Power Rectifier, Soft Recovery, Switch-mode, 8 A, 600 V

These state-of-the-art devices are designed for use as free wheeling diodes in variable speed motor control applications and switching power supplies.

Features

- Soft Recovery with Guaranteed Low Reverse Recovery Charge (Q_{RR}) and Peak Reverse Recovery Current (I_{RRM})
- 150°C Operating Junction Temperature
- Epoxy meets UL 94 V-0 @ 0.125 in
- Low Forward Voltage
- Low Leakage Current
- These are Pb-Free Devices

Mechanical Characteristics:

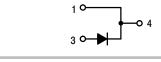
- Case: Epoxy, Molded
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

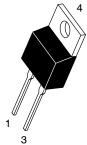
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current (Rated V _R , T _C = 125°C)	I _O	8.0	Α
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 125°C)	I _{FRM}	16	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	Α
Storage/Operating Case Temperature	T _{stg} , T _C	-65 to +150	°C
Operating Junction Temperature	T_J	-65 to +150	°C

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
MSR860G Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient	$R_{ heta JC} \ R_{ heta JA}$	1.6 72.8	°C/W
MSRF860G Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient	$egin{array}{c} R_{ heta JC} \ R_{ heta JA} \end{array}$	4.75 75	°C/W

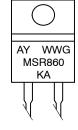

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

http://onsemi.com

SOFT RECