sensors	E3ZS and E3FS
OMRON Non-contact Door Switches	D40Z D40A
OMRON Safety Mats	UM
OMRON Safety Edges	SGE (4-wire connection)

Safety Output Units

Unit type	Appearance	Specifications						Model
		Number of safety output points	Internal I/O common	Maximum load current	Rated voltage	Number of safety slave connections	I/O refreshing method	
Safety Output Units		2 points	Sourcing outputs (PNP)	2.0 A/point, 4.0 A/Unit at $40^{\circ} \mathrm{C}$, and $2.5 \mathrm{~A} /$ Unit at $55^{\circ} \mathrm{C}$ The maximum load current depends on the installation orientation and ambient temperature.	24 VDC	1	Free-Run refreshing	NX-SOH200
		4 points	Sourcing outputs (PNP)	$0.5 \mathrm{~A} /$ point and 2.0 A/Unit	24 VDC	1	Free-Run refreshing	NX-SOD400

Option

Product Name	Specification				Model
Unit/Terminal Block Coding Pins	For 10 Units (Terminal Block: 30 pins, Unit: 30 pins)				NX-AUX02
Product name	Specification				Model
	No. of terminals	Terminal number indications	Ground terminal mark	Terminal current capacity	
Terminal Block	8	A/B	None	10A	NX-TBA082
	16	A/B	None	10A	NX-TBA162

AC Servomotor/Linear Motor/Drives
 G5-Series

Interpreting Model Numbers

AC Servo Drive Rotary Motor Type Model Numbers

R88D-K N 01 H -ECT
(1) $\overline{\text { (2) }} \overline{\text { (3) }} \quad \overline{(4)} \quad$ (5)

No	Item	Symbol	Specifications
(1)	G5-Series Servo Drive		
(2)	Drive Type	N	Communication type
(3)	Maximum Applicable Servomotor Capacity	A5	50 W
		01	100 W
		02	200 W
		04	400 W
		06	600 W
		08	750 W
		10	1 kW
		15	1.5 kW
		20	2 kW
		30	3 kW
		40	4 kW
		50	5 kW
		75	7.5 kW
		150	15 kW
(4)	Power Supply Voltage	L	100 VAC
		H	200 VAC
		F	400 VAC
(5)	Network type	-ECT	herCAT Communicatio

AC Servo Drive Linear Motor Type Model Numbers

R88D-K N 01 H -ECT -L
(1)
(2)
(3)
(4)
(5)
(6)

No	Item	Symbol	Specifications
(1)	G5-series Servo Drive		
(2)	Drive Type	N	Communication type
(3)	Maximum Applicable Linear Motor Capacity	01	100 W
		02	200 W
		04	400 W
		06	600 W
		08	750 W
		10	1 kW
		15	1.5 kW
		20	2 kW
		30	3 kW
(4)	Power Supply Voltage	L	100 VAC
		H	200 VAC
		F	400 VAC
(5)	Network type	-ECT	EtherCAT Communications
(6)	Motor type	-L	Linear Motor

Servomotor Model Numbers
R88M-K $\square 75030$ H -BO S2
(1)
(2)
(3)
(4)
(5)
(6)

No	Item	Symbol	Specifications	
(1)	G5-Series Servomotor			
(2)	Motor Type	Blank	Cylinder type	
		-	-	
(3)	Servomotor Capacity	050	50 W	
		100	100 W	
		200	200 W	
		400	400 W	
		600	600 W	
		750	750 W	
		900	900 W	
		1K0	1 kW	
		1K5	1.5 kW	
		2K0	2 kW	
		3K0	3 kW	
		4K0	4 kW	
		4K5	4.5 kW	
		5K0	5 kW	
		6K0	6 kW	
		7K5	7.5 kW	
		11K0	11 kW	
		15K0	15 kW	
(4)	Rated Rotation Speed	10	1,000 r/min	
		15	1,500 r/min	
		20	2,000 r/min	
		30	3,000 r/min	
(5)	Applied Voltage	F	400 VAC (with incremental encoder specifications)	INC
		H	200 VAC (with incremental encoder specifications)	INC
		L	100 VAC (with incremental encoder specifications)	INC
		C	400 VAC (with absolute encoder specifica- ABSIINC tions)	
		T	200VAC (with absolute encoder specifica- ABSIINC tions)	
		S	100 VAC (with absolute encoder specifica- ABSIINC tions)	
(6)	Option	Blank	Straight shaft	
		B	With brake	
		0	With oil seal	
		S2	With key and tap	

Note: IINC incremental encoder: 20bit
ABSIINC incremental encoder: 17bit, absolute encoder: 17bit

Linear Motor

- Iron-core linear motor

Motor Coil Unit

R88L-EC -FW -03 03 -A NP C
(1)
(2)
(3)
(4)
(5)
(6) (7)

No	Item	Symbol	Specifications
(1)	G5-series Linear Motor		
(2)	Part Type	FW	Iron-core type Motor Coil Unit
(3)	Effective Magnet Width	03	30 mm
		06	60 mm
		11	110 mm
(4)	Coil Model		03
		06	3-coil
		09	6-coil
		12	9-coil
		15	12-coil
(5)	Version	A	15-coil
(6)	Connector	NP	Ver.A
(7)	Type	C	Not Provided

- Ironless linear motor

Motor Coil Unit

No	Item	Symbol	Specifications
(1)	G5-series Linear Motor		
(2)	Part Type	GW	Ironless type Motor Coil Unit
(3)	Effective Magnet Width	03	30 mm
		05	50 mm
		07	70 mm
(4)	Coil Model	03	3-coil
		06	6-coil
		09	9-coil
(5)	Version	A	Ver.A
(6)	Connector	NP	Not Provided
(7)	Type	S	Standard type

Magnet Trac

R88L-EC -FM -03 096 -A

(1)	(2)	(3)	(4)

No	Item	Symbol	Specifications
(1)	G5-series Linear Motor		
(2)	Part Type	FM	Iron-core type Magnet Trac
(3)	Effective Magnet Width	03	30 mm
		06	60 mm
		11	110 mm
(4)	Magnet Trac Unit Length	096	96 mm
		144	144 mm
		192	192 mm
		288	288 mm
		384	384 mm
(5)	Version	A	Ver.A

Magnet Trac

R88L-EC -GM -03 090-A
(1) (2) (3) (4) (5)

No	Item	Symbol	Specifications
(1)	G5-series Linear Motor		
(2)	Part Type	GM	Ironless type Magnet Trac
(3)	Effective Magnet Width	03	30 mm
		05	50 mm
		07	70 mm
(4)	Magnet Trac Unit Length	090	90 mm
		114	114 mm
		120	120 mm
		126	126 mm
		168	168 mm
		171	171 mm
		210	210 mm
		390	390 mm
		456	456 mm
		546	546 mm
(5)	Version	A	Ver.A

seups rN

Understanding Decelerator Model Numbers (Backlash = 3' Max./Backlash = 15' Max.)

Backlash = 3^{\prime} Max.
R88G-HPG 14A 05100 S B J
(1)
(2)
(3)
(4)
$\overline{(5)} \quad \overline{(6)} \quad \overline{(7)}$

No	Item	Symbol	Specifications
(1)	Decelerator forG \square-Series Servomotors Backlash = 3^{\prime} Max.		
(2)	$\underset{\substack{\text { Flange } \\ \text { ber }}}{\text { Size Num- }}$	11B	$\square 40$
		14A	$\square 60$
		20A	$\square 90$
		32A	$\square 120$
		50A	$\square 170$
		65A	$\square 230$
(3)	Gear Ratio	05	1/5
		09	1/9 (only frame number 11B)
		11	1/11 (except frame number 65A)
		12	$1 / 12$ (only frame number 65A)
		20	1/20 (only frame number 65A)
		21	1/21 (except frame number 65A)
		25	1/25 (only frame number 65A)
		33	1/33
		45	1/45
(4)	Applicable Servomotor Capacity	050	50 W
		100	100 W
		200	200 W
		400	400 W
		750	750 W
		900	900 W
		1K0	1 kW
		1K5	1.5 kW
		2K0	2 kW
		3K0	3 kW
		4K0	4 kW
		4K5	4.5 kW
		5K0	5 kW
(5)	Motor Type	Blank	3,000-r/min cylindrical servomotors
		S	2,000-r/min cylindrical servomotors
		T	1,000-r/min cylindrical servomotors
(6)	Backlash	B	Backlash = 3' Max
(7)	Option	Blank	Straight shaft
		J	With key and tap

Backlash = 15' Max.
R88G-VRSF 09 B 100
C J
(1)
(2)
$\overline{(3)} \quad(4)$
$\overline{(5)}$
$\overline{(6)} \overline{(7)}$

No	Item	Symbol	Specifications
(1)	Decelerator forG \square-Series Servomotors Backlash = 15' Max.		
(2)	Gear Ratio	05	1/5
		09	1/9
		15	1/15
		25	1/25
(3)	Flange Size Number	B	$\square 52$
		C	$\square 78$
		D	$\square 98$
(4)	Applicable Servomotor Capacity	050	50 W
		100	100 W
		200	200 W
		400	400 W
		750	750 W
(5)	Motor Type	Blank	3,000-r/min cylindrical servomotors
(6)	Backlash	C	Backlash = 15' Max
(7)	Option	J	With key (without tap)

Table of Servomotor Variations

(3)
(4)
(5)
(6) $\overline{(7)}$
(8)
(9)

(3)	(4)	(5)	Model	(6)						(7)		(8)		(9)	
Type	Applicable Servomotor Capacity	Rotation speed		Applied Voltage						With brake / Without brake		Models with oil seals		Shaft type	
				INC	INC	INC	ABS	ABS	ABS						
				400	200	100	400	200	100	-	B				
				F	H	L	C	T	S	Blank	With brake	Blank	0	Blank	S2
Cylinder	50 W	3,000 r/min	R88M-K05030 *1		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	100 W		R88M-K10030		\checkmark	\checkmark		\checkmark							
	200 W		R88M-K20030		\checkmark	\checkmark		\checkmark							
	400 W		R88M-K40030		\checkmark	\checkmark		\checkmark							
	750 W		R88M-K75030	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	1 kW		R88M-K1K030	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	1.5 kW		R88M-K1K530	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	2 kW		R88M-K2K030	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	3 kW		R88M-K3K030	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	4 kW		R88M-K4K030	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	5 kW		R88M-K5K030	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	400 W	2,000 r/min	R88M-K40020	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	600 W		R88M-K60020	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	1 kW		R88M-K1K020	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	1.5 kW		R88M-K1K520	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	2 kW		R88M-K2K020	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	3 kW		R88M-K3K020	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	4 kW		R88M-K4K020	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	5 kW		R88M-K5K020	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	7.5 kW		R88M-K7K515 *2				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	11 kW		R88M-K11K015 *2				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	15 kW		R88M-K15K015 *2				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	900 W	1,000 r/min	R88M-K90010	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	2 kW		R88M-K2K010	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	3 kW		R88M-K3K010	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	4.5 kW		R88M-K4K510				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	6 kW		R88M-K6K010				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Blank: Cylinder type	example 030: 30 W 100: 100 W 1K0: 1 kW	$\begin{aligned} & \text { 10: } 1,000 \mathrm{r} / \mathrm{min} \\ & \text { 20: } 2,000 \mathrm{r} / \mathrm{min} \\ & 30: 3,000 \mathrm{r} / \mathrm{min} \end{aligned}$		F: 400 VAC (with incremental encoder) H: 200 VAC (with incremental encoder) INC L: 100 VAC (with incremental encoder) INC C: 400 VAC (with absolute encoder) ABSIINC T: 200 VAC (with absolute encoder) ABSIINC S: 100 VAC (with absolute encoder) ABSINC						Blank: Without brake B: 24 VDC With brake		Blank: Without oil seals O: With oil seals		Blank: Straight shaft S2: With key and tap	

[^44]*2 The rated speed is $1,500 \mathrm{r} / \mathrm{min}$.

AC Servomotors/Linear Motor/Servo Drives G5-Series

Ordering Information

AC Servo Drives

EtherCAT Communications

Specifications		Model
Power Model Supply Voltage	Applicable Servomotor Capacity	
Single-phase 100 VAC	50 W	R88D-KNA5L-ECT
	100 W	R88D-KN01L-ECT
	200 W	R88D-KN02L-ECT
	400 W	R88D-KN04L-ECT
Single-phase/threephase 200 VAC	100 W	R88D-KN01H-ECT
	200 W	R88D-KN02H-ECT
	400 W	R88D-KN04H-ECT
	750 W	R88D-KN08H-ECT
	1 kW	R88D-KN10H-ECT
	1.5 kW	R88D-KN15H-ECT
Three-phase 200 VAC	2 kW	R88D-KN20H-ECT
	3 kW	R88D-KN30H-ECT
	5 kW	R88D-KN50H-ECT
	7.5 kW	R88D-KN75H-ECT
	15 kW	R88D-KN150H-ECT
Three-phase 400 VAC	600 W	R88D-KN06F-ECT
	1 kW	R88D-KN10F-ECT
	1.5 kW	R88D-KN15F-ECT
	2 kW	R88D-KN20F-ECT
	3 kW	R88D-KN30F-ECT
	5 kW	R88D-KN50F-ECT
	7.5 kW	R88D-KN75F-ECT
	15 kW	R88D-KN150F-ECT

Note: When connecting a Servo Drive to the NJ-Series Machine Automation Controller, it is recommended that you use the Servo Drive with Built-in EtherCAT Communications, R88D$K N \square \square \square-E C T$, with unit version 2.1 or later.

Linear Motor with built-in EtherCAT communications

Specifications		Model
Power Supply Voltage	Applicable Servomotor Capacity	
Single-phase 100 VAC	100 W	R88D-KN01L-ECT-L
	200 W	R88D-KN02L-ECT-L
	400 W	R88D-KN04L-ECT-L
Single-phase/threephase 200 VAC	100 W	R88D-KN01H-ECT-L
	200 W	R88D-KN02H-ECT-L
	400 W	R88D-KN04H-ECT-L
	750 W	R88D-KN08H-ECT-L
	1 kW	R88D-KN10H-ECT-L
	1.5 kW	R88D-KN15H-ECT-L
Three-phase 400 VAC	600 W	R88D-KN06F-ECT-L
	1 kW	R88D-KN10F-ECT-L
	1.5 kW	R88D-KN15F-ECT-L
	2 kW	R88D-KN20F-ECT-L
	3 kW	R88D-KN30F-ECT-L

Servomotors
<Cylinder Type>
$3,000-\mathrm{r} / \mathrm{min}$ servomotors

	Specifications		Model
			With incremental encoder
			Straight shaft with key and tap
	Voltage	Rated output	Without oil seals
Without brake	100 V	50 W	R88M-K05030H-S2
		100 W	R88M-K10030L-S2
		200 W	R88M-K20030L-S2
		400 W	R88M-K40030L-S2
	200 V	50 W	R88M-K05030H-S2
		100 W	R88M-K10030H-S2
		200 W	R88M-K20030H-S2
		400 W	R88M-K40030H-S2
		750 W	R88M-K75030H-S2
		1 kW	R88M-K1K030H-S2
		1.5 kW	R88M-K1K530H-S2
		2 kW	R88M-K2K030H-S2
		3 kW	R88M-K3K030H-S2
		4 kW	R88M-K4K030H-S2
		5 kW	R88M-K5K030H-S2
	400 V	750 W	R88M-K75030F-S2
		1 kW	R88M-K1K030F-S2
		1.5 kW	R88M-K1K530F-S2
		2 kW	R88M-K2K030F-S2
		3 kW	R88M-K3K030F-S2
		4 kW	R88M-K4K030F-S2
		5 kW	R88M-K5K030F-S2
$\begin{aligned} & 0 \\ & \frac{y}{\Pi} \\ & \frac{1}{0} \\ & \\ & \vdots \end{aligned}$	100 V	50 W	R88M-K05030H-BS2
		100 W	R88M-K10030L-BS2
		200 W	R88M-K20030L-BS2
		400 W	R88M-K40030L-BS2
	200 V	50 W	R88M-K05030H-BS2
		100 W	R88M-K10030H-BS2
		200 W	R88M-K20030H-BS2
		400 W	R88M-K40030H-BS2
		750 W	R88M-K75030H-BS2
		1 kW	R88M-K1K030H-BS2
		1.5 kW	R88M-K1K530H-BS2
		2 kW	R88M-K2K030H-BS2
		3 kW	R88M-K3K030H-BS2
		4 kW	R88M-K4K030H-BS2
		5 kW	R88M-K5K030H-BS2
	400 V	750 W	R88M-K75030F-BS2
		1 kW	R88M-K1K030F-BS2
		1.5 kW	R88M-K1K530F-BS2
		2 kW	R88M-K2K030F-BS2
		3 kW	R88M-K3K030F-BS2
		4 kW	R88M-K4K030F-BS2
		5 kW	R88M-K5K030F-BS2

Note: Models with oil seals are also available.

Specifications			
			Model
		With incremental encoder	
Voltage			\(\begin{gathered}Rated

Output\end{gathered} \quad\) Without oil seals \quad.

	100 V	50 W	R88M-K05030H	
		100 W	R88M-K10030L	
		200 W	R88M-K20030L	
		400 W	R88M-K40030L	
	200 V	50 W	R88M-K05030H	
		100 W	R88M-K10030H	
		200 W	R88M-K20030H	
		400 W	R88M-K40030H	
		750 W	R88M-K75030H	
		1 kW	R88M-K1K030H	
		1.5 kW	R88M-K1K530H	
		2 kW	R88M-K2K030H	
		3 kW	R88M-K3K030H	
		4 kW	R88M-K4K030H	
		5 kW	R88M-K5K030H	
	400 V	750 W	R88M-K75030F	
		1 kW	R88M-K1K030F	
		1.5 kW	R88M-K1K530F	
		2 kW	R88M-K2K030F	
		3 kW	R88M-K3K030F	

Note: Models with oil seals are also available.

AC Servomotors/Linear Motor/Servo Drives G5-Series

Note: Models with oil seals are also available.

	Specifications		Model
			With absolute encoder
			Straight shaft without key
	Voltage	Rated output	Without oil seals
	100 V	50 W	R88M-K05030T
		100 W	R88M-K10030S
		200 W	R88M-K20030S
		400 W	R88M-K40030S
	200 V	50 W	R88M-K05030T
		100 W	R88M-K10030T
		200 W	R88M-K20030T
		400 W	R88M-K40030T
		750 W	R88M-K75030T
		1 kW	R88M-K1K030T
		1.5 kW	R88M-K1K530T
		2 kW	R88M-K2K030T
		3 kW	R88M-K3K030T
		4 kW	R88M-K4K030T
		5 kW	R88M-K5K030T
	400 V	750 W	R88M-K75030C
		1 kW	R88M-K1K030C
		1.5 kW	R88M-K1K530C
		2 kW	R88M-K2K030C
		3 kW	R88M-K3K030C
		4 kW	R88M-K4K030C
		5 kW	R88M-K5K030C
	100 V	50 W	R88M-K05030T-B
		100 W	R88M-K10030S-B
		200 W	R88M-K20030S-B
		400 W	R88M-K40030S-B
	200 V	50 W	R88M-K05030T-B
		100 W	R88M-K10030T-B
		200 W	R88M-K20030T-B
		400 W	R88M-K40030T-B
		750 W	R88M-K75030T-B
		1 kW	R88M-K1K030T-B
		1.5 kW	R88M-K1K530T-B
		2 kW	R88M-K2K030T-B
		3 kW	R88M-K3K030T-B
		4 kW	R88M-K4K030T-B
		5 kW	R88M-K5K030T-B
	400 V	750 W	R88M-K75030C-B
		1 kW	R88M-K1K030C-B
		1.5 kW	R88M-K1K530C-B
		2 kW	R88M-K2K030C-B
		3 kW	R88M-K3K030C-B
		4 kW	R88M-K4K030C-B
		5 kW	R88M-K5K030C-B

Note: Models with oil seals are also available.

2,000-r/min servomotors

Rotation speed	Encoder	Option
$2,000 \mathrm{r} / \mathrm{min}$	INC	Without key
	ABS/INC	With key

	Specifications		Model
			With incremental encoder
			Straight shaft with key and tap
	Voltage	Rated output	Without oil seals
Without brake	200 V	1 kW	R88M-K1K020H-S2
		1.5 kW	R88M-K1K520H-S2
		2 kW	R88M-K2K020H-S2
		3 kW	R88M-K3K020H-S2
		4 kW	R88M-K4K020H-S2
		5 kW	R88M-K5K020H-S2
	400 V	400 W	R88M-K40020F-S2
		600 W	R88M-K60020F-S2
		1 kW	R88M-K1K020F-S2
		1.5 kW	R88M-K1K520F-S2
		2 kW	R88M-K2K020F-S2
		3 kW	R88M-K3K020F-S2
		4 kW	R88M-K4K020F-S2
		5 kW	R88M-K5K020F-S2
	200 V	1 kW	R88M-K1K020H-BS2
		1.5 kW	R88M-K1K520H-BS2
		2 kW	R88M-K2K020H-BS2
		3 kW	R88M-K3K020H-BS2
		4 kW	R88M-K4K020H-BS2
		5 kW	R88M-K5K020H-BS2
	400 V	400 W	R88M-K40020F-BS2
		600 W	R88M-K60020F-BS2
		1 kW	R88M-K1K020F-BS2
		1.5 kW	R88M-K1K520F-BS2
		2 kW	R88M-K2K020F-BS2
		3 kW	R88M-K3K020F-BS2
		4 kW	R88M-K4K020F-BS2
		5 kW	R88M-K5K020F-BS2

Note: Models with oil seals are also available.

	Specifications		Model
			With incremental encoder
			Straight shaft without key
	Voltage	Rated output	Without oil seals
	200 V	1 kW	R88M-K1K020H
		1.5 kW	R88M-K1K520H
		2 kW	R88M-K2K020H
		3 kW	R88M-K3K020H
		4 kW	R88M-K4K020H
		5 kW	R88M-K5K020H
	400 V	400 W	R88M-K40020F
		600 W	R88M-K60020F
		1 kW	R88M-K1K020F
		1.5 kW	R88M-K1K520F
		2 kW	R88M-K2K020F
		3 kW	R88M-K3K020F
		4 kW	R88M-K4K020F
		5 kW	R88M-K5K020F
	200 V	1 kW	R88M-K1K020H-B
		1.5 kW	R88M-K1K520H-B
		2 kW	R88M-K2K020H-B
		3 kW	R88M-K3K020H-B
		4 kW	R88M-K4K020H-B
		5 kW	R88M-K5K020H-B
	400 V	400 W	R88M-K40020F-B
		600 W	R88M-K60020F-B
		1 kW	R88M-K1K020F-B
		1.5 kW	R88M-K1K520F-B
		2 kW	R88M-K2K020F-B
		3 kW	R88M-K3K020F-B
		4 kW	R88M-K4K020F-B
		5 kW	R88M-K5K020F-B

Note: Models with oil seals are also available.

AC Servomotors/Linear Motor/Servo Drives G5-Series

	Specifications		Model
			With absolute encoder
			Straight shaft with key and tap
	Voltage	Rated output	Without oil seals
	200 V	1 kW	R88M-K1K020T-S2
		1.5 kW	R88M-K1K520T-S2
		2 kW	R88M-K2K020T-S2
		3 kW	R88M-K3K020T-S2
		4 kW	R88M-K4K020T-S2
		5 kW	R88M-K5K020T-S2
		7.5 kW	R88M-K7K515T-S2 *
		11 kW	R88M-K11K015T-S2 *
		15 kW	R88M-K15K015T-S2 *
	400 V	400 W	R88M-K40020C-S2
		600 W	R88M-K60020C-S2
		1 kW	R88M-K1K020C-S2
		1.5 kW	R88M-K1K520C-S2
		2 kW	R88M-K2K020C-S2
		3 kW	R88M-K3K020C-S2
		4 kW	R88M-K4K020C-S2
		5 kW	R88M-K5K020C-S2
		7.5 kW	R88M-K7K515C -S2 *
		11 kW	R88M-K11K015C-S2 *
		15 kW	R88M-K15K015C-S2 *
	200 V	1 kW	R88M-K1K020T-BS2
		1.5 kW	R88M-K1K520T-BS2
		2 kW	R88M-K2K020T-BS2
		3 kW	R88M-K3K020T-BS2
		4 kW	R88M-K4K020T-BS2
		5 kW	R88M-K5K020T-BS2
		7.5 kW	R88M-K7K515T-BS2 *
		11 kW	R88M-K11K015T-BS2 *
		15 kW	R88M-K15K015T-BS2 *
	400 V	400 W	R88M-K40020C-BS2
		600 W	R88M-K60020C-BS2
		1 kW	R88M-K1K020C-BS2
		1.5 kW	R88M-K1K520C-BS2
		2 kW	R88M-K2K020C-BS2
		3 kW	R88M-K3K020C-BS2
		4 kW	R88M-K4K020C-BS2
		5 kW	R88M-K5K020C-BS2
		7.5 kW	R88M-K7K515C-BS2 *
		11 kW	R88M-K11K015C-BS2 *
		15 kW	R88M-K15K015C-BS2 *

Note: Models with oil seals are also available.

* The rated speed is $1,500 \mathrm{r} / \mathrm{min}$.

$\overline{\text { Note: Models with oil seals are also available. }}$
* The rated speed is $1,500 \mathrm{r} / \mathrm{min}$.

$1,000-r / m i n$ servomotors

Note: Models with oil seals are also available.

Note: Models with oil seals are also available.

Specifications			Model With incremental encoder
			Straight shaft without key
	Voltage	Rated output	Without oil seals
	200 V	900 W	R88M-K90010H
		2 kW	R88M-K2K010H
		3 kW	R88M-K3K010H
	400 V	900 W	R88M-K90010F
		2 kW	R88M-K2K010F
		3 kW	R88M-K3K010F
	200 V	900 W	R88M-K90010H-B
		2 kW	R88M-K2K010H-B
		3 kW	R88M-K3K010H-B
	400 V	900 W	R88M-K90010F-B
		2 kW	R88M-K2K010F-B
		3 kW	R88M-K3K010F-B

Note: Models with oil seals are also available.

Specifications			Model
			With absolute encoder
			Straight shaft without key
	Voltage	Rated output	Without oil seals
	200 V	900 W	R88M-K90010T
		2 kW	R88M-K2K010T
		3 kW	R88M-K3K010T
		4.5 kW	R88M-K4K510T
		6 kW	R88M-K6K010T
	400 V	900 W	R88M-K90010C
		2 kW	R88M-K2K010C
		3 kW	R88M-K3K010C
		4.5 kW	R88M-K4K510C
		6 kW	R88M-K6K010C
	200 V	900 W	R88M-K90010T-B
		2 kW	R88M-K2K010T-B
		3 kW	R88M-K3K010T-B
		4.5 kW	R88M-K4K510T-B
		6 kW	R88M-K6K010T-B
	400 V	900 W	R88M-K90010C-B
		2 kW	R88M-K2K010C-B
		3 kW	R88M-K3K010C-B
		4.5 kW	R88M-K4K510C-B
		6 kW	R88M-K6K010C-B

Note: Models with oil seals are also available.

AC Servomotors/Linear Motor/Servo Drives G5-Series

Linear Motors
<Iron-core motor type>
Motor Coil Unit

Motor Coil Unit model	Continuous force $[\mathrm{N}]$	Momentary maximum force [N]
R88L-EC-FW-0303-ANPC	48	105
R88L-EC-FW-0306-ANPC	96	210
R88L-EC-FW-0606-ANPC	160	400
R88L-EC-FW-0609-ANPC	240	600
R88L-EC-FW-0612-ANPC	320	800
R88L-EC-FW-1112-ANPC	608	1600
R88L-EC-FW-1115-ANPC	760	2000

<Ironless motor type>

Motor Coil Unit

Motor Coil Unit model	Continuous force $[\mathrm{N}]$	Momentary maximum force [N]
R88L-EC-GW-0303-ANPS	26.5	96
R88L-EC-GW-0306-ANPS	53	200
R88L-EC-GW-0309-ANPS	80	300
R88L-EC-GW-0503-ANPS	58	240
R88L-EC-GW-0506-ANPS	117	480
R88L-EC-GW-0509-ANPS	175	720
R88L-EC-GW-0703-ANPS	117	552
R88L-EC-GW-0706-ANPS	232	1110
R88L-EC-GW-0709-ANPS	348	1730

Combination table

Motor Coil Unit and Magnet Trac Combinations
Iron-core motor type

Motor Coil Unit model	Magnet Trac model
R88L-EC-FW-0303-ANPC	R88L-EC-FM-03096-A
R88L-EC-FW-0306-ANPC	R88L-EC-FM-03144-A
	R88L-EC-FM-03384-A
R88L-EC-FW-0606-ANPC	R88L-EC-FM-06192-A
R88L-EC-FW-0609-ANPC	R88L-EC-FM-06288-A
R88L-EC-FW-0612-ANPC	
R88L-EC-FW-1112-ANPC	R88L-EC-FM-11192-A
R88L-EC-FW-1115-ANPC	R88L-EC-FM-11288-A

Magnet Trac

Magnet Trac model	Magnet Trac Unit Length (mm)
R88L-EC-FM-03096-A	96
R88L-EC-FM-03144-A	144
R88L-EC-FM-03384-A	384
R88L-EC-FM-06192-A	192
R88L-EC-FM-06288-A	288
R88L-EC-FM-11192-A	192
R88L-EC-FM-11288-A	288

Magnet Trac

Magnet Trac model	Magnet Trac Unit Length (mm)
R88L-EC-GM-03090-A	90
R88L-EC-GM-03120-A	120
R88L-EC-GM-03390-A	390
R88L-EC-GM-05126-A	126
R88L-EC-GM-05168-A	168
R88L-EC-GM-05210-A	210
R88L-EC-GM-05546-A	546
R88L-EC-GM-07114-A	114
R88L-EC-GM-07171-A	171
R88L-EC-GM-07456-A	456

Ironless motor type

Motor Coil Unit model	Magnet Trac model
R88L-EC-GW-0303-ANPS	R88L-EC-GM-03090-A
R88L-EC-GW-0306-ANPS	R88L-EC-GM-03120-A
R88L-EC-GW-0309-ANPS	R88L-EC-GM-03390-A
	R88L-EC-GW-0503-ANPS
R88L-EC-GW-0506-ANPS	R88L-EC-GM-05126-A
R88L-EC-GW-0509-ANPS	R88L-EC-GM-05168-A
	R88L-EC-GM-05210-A
R88L-EC-GW-0703-ANPS	R88L-EC-GM-071114-A
R88L-EC-GW-0706-ANPS	R88L-EC-GM-07171-A
R88L-EC-GW-0709-ANPS	R88L-EC-GM-07456-A

Decelerators (Backlash = 3' Max./Backlash = 15' Max.)
Backlash = 3' Max <Cylinder Type>
3,000-r/min servomotors
Straight shaft without key

Motor capacity	Gear Ratio	Model (Straight shaft)
50 W	1/5	R88G-HPG11B05100B
	1/9	R88G-HPG11B09050B
	1/21	R88G-HPG14A21100B
	1/33	R88G-HPG14A33050B
	1/45	R88G-HPG14A45050B
100 W	1/5	R88G-HPG11B05100B
	1/11	R88G-HPG14A11100B
	1/21	R88G-HPG14A21100B
	1/33	R88G-HPG20A33100B
	1/45	R88G-HPG20A45100B
200 W	1/5	R88G-HPG14A05200B
	1/11	R88G-HPG14A11200B
	1/21	R88G-HPG20A21200B
	1/33	R88G-HPG20A33200B
	1/45	R88G-HPG20A45200B
400 W	1/5	R88G-HPG14A05400B
	1/11	R88G-HPG20A11400B
	1/21	R88G-HPG20A21400B
	1/33	R88G-HPG32A33400B
	1/45	R88G-HPG32A45400B
$\begin{aligned} & 750 \mathrm{~W} \\ & (200 \mathrm{~V}) \end{aligned}$	1/5	R88G-HPG20A05750B
	1/11	R88G-HPG20A11750B
	1/21	R88G-HPG32A21750B
	1/33	R88G-HPG32A33750B
	1/45	R88G-HPG32A45750B
$\begin{gathered} 750 \mathrm{~W} \\ (400 \mathrm{~V}) \end{gathered}$	1/5	R88G-HPG32A052K0B
	1/11	R88G-HPG32A112K0B
	1/21	R88G-HPG32A211K5B
	1/33	R88G-HPG32A33600SB
	1/45	R88G-HPG50A451K5B
1kW	1/5	R88G-HPG32A052K0B
	1/11	R88G-HPG32A112K0B
	1/21	R88G-HPG32A211K5B
	1/33	R88G-HPG50A332K0B
	1/45	R88G-HPG50A451K5B
1.5kW	1/5	R88G-HPG32A052K0B
	1/11	R88G-HPG32A112K0B
	1/21	R88G-HPG32A211K5B
	1/33	R88G-HPG50A332K0B
	1/45	R88G-HPG50A451K5B
2kW	1/5	R88G-HPG32A052K0B
	1/11	R88G-HPG32A112K0B
	1/21	R88G-HPG50A212K0B
	1/33	R88G-HPG50A332K0B
3kW	1/5	R88G-HPG32A053K0B
	1/11	R88G-HPG50A113K0B
	1/21	R88G-HPG50A213K0B
4kW	1/5	R88G-HPG32A054K0B
	1/11	R88G-HPG50A115K0B
5 kW	1/5	R88G-HPG50A055K0B
	1/11	R88G-HPG50A115K0B

Note: 1. The standard models have a straight shaft.
2. To order a Servomotor with a straight shaft with key, add "J" to the end of the model number, in the place indicated by the box.

2,000-r/min servomotors

Straight shaft without key

Motor capacity	Gear Ratio	Model (Straight shaft)
400 W	1/5	R88G-HPG32A052K0B
	1/11	R88G-HPG32A112K0B
	1/21	R88G-HPG32A211K5B
	1/33	R88G-HPG32A33600SB
	1/45	R88G-HPG32A45400SB
600 W	1/5	R88G-HPG32A052K0B
	1/11	R88G-HPG32A112K0B
	1/21	R88G-HPG32A211K5B
	1/33	R88G-HPG32A33600SB
	1/45	R88G-HPG50A451K5B
1 kW	1/5	R88G-HPG32A053K0B
	1/11	R88G-HPG32A112K0SB
	1/21	R88G-HPG32A211K0SB
	1/33	R88G-HPG50A332K0SB
	1/45	R88G-HPG50A451K0SB
1.5 kW	1/5	R88G-HPG32A053K0B
	1/11	R88G-HPG32A112K0SB
	1/21	R88G-HPG50A213K0B
	1/33	R88G-HPG50A332K0SB
2 kW	1/5	R88G-HPG32A053K0B
	1/11	R88G-HPG32A112K0SB
	1/21	R88G-HPG50A213K0B
	1/33	R88G-HPG50A332K0SB
3 kW	1/5	R88G-HPG32A054K0B
	1/11	R88G-HPG50A115K0B
	1/21	R88G-HPG50A213K0SB
	1/25	R88G-HPG65A253K0SB
4 kW	1/5	R88G-HPG50A055K0SB
	1/11	R88G-HPG50A115K0SB
	1/20	R88G-HPG65A205K0SB
	1/25	R88G-HPG65A255K0SB
5 kW	1/5	R88G-HPG50A055K0SB
	1/11	R88G-HPG50A115K0SB
	1/20	R88G-HPG65A205K0SB
	1/25	R88G-HPG65A255K0SB

Note: 1. The standard models have a straight shaft.
2. To order a Servomotor with a straight shaft with key, add "J" to the end of the model number, in the place indicated by the box.

AC Servomotors/Linear Motor/Servo Drives G5-Series

1,000-r/min servomotors

Straight shaft without key

Motor capacity	Gear Ratio	Model (Straight shaft)
900 W	$1 / 5$	R88G-HPG32A05900TB
	$1 / 11$	R88G-HPG32A11900TB
	$1 / 21$	R88G-HPG50A21900TB
	$1 / 33$	R88G-HPG50A33900TB
2 kW	$1 / 5$	R88G-HPG32A052KOTB
	$1 / 11$	R88G-HPG50A112K0TB
	$1 / 21$	R88G-HPG50A212KOTB
	$1 / 25$	R88G-HPG65A255KOSB
3 kW	$1 / 5$	R88G-HPG50A055K0SB
	$1 / 11$	R88G-HPG50A115KOSB
	$1 / 20$	R88G-HPG65A205K0SB
	$1 / 25$	R88G-HPG65A255K0SB

Note: 1. The standard models have a straight shaft.
2. To order a Servomotor with a straight shaft with key, add " J " to the end of the model number, in the place indicated by the box.

Backlash = 15' Max
<Cylinder Type>
3,000-r/min servomotors
Straight shaft with key

Motor capacity	Gear Ratio	Model (Straight shaft)
50 W	$1 / 5$	R88G-VRSF05B100CJ
	$1 / 9$	R88G-VRSF09B100CJ
	$1 / 15$	R88G-VRSF15B100CJ
	$1 / 25$	R88G-VRSF25B100CJ
	$1 / 5$	R88G-VRSF05B100CJ
	$1 / 9$	R88G-VRSF09B100CJ
	$1 / 15$	R88G-VRSF15B100CJ
200 W	$1 / 25$	R88G-VRSF25B100CJ
	$1 / 5$	R88G-VRSF05B200CJ
	$1 / 9$	R88G-VRSF09C200CJ
	$1 / 15$	R88G-VRSF15C200CJ
400 W	$1 / 25$	R88G-VRSF25C200CJ
	$1 / 5$	R88G-VRSF05C400CJ
	$1 / 9$	R88G-VRSF09C400CJ
	$1 / 15$	R88G-VRSF15C400CJ
	$1 / 25$	R88G-VRSF25C400CJ
750 W	$1 / 5$	R88G-VRSF05C750CJ
	$1 / 9$	R88G-VRSF09D750CJ
	$1 / 15$	R88G-VRSF15D750CJ
	$1 / 25$	R88G-VRSF25D750CJ

Accessories and Cables
Connection Cables (Motor Power Cables, Brake Cables, Encoder Cables)
<Non-flexible Cable>
Motor Power Cables

Specifications		Without brake	With brake
		Model	Model
$\begin{aligned} & \text { [100 V/200 V] } \\ & 3,000-\mathrm{r} / \mathrm{min} \text { Servomotors of } 50 \text { to } 750 \mathrm{~W} \end{aligned}$	3 m	R88A-CAKA003S	(See note1.)
	5 m	R88A-CAKA005S	
	10 m	R88A-CAKA010S	
	15m	R88A-CAKA015S	
	20 m	R88A-CAKA020S	
	30 m	R88A-CAKA030S	
	40 m	R88A-CAKA040S	
	50 m	R88A-CAKA050S	
[200 V] $3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 1 to 2 kW 2,000-r/min Servomotors of 1 to 2 kW $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 900 W	3 m	R88A-CAGB003S	R88A-CAGB003B
	5 m	R88A-CAGB005S	R88A-CAGB005B
	10 m	R88A-CAGB010S	R88A-CAGB010B
	15 m	R88A-CAGB015S	R88A-CAGB015B
	20 m	R88A-CAGB020S	R88A-CAGB020B
	30 m	R88A-CAGB030S	R88A-CAGB030B
	40 m	R88A-CAGB040S	R88A-CAGB040B
	50 m	R88A-CAGB050S	R88A-CAGB050B
[400 V] 3,000-r/min Servomotors of 750 W to 2 kW 2,000-r/min Servomotors of 400 W to 2 kW $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 900 W	3 m	R88A-CAGB003S	R88A-CAKF003B
	5 m	R88A-CAGB005S	R88A-CAKF005B
	10 m	R88A-CAGB010S	R88A-CAKF010B
	15 m	R88A-CAGB015S	R88A-CAKF015B
	20 m	R88A-CAGB020S	R88A-CAKF020B
	30 m	R88A-CAGB030S	R88A-CAKF030B
	40 m	R88A-CAGB040S	R88A-CAKF040B
	50 m	R88A-CAGB050S	R88A-CAKF050B
[200 V] [400 V] $3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 3 to 5 kW $2,000-\mathrm{r} / \mathrm{min}$ Servomotors of 3 to 5 kW $\mathbf{1 , 0 0 0}-\mathrm{r} / \mathrm{min}$ Servomotors of 2 to 4.5 kW	3 m	R88A-CAGD003S	R88A-CAGD003B
	5 m	R88A-CAGD005S	R88A-CAGD005B
	10 m	R88A-CAGD010S	R88A-CAGD010B
	15 m	R88A-CAGD015S	R88A-CAGD015B
	20 m	R88A-CAGD020S	R88A-CAGD020B
	30 m	R88A-CAGD030S	R88A-CAGD030B
	40 m	R88A-CAGD040S	R88A-CAGD040B
	50 m	R88A-CAGD050S	R88A-CAGD050B
[200 V] [400 V] $1,500-\mathrm{r} / \mathrm{min}$ Servomotors of 7.5 kW $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 6 kW	3 m	R88A-CAGE003S	
	5 m	R88A-CAGE005S	
	10 m	R88A-CAGE010S	
	15 m	R88A-CAGE015S	
	20 m	R88A-CAGE020S	
	30 m	R88A-CAGE030S	
	40 m	R88A-CAGE040S	
	50 m	R88A-CAGE050S	

Note: 1. Different connectors are used for the motor power and the brake on $100-\mathrm{V}$ and $200-\mathrm{V}, 3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 50 to 750 W and Servomotors of 6 to 15 kW . When using a Servomotor with a brake, two cables are required: a Power Cable without Brake and a Brake Cable.
2. For non-flexible power cables for Servomotors of 11 or 15 kW , refer to G5 series USER'S MANUAL (Cat.No. I576) and make your own cable.

AC Servomotors/Linear Motor/Servo Drives G5-Series

Brake Cable

Specifications		Standard Cables
		Model
$\begin{aligned} & {[100 \mathrm{~V}][200 \mathrm{~V}]} \\ & 3,000-\mathrm{r} / \mathrm{min} \\ & \text { Servomotors of } \\ & 50 \text { to } 750 \mathrm{~W} \end{aligned}$	3 m	R88A-CAKA003B
	5 m	R88A-CAKA005B
	10 m	R88A-CAKA010B
	15 m	R88A-CAKA015B
	20 m	R88A-CAKA020B
	30 m	R88A-CAKA030B
	40 m	R88A-CAKA040B
	50 m	R88A-CAKA050B
[200 V][400 V] $1,500-\mathrm{r} / \mathrm{min}$ and 2,000-r/min Servomotors of 7.5 to 15 kW $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 6 kW	3 m	R88A-CAGE003B
	5 m	R88A-CAGE005B
	10 m	R88A-CAGE010B
	15 m	R88A-CAGE015B
	20 m	R88A-CAGE020B
	30 m	R88A-CAGE030B
	40 m	R88A-CAGE040B
	50 m	R88A-CAGE050B

Encoder Cable

Specifications		Standard Cables
		Model
$\begin{aligned} & \text { [100 V/200 V] } \\ & 3,000-\mathrm{r} / \mathrm{min} \\ & \text { Servomotors of } \\ & 50 \text { to } 750 \mathrm{~W} \\ & \text { (for both absolute } \\ & \text { encoders and } \\ & \text { incremental } \\ & \text { encoders) } \end{aligned}$	3 m	R88A-CRKA003C
	5 m	R88A-CRKA005C
	10 m	R88A-CRKA010C
	15 m	R88A-CRKA015C
	20 m	R88A-CRKA020C
	30 m	R88A-CRKA030C
	40 m	R88A-CRKA040C
	50 m	R88A-CRKA050C
$[100 \mathrm{~V}$ and 200 $3,000-\mathrm{r} / \mathrm{min}$ 3,000-r/min 1.0 kW or 2,000-r/min Servomotors 1,500-r/min Servomotors 1,000-r/min Servomotors [400 V] 3,000-r/min Servomotors 2,000-r/min Servomotors 1,500-r/min Servomotors $1,000-\mathrm{r} / \mathrm{min}$ Servomotors	3 m	R88A-CRKC003N
	5 m	R88A-CRKC005N
	10 m	R88A-CRKC010N
	15 m	R88A-CRKC015N
	20 m	R88A-CRKC020N
	30 m	R88A-CRKC030N
	40 m	R88A-CRKC040N
	50 m	R88A-CRKC050N

<Flexible Cables>

Motor Power Cables

Specifications		Without brake	With brake
		Model	Model
[100 V/200 V] $3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 50 to 750 W	3 m	R88A-CAKA003SR	(See note1.)
	5 m	R88A-CAKA005SR	
	10 m	R88A-CAKA010SR	
	15 m	R88A-CAKA015SR	
	20 m	R88A-CAKA020SR	
	30 m	R88A-CAKA030SR	
	40 m	R88A-CAKA040SR	
	50 m	R88A-CAKA050SR	
[200 V] 3,000-r/min Servomotors of 1 to 2 kW 2,000-r/min Servomotors of 1 to 2 kW $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 900 W	3 m	R88A-CAGB003SR	R88A-CAGB003BR
	5 m	R88A-CAGB005SR	R88A-CAGB005BR
	10 m	R88A-CAGB010SR	R88A-CAGB010BR
	15 m	R88A-CAGB015SR	R88A-CAGB015BR
	20 m	R88A-CAGB020SR	R88A-CAGB020BR
	30 m	R88A-CAGB030SR	R88A-CAGB030BR
	40 m	R88A-CAGB040SR	R88A-CAGB040BR
	50 m	R88A-CAGB050SR	R88A-CAGB050BR
[400 V] $3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 750 W to 2 kW $2,000-\mathrm{r} / \mathrm{min}$ Servomotors of 400 W to 2 kW $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 900 W	3 m	R88A-CAGB003SR	R88A-CAKF003BR
	5 m	R88A-CAGB005SR	R88A-CAKF005BR
	10 m	R88A-CAGB010SR	R88A-CAKF010BR
	15 m	R88A-CAGB015SR	R88A-CAKF015BR
	20 m	R88A-CAGB020SR	R88A-CAKF020BR
	30 m	R88A-CAGB030SR	R88A-CAKF030BR
	40 m	R88A-CAGB040SR	R88A-CAKF040BR
	50 m	R88A-CAGB050SR	R88A-CAKF050BR
[200 V] [400 V] $3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 3 to 5 kW $2,000-\mathrm{r} / \mathrm{min}$ Servomotors of 3 to 5 kW $1,000-\mathrm{r} / \mathrm{min}$ Servomotors of 2 to 4.5 kW	3 m	R88A-CAGD003SR	R88A-CAGD003BR
	5 m	R88A-CAGD005SR	R88A-CAGD005BR
	10 m	R88A-CAGD010SR	R88A-CAGD010BR
	15 m	R88A-CAGD015SR	R88A-CAGD015BR
	20 m	R88A-CAGD020SR	R88A-CAGD020BR
	30 m	R88A-CAGD030SR	R88A-CAGD030BR
	40 m	R88A-CAGD040SR	R88A-CAGD040BR
	50 m	R88A-CAGD050SR	R88A-CAGD050BR

Note: 1. Different connectors are used for the motor power and the brake on $100-\mathrm{V}$ and $200-\mathrm{V}, 3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 50 to 750 W and Servomotors of 6 to 15 kW . When using a Servomotor with a brake, two cables are required: a Power Cable without Brake and a Brake Cable.
2. For flexible power cables for Servomotors of 11 or 15 kW , refer to G 5 series USER'S MANUAL (Cat.No. I576) and make your own cable. For flexible motor power cables for Servomotors of 6 to 7.5 kW , make your own cable by referring to the wirings of non-flexible motor power cables in the G5 series USER'S MANUAL (Cat.No.I576).

Brake Cable

Specifications		Robot Cables
		Model
[100 V] [200 V] 3,000-r/min Servomotors of 50 to 750 W	3 m	R88A-CAKA003BR
	5 m	R88A-CAKA005BR
	10 m	R88A-CAKA010BR
	15 m	R88A-CAKA015BR
	20 m	R88A-CAKA020BR
	30 m	R88A-CAKA030BR
	40 m	R88A-CAKA040BR
	50 m	R88A-CAKA050BR

Note: For flexible brake cables for Servomotors of 6 to 15 kW , refer to G5 series USER'S MANUAL (Cat.No. I576) and make your own brake cable.

Encoder Cable

Specifications		Robot Cables
		Model
[100 V/200 V] 3,000-r/min Servomotors of 50 to 750 W (for both absolute encoders and incremental encoders)	3 m	R88A-CRKA003CR
	5 m	R88A-CRKA005CR
	10 m	R88A-CRKA010CR
	15 m	R88A-CRKA015CR
	20 m	R88A-CRKA020CR
	30 m	R88A-CRKA030CR
	40 m	R88A-CRKA040CR
	50 m	R88A-CRKA050CR
[100 V and 200 V] $3,000-\mathrm{r} / \mathrm{min}$ Servomotors of 1.0 kW or more 2,000-r/min Servomotors $1,500-\mathrm{r} / \mathrm{min}$ Servomotors $1,000-\mathrm{r} / \mathrm{min}$ Servomotors [400 V] $3,000-\mathrm{r} / \mathrm{min}$ Servomotors 2,000-r/min Servomotors $1,500-\mathrm{r} / \mathrm{min}$ Servomotors $1,000-\mathrm{r} / \mathrm{min}$ Servomotors	3 m	R88A-CRKC003NR
	5 m	R88A-CRKC005NR
	10 m	R88A-CRKC010NR
	15 m	R88A-CRKC015NR
	20 m	R88A-CRKC020NR
	30 m	R88A-CRKC030NR
	40 m	R88A-CRKC040NR
	50 m	R88A-CRKC050NR

AC Servomotors/Linear Motor/Servo Drives G5-Series

Cable/Connector

Absolute Encoder Battery Cable

Name	Length	Model
Absolute Encoder Battery Cable (Battery not included)	0.3 m	R88A-CRGD0R3C
Absolute Encoder Battery Cable (One R88A-BAT01G Battery included)	0.3 m	R88A-CRGD0R3C-BS

Absolute Encoder Backup Battery

Specifications	Model
$2,000 \mathrm{~mA} \cdot \mathrm{~h} 3.6 \mathrm{~V}$	R88A-BAT01G

Analog Monitor Cable

Name	Length	Model
Analog Monitor Cable	1 m	R88A-CMK001S

Servo Drive Connectors (common)

Name	Connects to	Model
Encoder Connector	CN2	R88A-CNW01R
External Scale Connector	CN4	R88A-CNK41L
Safety Connector	CN8	R88A-CNK81S

Servo Drive Connectors

(EtherCAT Communications/
EtherCAT Communications Linear motor)

Name	Connects to	Model
Control I/O Connector	CN1	R88A-CNW01C

Servomotor Connector

Name	Applicable Servomotor Capacity	Model
	$\begin{aligned} & {[100 \mathrm{~V} / 200 \mathrm{~V}]} \\ & 3,000 \mathrm{r} / \mathrm{min}(50 \text { to } 750 \mathrm{~W}) \end{aligned}$	R88A-CNK02R
Servomotor Connector for Encoder Cable	```[100 V/200 V] 3,000 r/min (1 to 5 kW) 2,000r/min,1,000r/min [400 V] 3,000 r/min, 2,000 r/min, 1,000 r/min```	R88A-CNK04R
Power Cable Connector	(750 W max.)	R88A-CNK11A
Brake Cable Connector	(750 W max.)	R88A-CNK11B

External Encoder Cable

Name	Lengths	Model
Serial Communications Cable	10 m	R88A-CRKE010SR

Control Cables
Control Cables (for Connector Terminal Block/CN1)

Name	Specifications			Model
Connector Terminal Block Cables	EtherCAT Communications		Length 1.0 m	XW2Z-100J-B34
			Length 2.0 m	XW2Z-200J-B34
Connector Terminal Block Conversion Unit	EtherCAT Communications	Conversion Unit for General-purpose Controllers (M3 screws)	Through type	XW2B-20G4
		Conversion Unit for General-purpose Controllers (M3.5 screws)	Through type	XW2B-20G5
		Conversion Unit for General-purpose Controllers (M3 screws)	Slim type	XW2D-20G6

EtherCAT Communications Cables

Refer to Connecting cable with NJ -series Controller for the recommended cables.

Peripheral Devices (External Regeneration Resistors, Reactors, Mounting Brackets) External Regeneration Resistors

Specifications	Model
$80 \mathrm{~W} 50 \Omega$	R88A-RR08050S
$80 \mathrm{~W} 100 \Omega$	R88A-RR080100S
$220 \mathrm{~W} 47 \Omega$	R88A-RR22047S1
$500 \mathrm{~W} 20 \Omega$	R88A-RR50020S

Reactors

Specifications		Model
EtherCAT Communications	Linear Motor with built-in EtherCAT communications	

Mounting Brackets (L Brackets for Rack Mounting)

Specifications	Model
EtherCAT Communications	R88D-KNA5L-ECT/-KN01L-ECT/-KN01H-ECT/
-KN02H-ECT	

Interpreting Model Numbers

3G3MX2-A $\square \square \square \square$-V1
 12
 3G3MX2

1) Voltage class

B	1 -phase 200 VAC (200-V class)
2	3 -phase 200 VAC (200-V class)
4	3 -phase 400 VAC $(400-\mathrm{V}$ class $)$

2) Max. applicable motor capacity (CT)

001	0.1 kW
002	0.2 kW
004	0.4 kW
007	0.75 kW
015	1.5 kW
022	2.2 kW
030	3.0 kW
037	3.7 kW
040	4.0 kW
055	5.5 kW
075	7.5 kW
110	11 kW
150	15 kW

Ordering Information

3G3MX2 Inverter Models

Rated voltage	Enclosure ratings	Max. applicable motor capacity		Model
		CT: Heavy load	VT: Light load	
3-phase 200 VAC	IP20	0.1 kW	0.2 kW	3G3MX2-A2001-V1
		0.2 kW	0.4 kW	3G3MX2-A2002-V1
		0.4 kW	0.75 kW	3G3MX2-A2004-V1
		0.75 kW	1.1 kW	3G3MX2-A2007-V1
		1.5 kW	2.2 kW	3G3MX2-A2015-V1
		2.2 kW	3.0 kW	3G3MX2-A2022-V1
		3.7 kW	5.5 kW	3G3MX2-A2037-V1
		5.5 kW	7.5 kW	3G3MX2-A2055-V1
		7.5 kW	11 kW	3G3MX2-A2075-V1
		11 kW	15 kW	3G3MX2-A2110-V1
		15 kW	18.5 kW	3G3MX2-A2150-V1
3-phase 400 VAC	IP20	0.4 kW	0.75 kW	3G3MX2-A4004-V1
		0.75 kW	1.5 kW	3G3MX2-A4007-V1
		1.5 kW	2.2 kW	3G3MX2-A4015-V1
		2.2 kW	3.0 kW	3G3MX2-A4022-V1
		3.0 kW	4.0 kW	3G3MX2-A4030-V1
		4.0 kW	5.5 kW	3G3MX2-A4040-V1
		5.5 kW	7.5 kW	3G3MX2-A4055-V1
		7.5 kW	11 kW	3G3MX2-A4075-V1
		11 kW	15 kW	3G3MX2-A4110-V1
		15 kW	18.5 kW	3G3MX2-A4150-V1
1-phase 200 VAC	IP20	0.1 kW	0.2 kW	3G3MX2-AB001-V1
		0.2 kW	0.4 kW	3G3MX2-AB002-V1
		0.4 kW	0.55 kW	3G3MX2-AB004-V1
		0.75 kW	1.1 kW	3G3MX2-AB007-V1
		1.5 kW	2.2 kW	3G3MX2-AB015-V1
		2.2 kW	3.0 kW	3G3MX2-AB022-V1

Communication Unit

Name	Model
EtherCAT Communication Unit	3G3AX-MX2-ECT
CompoNet Communication Unit	3G3AX-MX2-CRT-E
DeviceNet Communication Unit	3G3AX-MX2-DRT-E
I/O Unit	3G3AX-MX2-EI015-E

Note: Optional communication unit can be used with the inverter 3G3MX2 of unit version 1.1 or higher.

Related Options

Name		Specifications	Model
Regenerative Braking Units	3-phase 200 VAC	General purpose with Braking resistor	3G3AX-RBU21
		High Regeneration purpose with Braking resistor	3G3AX-RBU22
	3-phase 400 VAC	General purpose with Braking resistor	3G3AX-RBU41
Braking Resistor	Compact type	Resistor $120 \mathrm{~W}, 180 \Omega$	3G3AX-RBA1201
		Resistor $120 \mathrm{~W}, 100 \Omega$	3G3AX-RBA1202
		Resistor $120 \mathrm{~W}, 5 \Omega$	3G3AX-RBA1203
		Resistor $120 \mathrm{~W}, 35 \Omega$	3G3AX-RBA1204
	Standard type	Resistor $200 \mathrm{~W}, 180 \Omega$	3G3AX-RBB2001
		Resistor $200 \mathrm{~W}, 100 \Omega$	3G3AX-RBB2002
		Resistor $300 \mathrm{~W}, 50 \Omega$	3G3AX-RBB3001
		Resistor $400 \mathrm{~W}, 35 \Omega$	3G3AX-RBB4001
	Medium capacity type	Resistor $400 \mathrm{~W}, 50 \Omega$	3G3AX-RBC4001
		Resistor $600 \mathrm{~W}, 35 \Omega$	3G3AX-RBC6001
		Resistor $1200 \mathrm{~W}, 17 \Omega$	3G3AX-RBC12001

Name	Specifications of Inverter			Model
	Voltage class	CT: Heavy load	VT: Light load	
DC Reactor	3-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-DL2002
		0.2 kW	0.4 kW	3G3AX-DL2004
		0.4 kW	0.75 kW	3G3AX-DL2007
		0.75 kW	1.1 kW	3G3AX-DL2015
		1.5 kW	2.2 kW	3G3AX-DL2022
		2.2 kW	3.0 kW	3G3AX-DL2037
		3.7 kW	5.5 kW	3G3AX-DL2055
		5.5 kW	7.5 kW	3G3AX-DL2075
		7.5 kW	11 kW	3G3AX-DL2110
		11 kW	15 kW	3G3AX-DL2150
		15 kW	18.5 kW	3G3AX-DL2220
	1-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-DL2002
		0.2 kW	0.4 kW	3G3AX-DL2004
		0.4 kW	0.55 kW	3G3AX-DL2007
		0.75 kW	1.1 kW	3G3AX-DL2015
		1.5 kW	2.2 kW	3G3AX-DL2022
		2.2 kW	3.0 kW	3G3AX-DL2037
	3-phase 400 VAC	0.4 kW	0.75 kW	3G3AX-DL4007
		0.75 kW	1.5 kW	3G3AX-DL4015 *
		1.5 kW	2.2 kW	3G3AX-DL4022
		2.2 kW	3.0 kW	
		3.0 kW	4.0 kW	3G3AX-DL4037
		4.0 kW	5.5 kW	3G3AX-DL4055
		5.5 kW	7.5 kW	3G3AX-DL4075 *
		7.5 kW	11 kW	3G3AX-DL4110 *
		11 kW	15 kW	3G3AX-DL4150
		15 kW	18.5 kW	3G3AX-DL4220

[^45]Multi-function Compact Inverter MX2-Series V1 type

Name	Specifications of Inverter			Model
	Voltage class	CT: Heavy load	VT: Light load	
Radio Noise Filter	3-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-ZCL2
		0.2 kW	0.4 kW	
		0.4 kW	0.75 kW	
		0.75 kW	1.1 kW	
		1.5 kW	2.2 kW	
		2.2 kW	3.0 kW	
		3.7 kW	5.5 kW	3G3AX-ZCL1 (3G3AX-ZCL2)
		5.5 kW	7.5 kW	
		7.5 kW	11 kW	3G3AX-ZCL1
		11 kW	15 kW	
		15 kW	18.5 kW	
	1-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-ZCL2
		0.2 kW	0.4 kW	
		0.4 kW	0.55 kW	
		0.75 kW	1.1 kW	
		1.5 kW	2.2 kW	
		2.2 kW	3.0 kW	
	3-phase 400 VAC	0.4 kW	0.75 kW	3G3AX-ZCL2 (3G3AX-ZCL1)
		0.75 kW	1.5 kW	
		1.5 kW	2.2 kW	
		2.2 kW	3.0 kW	
		3.0 kW	4.0 kW	
		4.0 kW	5.5 kW	
		5.5 kW	7.5 kW	
		7.5 kW	11 kW	3G3AX-ZCL1
		11 kW	15 kW	
		15 kW	18.5 kW	
Input Noise Filter	3-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-NFI21
		0.2 kW	0.4 kW	
		0.4 kW	0.75 kW	
		0.75 kW	1.1 kW	3G3AX-NFI22
		1.5 kW	2.2 kW	3G3AX-NFI23
		2.2 kW	3.0 kW	
		3.7 kW	5.5 kW	3G3AX-NFI24
		5.5 kW	7.5 kW	3G3AX-NFI25
		7.5 kW	11 kW	3G3AX-NFI26
		11 kW	15 kW	3G3AX-NFI27
		15 kW	18.5 kW	3G3AX-NFI28
	1-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-NFI21
		0.2 kW	0.4 kW	
		0.4 kW	0.55 kW	3G3AX-NFI22
		0.75 kW	1.1 kW	3G3AX-NFI23
		1.5 kW	2.2 kW	3G3AX-NFI23 *
		2.2 kW	3.0 kW	3G3AX-NFI24
	3-phase 400 VAC	0.4 kW	0.75 kW	3G3AX-NFI41
		0.75 kW	1.5 kW	
		1.5 kW	2.2 kW	
		2.2 kW	3.0 kW	3G3AX-NFI42
		3.0 kW	4.0 kW	
		4.0 kW	5.5 kW	3G3AX-NFI43
		5.5 kW	7.5 kW	
		7.5 kW	11 kW	3G3AX-NFI44
		11 kW	15 kW	3G3AX-NFI45
		15 kW	18.5 kW	3G3AX-NFI46

* Only the CT rating is supported.

Name	Specifications of Inverter			Model		
	Voltage class	CT：Heavy load	VT：Light load			
EMC－compatible Noise Filter	3－phase 200 VAC	0.1 kW	0.2 kW	Schaffner product will be supported in future．		
		0.2 kW	0.4 kW			
		0.4 kW	0.75 kW			，
		0.75 kW	1.1 kW			
		1.5 kW	2.2 kW			E
		2.2 kW	3.0 kW			
		3.7 kW	5.5 kW			交
		5.5 kW	7.5 kW			？
		7.5 kW	11 kW			O
		11 kW	15 kW			$\stackrel{1}{5}$
		15 kW	18.5 kW			告
	1－phase 200 VAC	0.1 kW	0.2 kW			\％
		0.2 kW	0.4 kW			
		0.4 kW	0.55 kW		$\begin{aligned} & \underset{\alpha}{\alpha} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{\omega} \end{aligned}$	$\stackrel{\text { \％}}{\text { ¢ }}$
		0.75 kW	1.1 kW			\％
		1.5 kW	2.2 kW			
		2.2 kW	3.0 kW			旁
	3－phase 400 VAC	0.4 kW	0.75 kW			
		0.75 kW	1.5 kW			$\stackrel{\text { en }}{0}$
		1.5 kW	2.2 kW			，
		2.2 kW	3.0 kW			雨
		3.0 kW	4.0 kW			c
		4.0 kW	5.5 kW			霏
		5.5 kW	7.5 kW			
		7.5 kW	11 kW			
		11 kW	15 kW			
		15 kW	18.5 kW			
Output Noise Filter	3－phase 200 VAC	0.1 kW	0.2 kW	3G3AX－NFO01		
		0.2 kW	0.4 kW		¢	
		0.4 kW	0.75 kW			
		0.75 kW	1.1 kW	3G3AX－NFO02		
		1.5 kW	2.2 kW			$\stackrel{\text { ¢ }}{\sim}$
		2.2 kW	3.0 kW	3G3AX－NFO03		
		3.7 kW	5.5 kW	3G3AX－NFO03	－	
		5.5 kW	7.5 kW			䫆
		7.5 kW	11 kW	3G3AX－NFO04		
		11 kW	15 kW	3G3AX－NFO05		管
		15 kW	18.5 kW	3G3AX－NFO06		道
	1－phase 200 VAC	0.1 kW	0.2 kW	3G3AX－NFO01	¢	䒼
		0.2 kW	0.4 kW			
		0.4 kW	0.55 kW			
		0.75 kW	1.1 kW	3G3AX－NFO02		
		1.5 kW	2.2 kW	3G3AX－NFO03		
		2.2 kW	3.0 kW	3G3AX－NFO03		
	3－phase 400 VAC	0.4 kW	0.75 kW	3G3AX－NFO01		
		0.75 kW	1.5 kW			앙
		1.5 kW	2.2 kW	3G3AX－NFO02		旁
		2.2 kW	3.0 kW			\bigcirc
		3.0 kW	4.0 kW			
		4.0 kW	5.5 kW	3G3AX－NFO03		$\frac{3}{5}$
		5.5 kW	7.5 kW			
		7.5 kW	11 kW			\％
		11 kW	15 kW	3G3AX－NFO04		家
		15 kW	18.5 kW			，
				OTRROn	383	

Multi-function Compact Inverter MX2-Series V1 type

Name	Specifications of Inverter			Model
	Voltage class	CT: Heavy load	VT: Light load	
AC Reactor	3-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-AL2025
		0.2 kW	0.4 kW	
		0.4 kW	0.75 kW	
		0.75 kW	1.1 kW	
		1.5 kW	2.2 kW	3G3AX-AL2055
		2.2 kW	3.0 kW	
		3.7 kW	5.5 kW	3G3AX-AL2110
		5.5 kW	7.5 kW	3G3AX-AL2110 *
		7.5 kW	11 kW	3G3AX-AL2220
		11 kW	15 kW	3G3AX-AL2220 *
		15 kW	18.5 kW	3G3AX-AL2330
	1-phase 200 VAC	0.1 kW	0.2 kW	3G3AX-AL2025
		0.2 kW	0.4 kW	
		0.4 kW	0.55 kW	
		0.75 kW	1.1 kW	
		1.5 kW	2.2 kW	3G3AX-AL2055 *
		2.2 kW	3.0 kW	3G3AX-AL2110
	3-phase 400 VAC	0.4 kW	0.75 kW	3G3AX-AL4025
		0.75 kW	1.5 kW	
		1.5 kW	2.2 kW	3G3AX-AL4055
		2.2 kW	3.0 kW	
		3.0 kW	4.0 kW	
		4.0 kW	5.5 kW	3G3AX-AL4110
		5.5 kW	7.5 kW	3G3AX-AL4110 *
		7.5 kW	11 kW	3G3AX-AL4220
		11 kW	15 kW	3G3AX-AL4220 *
		15 kW	18.5 kW	3G3AX-AL4330

Note: When using the Inverter for light load rating, select the model with one size larger capacity (rated current).

* Only the CT rating is supported.

Name	Cable length(m)	Model
Digital Operator	---	3G3AX-OP01
Connection cable	1 m	3G3AX-OPCN1
	3 m	3G3AX-OPCN3

EtherCAT Communications Cables

Refer to Connecting cable with NJ -series Controller for the recommended cables.

High-function General-purpose Inverter RX-Series V1 type

Interpreting Model Numbers

3 S 3R		- V 1					
RX series V1 type							
1) Enclosure rating		3) Maximum Applicable Motor Capacity (CT:Heavy load)					
A	Panel-mounting (IP20 min.) or closed wall-mounting models	004	0.4 kW	075	7.5 kW	370	37 kW
		007	0.75 kW	110	11 kW	450	45 kW
B	Panel-mounting (IP00 min.)	015	1.5 kW	150	15 kW	550	55 kW
2) Voltage class		022	2.2 kW	185	18.5 kW	750	75 kW
2	3-phase 200 V AC (200-V class)	037	3.7 kW	220	22 kW	900	90 kW
4	3 -phase 400 V AC (400-V class)	055	5.5 kW	300	30 kW	11k	110 kW
						13k	132 kW

Ordering Information

RX series V1 type Inverter Models

Rated voltage	Enclosure ratings	Max. applicable motor capacity		Model
		CT: Heavy load	VT: Light load	
3-phase 200 VAC	IP20	0.4 kW	0.75 kW	3G3RX-A2004-V1
		0.75 kW	1.5 kW	3G3RX-A2007-V1
		1.5 kW	2.2 kW	3G3RX-A2015-V1
		2.2 kW	3.7 kW	3G3RX-A2022-V1
		3.7 kW	5.5 kW	3G3RX-A2037-V1
		5.5 kW	7.5 kW	3G3RX-A2055-V1
		7.5 kW	11 kW	3G3RX-A2075-V1
		11 kW	15 kW	3G3RX-A2110-V1
		15 kW	18.5 kW	3G3RX-A2150-V1
		18.5 kW	22 kW	3G3RX-A2185-V1
		22 kW	30 kW	3G3RX-A2220-V1
		30 kW	37 kW	3G3RX-A2300-V1
		37 kW	45 kW	3G3RX-A2370-V1
		45 kW	55 kW	3G3RX-A2450-V1
		55 kW	75 kW	3G3RX-A2550-V1
3 -phase 400 VAC		0.4 kW	0.75 kW	3G3RX-A4004-V1
		0.75 kW	1.5 kW	3G3RX-A4007-V1
		1.5 kW	2.2 kW	3G3RX-A4015-V1
		2.2 kW	3.7 kW	3G3RX-A4022-V1
		3.7 kW	5.5 kW	3G3RX-A4037-V1
		5.5 kW	7.5 kW	3G3RX-A4055-V1
		7.5 kW	11 kW	3G3RX-A4075-V1
		11 kW	15 kW	3G3RX-A4110-V1
		15 kW	18.5 kW	3G3RX-A4150-V1
		18.5 kW	22 kW	3G3RX-A4185-V1
		22 kW	30 kW	3G3RX-A4220-V1
		30 kW	37 kW	3G3RX-A4300-V1
		37 kW	45 kW	3G3RX-A4370-V1
		45 kW	55 kW	3G3RX-A4450-V1
		55 kW	75 kW	3G3RX-A4550-V1
	IP00	75 kW	90 kW	3G3RX-B4750-V1
		90 kW	110 kW	3G3RX-B4900-V1
		110 kW	132 kW	3G3RX-B411K-V1
		132 kW	160 kW	3G3RX-B413K-V1

High-function General-purpose Inverter RX-Series V1 type

Communication Unit

Name	Model
EtherCAT Communication Unit	3G3AX-RX-ECT

Related Options

Name	Specifications		Model
Regenerative Braking Units	3-phase 200 VAC	General purpose with Braking resistor	3G3AX-RBU21
		High Regeneration purpose with Braking resistor	3G3AX-RBU22
		General purpose for 30 kW *	3G3AX-RBU23
		General purpose for 55 kW *	3G3AX-RBU24
	3-phase 400 VAC	General purpose with Braking resistor	3G3AX-RBU41
		General purpose for 30 kW *	3G3AX-RBU42
		General purpose for 55 kW *	3G3AX-RBU43
Braking Resistor	Compact type	Resistor $120 \mathrm{~W}, 180 \Omega$	3G3AX-RBA1201
		Resistor $120 \mathrm{~W}, 100 \Omega$	3G3AX-RBA1202
		Resistor $120 \mathrm{~W}, 50 \Omega$	3G3AX-RBA1203
		Resistor $120 \mathrm{~W}, 35 \Omega$	3G3AX-RBA1204
	Standard type	Resistor $200 \mathrm{~W}, 180 \Omega$	3G3AX-RBB2001
		Resistor $200 \mathrm{~W}, 100 \Omega$	3G3AX-RBB2002
		Resistor $300 \mathrm{~W}, 50 \Omega$	3G3AX-RBB3001
		Resistor $400 \mathrm{~W}, 35 \Omega$	3G3AX-RBB4001
	Medium capacity type	Resistor $400 \mathrm{~W}, 50 \Omega$	3G3AX-RBC4001
		Resistor $600 \mathrm{~W}, 35 \Omega$	3G3AX-RBC6001
		Resistor $1200 \mathrm{~W}, 17 \Omega$	3G3AX-RBC12001

* The braking resistor is optionally required.

Name	Model
Radio Noise Filter	3G3AX-ZCL2
	3G3AX-ZCL1

Name	Specifications of Inverter			Model
	Voltage class	CT: Heavy load (kW)	VT: Light load (kW)	
Input Noise Filter	3-phase 200 VAC	0.4 to 0.75	0.75	3G3AX-NFI21
		1.5	1.5	3G3AX-NFI22
		2.2, 3.7	2.2, 3.7	3G3AX-NFI23
		5.5	5.5	3G3AX-NFI24
		7.5	7.5	3G3AX-NFI25
		11	11	3G3AX-NFI26
		15	15	3G3AX-NFI27
		18.5	18.5	3G3AX-NFI28
		22, 30	22, 30	3G3AX-NFI29
		37	37	3G3AX-NFI2A
		45	45	3G3AX-NFI2B
		55	55	3G3AX-NFI2C
	3-phase 400 VAC	0.4 to 2.2	0.75 to 2.2	3G3AX-NFI41
		3.7	3.7	3G3AX-NFI42
		5.5, 7.5	5.5, 7.5	3G3AX-NFI43
		11	11	3G3AX-NFI44
		15	15	3G3AX-NFI45
		18.5	18.5	3G3AX-NFI46
		22	22	3G3AX-NFI47
		30	30	3G3AX-NFI48
		37	37	3G3AX-NFI49
		45, 55	45, 55	3G3AX-NFI4A

High-function General-purpose Inverter RX-Series V1 type

Name	Specifications of Inverter			Model
	Voltage class	CT: Heavy load (kW)	VT: Light load (kW)	
EMC Noise Filter *	3-phase 200 VAC	0.4 to 7.5	0.75	3G3AX-EFI41
		1.5	1.5	3G3AX-EFI42
		2.2, 3.7	2.2, 3.7	3G3AX-EFI43
		5.5	5.5	3G3AX-EFI44
		7.5	7.5	3G3AX-EFI45
		11	11	3G3AX-EFI47
		15	15	3G3AX-EFI48
		18.5	18.5	3G3AX-EFI49
		22,30	22, 30	3G3AX-EFI4A
		37	37	3G3AX-EFI4B
	3-phase 400 VAC	0.4 to 22	0.75 to 2.2	3G3AX-EFI41
		3.7	3.7	3G3AX-EFI42
		5.5, 7.5	5.5, 7.5	3G3AX-EFI43
		11	11	3G3AX-EFI44
		15	15	3G3AX-EFI45
		18.5	18.5	3G3AX-EFI46
		22	22	3G3AX-EFI47
		30	30	3G3AX-EFI48
		37	37	3G3AX-EFI49
		45, 55	45, 55	3G3AX-EFI4A
		75, 90	75,90	3G3AX-EFI4B
Output Noise Filter	3-phase 200 VAC/ 3-phase 400 VAC	Applicable motor 200 V class: 0.4 to 0.75 400 V class: 0.4 to 2.2	Applicable motor 200 V class: 0.75 400 V class: 0.75 to 2.2	3G3AX-NFO01
		Applicable motor 200 V class: 1.5, 2.2 400 V class: 3.7	Applicable motor 200 V class: 1.5, 2.2 400 V class: 3.7	3G3AX-NFOO2
		Applicable motor 200 V class: 3.7, 5.5 400 V class: 5.5 to 11	Applicable motor 200 V class: 3.7, 5.5 400 V class: 5.5 to 11	3G3AX-NFO03
		Applicable motor 200 V class: 7.5, 11 400 V class: 15 to 22	Applicable motor 200 V class: 7.5, 11 400 V class: 15 to 22	3G3AX-NFO04
		Applicable motor 200 V class: 15 400 V class: 30,37	Applicable motor 200 V class: 15 400 V class: 30,37	3G3AX-NFO05
		Applicable motor 200 V class: 18.5, 22 400 V class: 45	Applicable motor 200 V class: 18.5, 22 400 V class: 45	3G3AX-NFO06
		Applicable motor 200 V class: 30, 37 400 V class: 55,75	Applicable motor 200 V class: 30, 37 400 V class: 55,75	3G3AX-NFO07

* Although an EMC Noise Filter is built into the RX, it may be necessary to provide another EMC Noise Filter when the cable between the Motor and the Inverter is long.

High-function General-purpose Inverter RX-Series V1 type

Name	Specifications of Inverter			Model
	Voltage class	CT: Heavy load (kW)	VT: Light load (kW)	
DC Reactor	3-phase 200 VAC	0.4	---	3G3AX-DL2004
		0.75	0.75	3G3AX-DL2007
		1.5	1.5	3G3AX-DL2015
		2.2	2.2	3G3AX-DL2022
		3.7	3.7	3G3AX-DL2037
		5.5	5.5	3G3AX-DL2055
		7.5	7.5	3G3AX-DL2075
		11	11	3G3AX-DL2110
		15	15	3G3AX-DL2150
		18.5, 22	18.5, 22	3G3AX-DL2220
		30	30	3G3AX-DL2300
		37	37	3G3AX-DL2370
		45	45	3G3AX-DL2450
		55	55	3G3AX-DL2550
	3-phase 400 VAC	0.4	---	3G3AX-DL4004
		0.75	0.75	3G3AX-DL4007
		1.5	1.5	3G3AX-DL4015
		2.2	2.2	3G3AX-DL4022
		3.7	3.7	3G3AX-DL4037
		5.5	5.5	3G3AX-DL4055
		7.5	7.5	3G3AX-DL4075
		11	11	3G3AX-DL4110
		15	15	3G3AX-DL4150
		18.5, 22	18.5, 22	3G3AX-DL4220
		30	30	3G3AX-DL4300
		37	37	3G3AX-DL4370
		45	45	3G3AX-DL4450
		55	55	3G3AX-DL4550
AC Reactor	3-phase 200 VAC	0.4 to 1.5	0.75 to 1.5	3G3AX-AL2025
		2,2, 3.7	2.2, 3.7	3G3AX-AL2055
		5.5, 7.5	5.5, 7.5	3G3AX-AL2110
		11, 15	11, 15	3G3AX-AL2220
		18.5, 22	18.5, 22	3G3AX-AL2330
		30, 37	30, 37	3G3AX-AL2500
		45, 55	45, 55	3G3AX-AL2750
	3-phase 400 VAC	0.4 to 1.5	0.75 to 1.5	3G3AX-AL4025
		2.2, 3.7	2.2, 3.7	3G3AX-AL4055
		5.5, 7.5	5.5, 7.5	3G3AX-AL4110
		11, 15	11, 15	3G3AX-AL4220
		18.5, 22	18.5, 22	3G3AX-AL4330
		30, 37	30, 37	3G3AX-AL4500
		45, 55	45, 55	3G3AX-AL4750

Name	Specifications	Model
PG Board	For Position or Frequency Control	3G3AX-PG01
Digital Operator	---	3G3AX-OP01
	---	3G3AX-OP05 (available soon)
Digital Operator Connecting Cable	Cable Length 1 m	3G3AX-OPCN1
	Cable Length 3 m	3G3AX-OPCN3

EtherCAT Communications Cables

Refer to Connecting cable with NJ-series Controller for the recommended cables.

Vision System FH-Series

Ordering Information

FH Series Sensor Controllers

Item		CPU	No. of cameras	Output	Model
	Box-type controllers	High-speed Controllers (4 core)	2	NPN/PNP	FH-3050
			4	NPN/PNP	FH-3050-10
			8	NPN/PNP	FH-3050-20
		Standard Controllers (2 core)	2	NPN/PNP	FH-1050
			4	NPN/PNP	FH-1050-10
			8	NPN/PNP	FH-1050-20

Cameras

	Item	Descriptions	Color / Monochrome	Image read time	Model
	High-speed CMOS Cameras (Lens required) For FH Series only	4 million pixels	Color	8.5 ms	FH-SC04
			Monochrome		FH-SM04
		2 million pixels	Color	4.6 ms	FH-SC02
			Monochrome		FH-SM02
		300,000 pixels	Color	3.3 ms	FH-SC
			Monochrome		FH-SM
	Digital CCD Cameras (Lens required)	5 million pixels	Color	62.5 ms	FZ-SC5M2
			Monochrome		FZ-S5M2
		2 million pixels	Color	33.3 ms	FZ-SC2M
		2 milion pixels	Monochrome	33.3 ms	FZ-S2M
		300,000 pixels	Color	12.5 ms	FZ-SC
		300,000 pixels	Monochrome		FZ-S
	High-speed		Color		FZ-SHC
	CCD Cameras (Lens required)	300,000 pixels	Monochrome	4.9 ms	FZ-SH
	Small Digital CCD Cameras (Lenses for small camera required)	300,000-pixel flat type	Color	12.5 ms	FZ-SFC
			Monochrome		FZ-SF
		300,000-pixel pen type	Color	12.5 ms	FZ-SPC
			Monochrome		FZ-SP
	Intelligent Compact CMOS Cameras (Camera + Manual Focus Lens + High power Lighting)	Narrow view	Color	16.7 ms	FZ-SQ010F
		Standard view	Color		FZ-SQ050F
		Wide View (long-distance)	Color		FZ-SQ100F
		Wide View (short-distance)	Color		FZ-SQ100N
	Intelligent CCD Cameras (Camera + Zoom, Autofocus Lens + Intelligent Lighting)	Wide View	Color	12.5 ms	FZ-SLC100
		Narrow view	Color		FZ-SLC15
\rightarrow	Autofocus CCD Cameras	Wide View	Color		FZ-SZC100
1	(Camera + Zoom, Autofocus Lens)	Narrow view	Color		FZ-SZC15

Cameras Peripheral Devices

Item	Descriptions			Model
-	External Lighting		-	FLV Series
			-	FL Series
	Lighting Controller (Required to control external lighting from a Controller)	For FLV-Series	Camera Mount Lighting Controller (One channel)	FLV-TCC1
			Camera Mount Lighting Controller (Four channels)	FLV-TCC4
			Analog Lighting Controller	FLV-ATC Series
		For FL-Series	Camera Mount Lighting Controller	FL-TCC1
	Intelligent Camera Diffusion Plate		Wide field of vision	FZ-SLC100-DL
			Narrow field of vision	FZ-SLC15-DL
	For Intelligent Compact Camera		Mounting Bracket	FQ-XL
			Mounting Brackets	FQ-XL2
			Polarizing Filter Attachment	FQ-XF1
-	Mounting Bracket for FZ-S \square			FZ-S-XLC
	Mounting Bracket for FZ-S $\square 2 \mathrm{M}$			FZ-S2M-XLC
	Mounting Bracket for FZ-S5M $\square 2$			FZ-S5M-XLC
	Mounting Bracket for FZ-SH \square			FZ-SH-XLC

Cables

Item	Descriptions	Model
	Camera Cable Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}$, or 10 m *2	FZ-VS
	Bend resistant Camera Cable Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}$, or 10 m *2	FZ-VSB
0	Right-angle Camera Cable *1 Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}$, or 10 m *2	FZ-VSL
	Long-distance Camera Cable Cable length: 15 m *2	FZ-VS2
	Long-distance Right-angle Camera Cable Cable length: $15 \mathrm{~m} * 2$	FZ-VSL2
	Cable Extension Unit Up to two Extension Units and three Cables can be connected. (Maximum cable length: 45 m *2)	FZ-VSJ
	Monitor Cable Cable length: 2 m or 5 m (When you connect a LCD Monitor FZ-M08 to FH sensor controller, please use it in combination with a DVI-I -RGB Conversion Connector FH-VMRGB.)	FZ-VM
5	DVI-I -RGB Conversion Connector For FH Series only	FH-VMRGB
	Parallel I/O Cable *3 Cable length: 2 m or 5 m , For FH Series only	XW2Z-S013-2/-S013-5
0	Encoder Cable for line-driver Cable length: 1.5 m , For FH Series only	FH-VR

*1 This Cable has an L-shaped connector on the Camera end.
*2 The maximum cable length depends on the Camera being connected, and the model and length of the Cable being used. For further information, please refer to the "Cameras / Cables" table.
When a high-speed CMOS camera FH-S $\square 02 /-\mathrm{S} \square 04$ is used in the high speed mode of transmission speed, two camera cables are required
*3 2 Cables are required for all I/O signals.

Vision System FH-Series

Peripheral Devices

Item	Descriptions	Model
	LCD Monitor For Box-type Controllers	FZ-M08
	USB Memory $\quad 2 \mathrm{~GB}$	FZ-MEM2G
	8 GB	FZ-MEM8G
	SD Card 2 GB	HMC-SD291
	SD Card $\quad 4 \mathrm{~GB}$	HMC-SD491
	VESA Attachment For installing the LCD integrated-type controller	FZ-VESA
s	Desktop Controller Stand For installing the LCD integrated-type controller	FZ-DS
	Display/USB Switcher	FZ-DU
--	Mouse Recommended Products Driverless wired mouse (A mouse that requires the mouse driver to be installed is not supported.)	-

Development Environment

Please purchase a DVD and licenses the first time you purchase the Sysmac Studio. DVDs and licenses are available individually. The license does not include the DVD.

Product	Specifications	Number of Model Standards licenses	Media	Model
Application Producer	Software components that provide a development environment to further customize the standard controller features of the FH Series. System requirements: - CPU: Intel Pentium Processor (SSE2 or higher) - OS: Windows 7 Professional (32bit) or Enterprise (32bit) or Ultimate (32bit) - .NET Framework: .NET Framework 3.5 or higher - Memory: At least 2 GB RAM Available disk space: At least 2 GB - Browser: Microsoft(®) Internet Explorer 6.0 or later - Display: XGA (1024 $\times 768$), True Color (32-bit) or higher - Optical drive: CD/DVD drive The following software is required to customize the software: Microsoft(${ }^{\circledR}$ Visual Studio® 2010 Professional or Microsoft ${ }^{\circledR}$ Visual Studio ${ }^{\circledR} 2008$ Professional	- (Media only)	$C D$	FH-AP1
		1 license	-	FH-AP1L

EtherCAT Communications Cables

Refer to Connecting cable with NJ -series Controller for the recommended cables.

Lenses

C-mount Lens for 1/3-inch image sensor (Recommend: FZ-S $\square /$ FZ-SH $\square /$ FH-S \square)

Model	$\begin{gathered} \hline \text { 3Z4S-LE } \\ \text { SV-0614V } \end{gathered}$	$\begin{aligned} & \hline \text { 3Z4S-LE } \\ & \text { SV-0813V } \end{aligned}$	$\begin{aligned} & \hline \text { 3Z4S-LE } \\ & \text { SV-1214V } \end{aligned}$	$\begin{aligned} & \hline \text { 3Z4S-LE } \\ & \text { SV-1614V } \end{aligned}$	$\begin{aligned} & \hline \text { 3Z4S-LE } \\ & \text { SV-2514V } \end{aligned}$	$\begin{gathered} \hline \text { 3Z4S-LE } \\ \text { SV-3518V } \end{gathered}$	$\begin{aligned} & \hline \text { 3Z4S-LE } \\ & \text { SV-5018V } \end{aligned}$	$\begin{aligned} & \hline 3 Z 4 S-L E \\ & \text { SV-7527V } \end{aligned}$	$\begin{gathered} \hline 3 Z 4 S-L E \\ \text { SV-10035V } \end{gathered}$
Appearance/ Dimensions (mm)	Cor	$28 \text { dia: }$	$29 \text { dia: }$	$\mathrm{C}_{29}^{24 i a}$	$29 \text { dia: }$				
Focal length	6 mm	8 mm	12 mm	16 mm	25 mm	35 mm	50 mm	75 mm	100 mm
Brightness	F1.4	F1.3	F1.4	F1.4	F1.4	F1.8	F1.8	F2.7	F3.5
Filter size	M27.0 P0.5	M25.5 P0.5	M27.0 P0.5	M27.0 P0.5	M27.0 P0.5	M27.0 P0.5	M30.5 P0.5	M30.5 P0.5	M30.5 P0.5
Maximum sensor size	1/3 inch								
Mount	C mount								

C-mount Lens for 2/3-inch image sensor (Recommend: FZ-S $\square 2 M / F Z-S \square 5 M 2$)
(3Z4S-LE SV-7525H and 3Z4S-LE SV-10028H can also be used for FH-S $\square 04$)

Model	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-0614H } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-0814H } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-1214H } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-1614H } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-2514H } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-3514H } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-5014H } \end{aligned}$	$\begin{aligned} & \text { 3Z4S-LE } \\ & \text { SV-7525H } \end{aligned}$	$\begin{gathered} \text { 3Z4S-LE } \\ \text { SV-10028H } \end{gathered}$
Appearance/ Dimensions (mm)									
Focal length	6 mm	8 mm	12 mm	16 mm	25 mm	35 mm	50 mm	75 mm	100 mm
Brightness	F1.4	F2.5	F2.8						
Filter size	M40.5 P0.5	M35.5 P0.5	M27.0 P0.5	M27.0 P0.5	M27.0 P0.5	M35.5 P0.5	M40.5 P0.5	M34.0 P0.5	M37.5 P0.5
Maximum sensor size	2/3 inch	1 inch	1 inch						
Mount	C mount								

C-mount Lens for 1-inch image sensor (Recommend: FH-S $\square 02 /$ FH-S \square 04)
(3Z4S-LE SV-7525H with focal length of 75 mm and $3 Z 4 \mathrm{~S}-\mathrm{LE}$ SV-10028H with focal length of $\mathbf{1 0 0} \mathbf{~ m m}$ are also available.)

Model	$\begin{gathered} \text { 3Z4S-LE } \\ \text { VS-1214H1 } \end{gathered}$	$\begin{gathered} \text { 3Z4S-LE } \\ \text { VS-1614H1 } \end{gathered}$	$\begin{gathered} \hline \text { 3Z4S-LE } \\ \text { VS-2514H1 } \end{gathered}$	$\begin{gathered} \text { 3Z4S-LE } \\ \text { VS-3514H1 } \end{gathered}$	$\begin{gathered} \text { 3Z4S-LE } \\ \text { VS-5018H1 } \end{gathered}$
Appearance/ Dimensions (mm)					
Focal length	12 mm	16 mm	25 mm	35 mm	50 mm
Brightness	F1.4	F1.4	F1.4	F1.4	F1.8
Filter size	M35.5 P0.5	M30.5 P0.5	M30.5 P0.5	M30.5 P0.5	M40.5 P0.5
Maximum sensor size	1 inch				
Mount	C mount				

Lenses for small camera

Model	FZ-LES3	FZ-LES6	FZ-LES16	FZ-LES30
Appearance/ Dimensions $(m m)$	12 dia.	12 dia.		

Vision System FH-Series

Vibrations and shocks resistant C-mount Lens for 2/3-inch image sensor
(Recommend: FZ-S $\square / F Z-S \square 2 M / F Z-S \square 5 M 2 / F Z-S H \square / F H-S \square)$

Model																		
Appearance/ Dimensions (mm)																		
Focal length	15 mm									20 mm								
Filter size	$\begin{gathered} \hline \text { M27.0 } \\ \text { P0.5 } \end{gathered}$									$\begin{gathered} \hline \text { M27.0 } \\ \text { P0.5 } \end{gathered}$								
Optical magnification	$0.03 \times$			$0.2 \times$			$0.3 \times$			$0.04 \times$			$0.25 \times$			$0.4 \times$		
Iris Range *2	Maximum aperture	F5.6	F8	Maximum aperture	F5.6	F8	$\begin{aligned} & \text { Maxi- } \\ & \text { mum ap- } \\ & \text { erture } \end{aligned}$	F5.6	F8	Maximum aperture	F5.6	F8	$\begin{gathered} \text { Maxi- } \\ \text { mum ap- } \\ \text { erture } \end{gathered}$	F5.6	F8	Maximum aperture	F5.6	F8
Depth of field (mm) *3	183.1	$\begin{array}{\|c\|} \hline 512 . \\ 7 \end{array}$	$\begin{array}{\|c\|} \hline 732 . \\ 4 \\ \hline \end{array}$	4.8	13.4	19.2	2.3	6.5	9.2	110.8	$\begin{gathered} 291 . \\ 2 \end{gathered}$	$\begin{gathered} 416 . \\ 0 \\ \hline \end{gathered}$	3.4	9.0	12.8	1.5	3.9	5.6
Maximum sensor size	2/3 inch																	
Mount	C mount																	
Model	$\begin{gathered} 3 \text { 3Z4S-LE } \\ \text { VS-MC25N- } \square \square \square \square{ }^{*} \end{gathered}$									$\begin{gathered} 3 \text { 3Z4S-LE } \\ \text { VS-MC30 } \square \square \square \square * 1 \end{gathered}$								
Appearance/ Dimensions (mm)																		
Focal length	25 mm									30 mm								
Filter size	$\begin{aligned} & \text { M27.0 } \\ & \text { P0.5 } \end{aligned}$									$\begin{aligned} & \text { M27.0 } \\ & \text { P0.5 } \end{aligned}$								
Optical magnification	$0.05 \times$			$0.25 \times$			$0.5 \times$			$0.06 \times$			$0.15 \times$			$0.45 \times$		
Iris Range *2	Maximum aperture	F5.6	F8															
Depth of field (mm) *3	67.2	$\begin{array}{\|c} \hline 188 . \\ 2 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 268 . \\ 8 \\ \hline \end{array}$	3.2	9.0	12.8	1.0	2.7	3.8	47.1	$\begin{gathered} 131 . \\ 9 \end{gathered}$	$\begin{array}{\|c} \hline 188 . \\ 4 \\ \hline \end{array}$	8.2	22.9	32.7	1.1	3.2	4.6
Maximum sensor size	2/3 inch																	
Mount	C mount																	
Model										$\begin{gathered} 3 Z 4 S-L E \\ \text { VS-MC50- } 1 \text { * } 1 \end{gathered}$								
Appearance/ Dimensions (mm)	31 dia З32.0[0.26x] to $45.7[0.65 \times]$									31 dia. $44.5[0.08 \mathrm{x}]$ to $63.9[0.48 \mathrm{x}]$								
Focal length	35 mm									50 mm								
Filter size	$\begin{gathered} \hline \text { M27.0 } \\ \text { P0.5 } \end{gathered}$									$\begin{gathered} \text { M27.0 } \\ \text { P0.5 } \\ \hline \end{gathered}$								
Optical magnification	$0.26 \times$			$0.3 \times$			$0.65 \times$			$0.08 \times$			$0.2 \times$			$0.48 \times$		
Iris Range *2	Maximum aperture	F5.6	F8															
Depth of field (mm) *3	2.8	8.4	11.9	2.2	6.5	9.2	0.6	1.7	2.5	33.8	75.6	108.0	6.0	13.4	19.2	1.3	2.9	4.1
Maximum sensor size	2/3 inch																	
Mount	C mount																	

Model	$\begin{gathered} \text { 3Z4S-LE } \\ \text { VS-MC75- } \quad \text { * } 1 \end{gathered}$								
Appearance/ Dimensions (mm)									
Focal length	75 mm								
Filter size	$\begin{gathered} \hline \text { M27.0 } \\ \text { P0.5 } \end{gathered}$								
Optical magnification	$0.14 \times$			$0.2 \times$			$0.62 \times$		
Iris Range *2	Maximum aperture	F5.6	F8	Maximum aperture	F5.6	F8	Maximum aperture	F5.6	F8
Depth of field (mm) *3	17.7	26.1	37.2	9.1	13.4	19.2	1.3	1.9	2.7
Maximum sensor size	2/3 inch								
Mount	C mount								

*1 Insert the iris range into $\square \square \square \square \square$ in the model number as follows.
$\mathrm{F}=$ aperture: blank
F=5.6: FN056
F=8: FN080
*2 F-number can be selected from maximum aperture, 5.6, and 8.0.
*3 When circle of least confusion is $40 \mu \mathrm{~m}$.

smart Camera FQ-M-Series

Ordering Information

Sensors

Touch Finder

Appearance	Type	Model	
	DC power supply		FQ-MD30
	AC/DC/battery *	FQ-MD31	

* AC Adapter and Battery are sold separately.

Bend resistant Cables for FQ-M Series

| Cable Type | Type | Cable length | Model |
| :--- | :--- | :--- | :--- | :--- | :--- |

Accessories

Appearance		Type	Model
	For Touch Finder	Panel Mounting Adapter	FQ-XPM
		AC Adapter (for models for DC/AC/Battery)	FQ-AC \square *
		Battery (for models for DC/AC/Battery)	FQ-BAT1
		Touch Pen (enclosed with Touch Finder)	FQ-XT
		Strap	FQ-XH
$\begin{aligned} & =0 \\ & 200 \\ & 200 \end{aligned}$		SD Card (2 GB)	HMC-SD291
		SD Card (4GB)	HMC-SD491

* AC Adapters for Touch Finder with DC/AC/Battery Power Supply. Select the model for the country in which the Touch Finder will be used.

Plug type	Voltage	Certified standards	Model
A	125 V max.	PSE	FQ-AC1
		UL/CSA	FQ-AC2
	250 V max.	CCC mark	FQ-AC3
C	250 V max.	---	FQ-AC4
BF	250 V max.	---	FQ-AC5
O	250 V max.	---	FQ-AC6

Cameras peripheral devices

Type	Model	
Cameras peripheral devices	CCTV Lenses	3Z4S-LE Series
External Lightings	For FL Series	FL Series
Lighting Controllers	FL-TCC1	

Displacement Sensor ZW-Series

Ordering Information

Sensor Head

Measuring range	$7 \pm 0.3 \mathrm{~mm}$	$20 \pm 1 \mathrm{~mm}$	$30 \pm 3 \mathrm{~mm}$	$40 \pm 6 \mathrm{~mm}$
Spot diameter	$18 \mu \mathrm{~m}$ dia.	$40 \mu \mathrm{~m}$ dia.	$60 \mu \mathrm{~m}$ dia.	$80 \mu \mathrm{mdia}$
Static resolution	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$
Model	ZW-S07	ZW-S20	ZW-S30	ZW-S40

Note: When ordering, specify the cable length $(0.3 \mathrm{~m}, 2.0 \mathrm{~m})$.

Controller with EtherCAT

Appearance	Power supply	Output type	Model
	2 DC 24 V	NPN	ZW-CE10T
		PNP	ZW-CE15T

Cable

Appearance	Item	Cable length	Model
	Sensor Head - Controller Extension Fiber Cable (flexible cable) (Fiber Adapter ZW-XFC provided)	2 m	ZW-XF02R
		10 m	ZW-XF05R
		20 m	ZW-XF20R
	Parallel cable for ZW-CE1■T 32-pole (included with Controller ZW-CE1口T)	$2 m$	ZW-XF30R

Accessories

Item	Model
Fiber Connector Cleaner	ZW-XCL

Note: Place orders in units of boxes (containing 10 units).

Fiber Sensor/Laser Photoelectric Sensors N-Smart E3NX-FA/E3NC-LA/E3NC-SA
 (Sensor Communications Unit connection series)

Ordering Information

Sensor Communication Unit

Product name	Power Supply Voltage	Power Supply	Model
EtherCAT Communications Unit	DC24V	Supplied from terminal block connector	E3NW-ECT

Distributed Sensor Unit

Product name	Power Supply Voltage	Power Supply	Model
Distributed Sensor Unit	DC24V	Supplied from terminal block connector through the communication unit	E3NW-DS

Note: Please read and understand the important precautions and reminders described on the manuals (E429) of E3NW-ECT, before attempting tostart operation.
Connectable Sensors (Amplifier Units)

Product name	Connection Method	Power Supply	Model
Smart Fiber Amplifier Unit	Connect to a communication unit, distributed unit and amplifier units by connectors	Supplied from the connector through the communication unit and distributed unit	E3NX-FAO
Smart Laser Amplifier Unit			E3NC-LAO
Smart Laser Amplifier Unit (CMOS type)			E3NC-SA0

Note: Please read and understand the important precautions and reminders described on the instruction sheet bundled to the product, before attempting to start operation.

EtherCAT Communications Cables

Refer to Connecting cable with NJ-series Controller for the recommended cables.

Fiber Sensors/Laser Photoelectric Sensor/Proximity Sensor E3X/E3C-LDA/E2C-EDA
(Sensor Communications Unit connection series)
Ordering Information

Sensor Communications Unit

Product name	Power Supply Voltage	Power Supply	Model
EtherCAT Communications Unit	DC24V	Supplied from terminal block connector	E3X-ECT

Note: Please read and understand the important precautions and reminders described on the manuals (E413) of E3X-ECT, before attempting to start operation.

Connectable Sensors (Amplifier Units)

Product name	Connection Method	Power Supply	Model
Standard Fiber Amplifier Unit	Connect to a communication unit and amplifier units by connectors	Supplied from the connector through the communication unit	E3X-HD0
Two-channel Fiber Amplifier Unit			E3X-MDA0
High-functionally Fiber Amplifier Unit			E3X-DA0-S
Laser Photoelectric Sensor Amplifier Unit			E3C-LDA0
Proximity Sensor Amplifier Unit			E2C-EDA0

Note: Please read and understand the important precautions and reminders described on the instruction sheet bundled to the product, before attempting to start operation.

EtherCAT Communications Cables

Refer to Connecting cable with NJ -series Controller for the recommended cables.

EtherCAT Remote I/O Terminal GX-Series

Interpreting Model Numbers

1) Type

Code	Specifications
ID	DC Input
OD	DC Output
MD	DC Input/Output
OC	Relay Output
AD	Analog Input
DA	Analog Output
EC	Encoder Input

4) Connecting

Code	Specifications
$\mathbf{1}$	Screw (Common) (2-tier Terminal Block)
$\mathbf{2}$	Screw (Divided common) (3-tier Terminal Block)
$\mathbf{8}$	e-CON

3) Input/Output type

Code	Digital Input/ Digital Output type	Analog Input// Analog Output type	Encoder Input Type
$\mathbf{1}$	NPN/Sinking	-	Open collector input, NPN
$\mathbf{2}$	PNP/Sourcing	-	-
$\mathbf{4}$	-	-	Line driver input, PNP
$\mathbf{7}$	-	Multi 1 (Current/Voltage)	-

5) Figure/Function

Code	Digital Input/ Digital Output type	Analog Input/ Analog Output type	Encoder Input Type
None	Horizontal type	Standard type	-

Ordering Information

Digital I/O Terminal

Terminal Block Type

Name	Specifications			Model	Standards
2-tier terminal blocks	Inputs	16 inputs	NPN	GX-ID1611	UC1, N, L, CE
			PNP	GX-ID1621	
			NPN	GX-OD1611	
	utputs	outpu	PNP	GX-OD1621	
	Outputs	16 outputs	Relay	GX-OC1601	
			NPN	GX-MD1611	
	Inputs/Outputs	8 inputs/8 outputs	PNP	GX-MD1621	
3-tier terminal blocks	Inputs	16 inputs	NPN	GX-ID1612	
			PNP	GX-ID1622	
	Outputs	16 outputs	NPN	GX-OD1612	
			PNP	GX-OD1622	
	Inputs/Outputs	8 inputs/8 outputs	NPN	GX-MD1612	
			PNP	GX-MD1622	

e-CON Connector Type

Name	Specifications			Model	Standards
e-CON Connector Type	Inputs	16 inputs	NPN	GX-ID1618	UC1, N, L, CE
			PNP	GX-ID1628	
	Outputs	16 outputs	NPN	GX-OD1618	
			PNP	GX-OD1628	
	Inputs/Outputs	8 inputs/8 outputs	NPN	GX-MD1618	
			PNP	GX-MD1628	
	Inputs	32 inputs	NPN	GX-ID3218	
			PNP	GX-ID3228	
	Outputs	32 outputs	NPN	GX-OD3218	
			PNP	GX-OD3228	
	Inputs/Outputs	16 inputs/16 outputs	NPN	GX-MD3218	
			PNP	GX-MD3228	

Analog I/O Terminal
2-tier Terminal Block Type

Name	Specifications		Model	Standards
2 -tier terminal block type	Analog inputs	4 inputs	GX-AD0471	UC1, N, L, CE
	Analog outputs	2 outputs	GX-DA0271	

Encoder Input Terminal
3-tier Terminal Block Type

Name	Specifications		Model	Standards
3 -tier Terminal Block Type	Open collector inputs	2 inputs	GX-EC0211	UC1, N, L, CE
	Line driver inputs	2 inputs	GX-EC0241	

Expansion Units

Name	Specifications				Model	Standards
Expansion Units	Inputs	8 inputs	NPN	One Expansion Unit can be mounted to one GX-ID16 $\square 1 / O D 16 \square 1 /$ OC1601 Digital I/O Terminal.	XWT-ID08	UC1, N, CE
			PNP		XWT-ID08-1	
	Outputs	8 outputs	NPN		XWT-OD08	
			PNP		XWT-OD08-1	
	Inputs	16 inputs	NPN		XWT-ID16	
			PNP		XWT-ID16-1	
	Outputs	16 outputs	NPN		XWT-OD16	
			PNP		XWT-OD16-1	

EtherCAT Communications Cables

Refer to Connecting cable with NJ -series Controller for the recommended cables.

Programmable Terminals NS-Series

Ordering Information

Programmable Terminals

Product name	Specifications				Model	Standards
	Effective display area	Number of dots	Ethernet	Case color		
NS5-V2	5.7-inch STN monochrome	320×240 dots	Yes	Ivory	NS5-MQ11-V2	UC1, CE, N, L, UL Type4
				Black	NS5-MQ11B-V2	
	5.7-inch TFT color LED backlight		Yes	Ivory	NS5-SQ11-V2	
				Black	NS5-SQ11B-V2	
	5.7-inch High-luminance TFT color * LED backlight		Yes	Ivory	NS5-TQ11-V2	
				Black	NS5-TQ11B-V2	
NS8-V2	8.4-inch TFT	640×480 dots	Yes	Ivory	NS8-TV01-V2	UC1, CE, N, L
				Black	NS8-TV01B-V2	
NS10-V2	$\begin{gathered} \text { 10.4-inch } \\ \text { TFT } \end{gathered}$	640×480 dots	Yes	Ivory	NS10-TV01-V2	UC1, CE, N, L, UL Type4
				Black	NS10-TV01B-V2	
NS12-V2	12.1-inch TFT	800×600 dots	Yes	Ivory	NS12-TS01-V2	
				Black	NS12-TS01B-V2	
NS15-V2	15-inch TFT	1,024 $\times 768$ dots,	Yes	Silver	NS15-TX01S-V2	
				Black	NS15-TX01B-V2	

Note: To connect the NJ-Series Controller, NS system version 8.5 or higher is required. CX-Designer version 3.3 or higher is also required.

* NS5-TQ-Series (high luminance TFT) luminance is better than that of NS5-SQ-Series by about $110 \mathrm{~cd} / \mathrm{m}^{2}$.

Options

[^46]
Related Manuals

NJ-Series

Cat. No.	Model number	Manual
W513	NJ501/NJ301- $\square \square \square \square$	NJ-Series Startup Guide (CPU Unit)
W514	NJ501/NJ301- $\square \square \square \square$	NJ-Series Startup Guide (Motion Control)
W500	NJ501/NJ301- $\square \square \square \square$	NJ-series CPU Unit Hardware User's Manual
W501	NJ501/NJ301- $-\square \square \square$	NJ-series CPU Unit Software User's Manual
W507	NJ501/NJ301- $\square \square \square \square$	NJ-series CPU Unit Motion Control User's Manual
W527	NJ501-1 $\square 20$	NJ-series Database Connection CPU Units User's Manual
W502	NJ501/NJ301- $\square \square \square \square$	NJ-series Instructions Reference Manual
W508	NJ501/NJ301- $\square \square \square \square$	NJ-series Motion Control Instructions Reference Manual
W505	NJ501/NJ301- $\square \square \square \square$	NJ-series CPU Unit Built-in EtherCAT Port User's Manual
W506	NJ501/NJ301- $\square \square \square \square$	NJ-series CPU Unit Built-in EtherNet/IP Port User's Manual
W503	NJ501/NJ301- $\square \square \square \square$	NJ-series Troubleshooting Manual
W490	CJ1W-AD0 $\square-\square \square /-D A 0 \square \square \square /-M A D 42 ~$	CJ-series Analog I/O Units Operation Manual for NJ-series CPU Unit
W498	CJ1W-PDC15/-AD04U/-PH41U	CJ-series Analog I/O Units Operation Manual for NJ-series CPU Unit
W491	CJ1W-TC003/-TC004/-TC103/-TC104	CJ-series Temperature Control Units Operation Manual for NJ-series CPU Unit
Z317	CJ1W-V680C11/-V680C12	CJ-series ID Sensor Units Operation Manual for NJ-series CPU Unit
W492	CJ1W-CT021	CJ-series High-speed Counter Units Operation Manual for NJ-series CPU Unit
W494	CJ1W-SCU \square	CJ-series Serial Communication Units Operation Manual for NJ-series CPU Unit
W495	CJ1W-EIP21	CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit
W497	CJ1W-DRM21	CJ-series DeviceNet Units Operation Manual for NJ-series CPU Unit
W493	CJ1W-CRM21	CJ-series CompoNet Master Units Operation Manual for NJ-series CPU Unit

Sysmac Studio

Cat. No.	Model number	Manual		
W504	SYSMAC-SE2 $\square \square \square$	Sysmac Studio version 1 OPERATION MANUAL		
V099	---			CX-Designer Ver.3. \square User's Manual
W464		CS/CJ/CP/NSJ Series CXIntegrator Ver.2. \square OPERATION MANUAL		
W344	CX-Protocol OPERATION MANUAL			

EtherCAT Slave Terminals NX-series

Cat. No.	Model number	Manual
W519	$\begin{array}{\|l\|l\|} \hline \text { NX-ECC201 } \\ \text { NX-ECC202 } \end{array}$	NX-series EtherCAT Coupler Units User's Manual
W521	$\begin{aligned} & \text { NX-ID■ } \\ & \text { NX-IA } \\ & \text { NX-OD } \\ & \text { NX-OC } \end{aligned}$	NX-series Digital I/O Units User's Manual
W522	$\begin{aligned} & \text { NX-AD } \\ & \text { NX-DA } \\ & \text { NX-TS } \\ & \text { NX-IA } \end{aligned}$	NX-series Analog I/O Units User's Manual
W524	$\begin{aligned} & \text { NX-ECO } \\ & \text { NX-ECS } \\ & \text { NX-PGO } \end{aligned}$	NX-series Position Interface Units User's Manual
W523	NX-PD1 NX-PFO NX-PC0 NX-TBX01	NX-series System Units User's Manual
W525	NX- $\square \square \square \square \square \square$	NX-series Data Reference Manual

Safety Control Unit NX-series

Cat. No.	Model number	Manual
Z930	NX-SLロ NX-SI $\square \square \square \square$ NX-SO $\square \square \square \square$	NX-series Safety Control Unit User's Manual
Z931	NX-SL $\square \square \square \square$	NX-series Safety Control Unit Instructions Reference Manual

G5-Series

Cat. No.	Model number	Manual
1576	R88D-KN $\square-E C T / R 88 M-K$	G5-SERIES EtherCAT Communications AC SERVOMOTOR AND SERVO DRIVE USER'S MANUAL
1577	R88D-KN $\square-E C T-L / R 88 L-E C ~$	G5-SERIES EtherCAT Communications Linear Motor Type LINEARMOTOR AND DRIVE USER'S MANUAL

MX2-Series V1 type/RX-Series V1 type

Cat. No.	Model number	Manual
1585	3G3MX2- $\square \square \square \square \square-$ V1	Multi-function Compact Inverter MX2-series V1 type USER'S MANUAL
1578	3G3RX- $\square \square \square \square \square-V 1$	High-function General-purpose Inverter RX-Series V1 type USER'S MANUAL
1574	3G3AX-MX2-ECT/3G3AX-RX-ECT	MX2-series V1 type/RX-series V1 type EtherCAT Communication Unit USER'S MANUAL

FH-Series

Cat. No.	Model number	Manual
Z340	FH/FZ5	Vision System FH/FZ5 Series User's Manual
Z341	FH/FZ5	Vision System FH/FZ5 Series Processinng Item Function Reference Manual
Z342	FH/FZ5	Vision System FH/FZ5 Series User's Manual for Communications Settings
Z343	FH	Vision System FH Series Operation Manual for Sysmac Studio

FQ-M-Series

Cat. No.		Model number
Z314	FQ-MS $\square \square \square(-M)$ FQ-MS $\square \square \square(-M)-E C T$	Specialized Vision Sensor for Positioning FQ-M-Series User's Manual

ZW-Series

Cat. No.	Model number	Manual
Z332	ZW-CE1 $\square T$	Displacement Measurement Sensor ZW-CE1 $\square T-S e r i e s ~ U s e r ' s ~ M a n u a l ~$

Fiber/Laser Photoelectric Sensors N-Smart

Cat. No.	Model number	Manual
E429	E3NW-ECT	EtherCAT Sensor Communications Unit Operation Manual

Fibers/Laser Photoelectric/Proximity Sensor

Cat. No.		Model number
E413	E3X-ECT	EtherCAT Sensor Communications Unit Operation Manual

GX-Series

Cat. No.	Model number	Manual
W488	GX- $\square \square \square \square \square \square \square$	GX-Series EtherCAT Slave USER'S MANUAL

NS-Series

Cat. No.	Model number	Manual
V083	NS15/NS12/NS10/NS8/NS5	NS Series Programmable Terminals SETUP MANUAL
V073	NS15/NS12/NS10/NS8/NS5	NS-Series Programmable Terminals PROGRAMMING MANUAL

Terms and Conditions Agreement

Read and understand this catalog.

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.

(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitation on Liability; Etc.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

OMRON Corporation Industrial Automation Company

Tokyo, JAPAN

Contact: www.ia.omron.com

Regional Headquarters
 OMRON EUROPE B.V.

Wegalaan 67-69-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ASIA PACIFIC PTE. LTD.

No. 438A Alexandra Road \# 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC

 One Commerce Drive Schaumburg, L 60173-5302 U.S.A. Tel: (1) 847-843-7900/Fax: (1) 847-843-7787Authorized Distributor:
© OMRON Corporation 2011 All Rights Reserved.
In the interest of product improvement,
specifications are subject to change without notice.
Cat. No. P072-E1-11 \quad 0913(0711)

In the interest of product improvement, specifications are subject to change without notice.

[^0]: Sysmac is a trademark or registered trademark of OMRON Corporation in Japan and other countries for OMRON factory automation products.
 Windows, SQL Server are either registered trademarks or trademarks of Microsoft Corporation in the United Status and/or other countries.
 EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
 Oracle and Oracle Database are trademarks or registered trademarks of Oracle Corporation and/or its affiliates in the United States and other countries.
 Safety over EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH , Germany.
 EtherNet/IPTM, CompoNet ${ }^{T M}$ and DeviceNet ${ }^{T M}$ are the trademarks of ODVA.
 Other company names and product names in this document are the trademarks or registered trademarks of their respective companies.

[^1]: *1 Supported only by the CPU Units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.
 *2 In addition, up to 208 other words are allocated depending on the number of Slave Units to which words are allocated and their I/O capacity. Use the CX-Integrator to allocate words.

[^2]: *1 Supported only by the CPU Units with unit version 1.03 or later.
 *2 Inline ST is supported. (Inline ST is ST that is written as an element in a ladder diagram.)
 *3 Supported only by the CPU Units with unit version 1.01 or later.

[^3]: *5 Supported only by the CPU Units with unit version 1.05 or later.

[^4]: *1 When two or more DB Connections are established, the operation cannot be guaranteed if you set different database types for the connections.
 *2 Refer to "NJ-series Database Connection CPU Units User's Manual(W527)" for the information.

[^5]: Features

 - Up to 63 NX-IO Units can be connected to one EtherCAT Coupler Unit. Standard and high-performance units can be mixed.*
 - Each Coupler plus its I/O form just a single EtherCAT node on the network.
 - I/O control and safety control can be integrated by connecting Units for safety.
 - The Coupler supports the EtherCAT Distributed Clock (DC) and propagates this to synchronous I/O units.
 - The node address can be fixed by rotary switches, or set by software. Choose the method that best suits your way of engineering.
 - Slave configuration by Sysmac Studio can be done centrally via the controller, or on-the-spot using the Coupler's built-in USB port.
 * Input per Coupler Unit: Maximum 1024 bytes, Output per Coupler Unit: Maximum 1024 bytes

[^6]: * For the NX-ECC202, there is no unit version of 1.1 or earlier.

[^7]: * For the NX-ECC202, there is no unit version of 1.1 or earlier.

[^8]: *1. The resolution is $0.2^{\circ} \mathrm{C}$ max. when the input type is R, S, or W .
 *2. Refer to Reference Accuracy and Temperature Coefficient According to the Input Type and Measurement Temperature,

[^9]: *1. Refer to Reference Accuracy and Temperature Coefficient According to the Input Type and Measurement Temperature.
 *2. The overall accuracy is guaranteed for a set consisting of a cold junction sensor that is mounted on the terminal block and a Temperature Input Unit. Be sure to use the terminal block and the Temperature Input Unit together. A calibration control number is both displayed on the terminal block and the Unit. Make sure to return the terminal block (including a cold junction sensor mounted) and the Unit together for repair.
 *3. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type for the specifications for each set of operating conditions.

[^10]: *1. Refer to Reference Accuracy and Temperature Coefficient According to the Input Type and Measurement Temperature.
 *2. The overall accuracy is guaranteed for a set consisting of a cold junction sensor that is mounted on the terminal block and a Temperature Input Unit. Be sure to use the terminal block and the Temperature Input Unit together. A calibration control number is both displayed on the terminal block and the Unit. Make sure to return the terminal block (including a cold junction sensor mounted) and the Unit together for repair.
 *3. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type for the specifications for each set of operating conditions.

[^11]: * Refer to Reference accuracy and temperature coefficient according to the input type and measurement temperature.

[^12]: * Refer to Reference accuracy and temperature coefficient according to the input type and measurement temperature.

[^13]: * Refer to Reference accuracy and temperature coefficient according to the input type and measurement temperature.

[^14]: ${ }^{*}$. The resolution is $0.2^{\circ} \mathrm{C}$ max. when the input type is R, S, or W.
 *2. Refer to Reference Accuracy and Temperature Coefficient According to the Input Type and Measurement Temperature.
 *3. The overall accuracy is guaranteed for a set consisting of a cold junction sensor that is mounted on the terminal block and a Temperature Input Unit. Be sure to use the terminal block and the Temperature Input Unit together. A calibration control number is both displayed on the terminal block and the Unit. Make sure to return the terminal block (including a cold junction sensor mounted) and the Unit together for repair.
 *4. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type for the specifications for each set of operating conditions.

[^15]: *1. Refer to Reference Accuracy and Temperature Coefficient According to the Input Type and Measurement Temperature.
 *2. The overall accuracy is guaranteed for a set consisting of a cold junction sensor that is mounted on the terminal block and a Temperature Input Unit. Be sure to use the terminal block and the Temperature Input Unit together. A calibration control number is both displayed on the terminal block and the Unit. Make sure to return the terminal block (including a cold junction sensor mounted) and the Unit together for repair.
 *3. Refer to Cold Junction Compensation Error Specifications for Units That Take a Thermocouple Input Type for the specifications for each set of operating conditions.

[^16]: * Refer to Reference accuracy and temperature coefficient according to the input type and measurement temperature.

[^17]: * Refer to Reference accuracy and temperature coefficient according to the input type and measurement temperature.

[^18]: * Refer to Reference accuracy and temperature coefficient according to the input type and measurement temperature.

[^19]: * The I/O refreshing method is automatically set according to the connected Communications Coupler Unit and CPU Unit.

[^20]: * The I/O refreshing method is automatically set according to the connected Communications Coupler Unit and CPU Unit.

[^21]: * The I/O refreshing method is automatically set according to the connected Communications Coupler Unit and CPU Unit.

[^22]: *1. The I/O refreshing method is automatically set according to the connected Communications Coupler Unit and CPU Unit.
 *2. The maximum transmission distance for an SSI Input Unit depends on the baud rate due to the delay that can result from the responsiveness of the connected encoder and cable impedance. The maximum transmission distance is only a guideline. Review the specifications for the cables and encoders in the system and evaluate the operation of the equipment before use.

[^23]: *1. The I/O refreshing method is automatically set according to the connected Communications Coupler Unit and CPU Unit.

[^24]: * For the NX-ECC202, there is no unit version of 1.1 or earlier.

[^25]: or the Unit power supply terminals on the EtherCAT Coupler Unit.
 *2. The NC terminal is not connected to the internal circuit.

[^26]: Incremental output: When the controller power supply is turned ON, operation is always started from the origin

[^27]: *1 The first value is for single-phase input power and the second value is for 3-phase input power.
 *2 The heat value is given for rated operation.

[^28]: *1 The heat value is given for rated operation.

[^29]: * The amplitude may be increased by machine resonance. As a guideline, do not exceed 80% of the specified value.

[^30]: * Use M5 low head allen head bolts.

[^31]: * Please note the capacity of Servo Drive and Servomotor are not same in this combination.

[^32]: * Please note the capacity of Servo Drive and Servomotor are not same in this combination.

[^33]: * The BRD usage is 10%.

[^34]: *1 Protection method complies with JEM 1030.
 *2 To operate the motor at over $50 / 60 \mathrm{~Hz}$, contact the motor manufacturer to find out the maximum allowable speed of revolution.
 *3 For the stable control of the motor, the output frequency may exceed the maximum frequency set in A004 (A204) by 2 Hz max.
 *4 Refer to the Drive Programming USER'S MANUAL (No. I580).

[^35]: *1. To use STP (shielded twisted-pair) cable of category 5 or higher with double shielding (braiding and aluminum foil tape) for EtherCAT and RJ45 connector.
 *2. To use STP (shielded twisted-pair) cable of category 5 or higher for Ethernet and RJ45 connector.

[^36]: * Applicable to the FQ-MD31 only.

[^37]: * Mutual interference prevention can be used for up to 5 Units (10 channels) if power tuning is enabled.

[^38]: * The rated sensing distance is approximately $1 / 2$ and the incident level is approximately $1 / 3$ of the normal levels when ECO mode is enabled.

[^39]: * Short-circuit metal fixtures are used for current input only, but store in a safe place when using for voltage inputs as well.

[^40]: *1 This is the input response time when no filter (i.e., 0 ms) is set.
 *2 The cable-side connector is not provided with Units equipped with cables. Purchase the 40-pin connector separately (Refer to page 340), or use an OMRON XW2 \square Connector-Terminal Block Conversion Unit or a G7 I/O Relay Terminal .

[^41]: *1 The ON/OFF response time for the CJ1W-OD213/CJ1W-OD234 is shorter than for the CJ1W-OD211/CJ1WOD233, as shown below.

 - ON response time: 0.1 ms improved to 0.015 ms
 - OFF response time: 0.8 ms improved to 0.08 ms
 *2 Connectors are not provided with these connector models. Either purchase one of the following 40-pin Connectors, or use an OMRON XW2 \square Connector-Terminal Block Conversion Unit or a G7 \square I/O Relay Terminal.

[^42]: * This is for an external power supply, and not for internal current consumption.

[^43]: *1. The resolution is $0.2^{\circ} \mathrm{C}$ max. when the input type is R, S, or W.
 *2. The NX-TS2202 and NX-TS3202 only supports Pt100 three-wire sensor.

[^44]: *1 R88M-K05030H- \square, R88M-K05030T- \square, can be used for Power Supply Voltage of 100/200VAC.

[^45]: * Only the CT rating is supported.

[^46]: *1 To connect the NS-Series PT to NJ-Series Controller, using a commercially available 10/100-BASE-TX twisted-pair cable. For detail, refer to the NS series SETUP MANUAL (Cat. No.V083).
 Use a standard USB Type A male to Type B type male Cable to connect the NS-Series PT to a personal computer (CX-Designer).
 Use a standard USB cable to connect the NS-Series PT to a PictBridge-compatible printer. USB cable type depends on the printer.
 *2 One screen cannot display two video inputs simultaneously.
 *3 A Chemical-resistant Cover (NT30-KBA01) is available only for the NS5.

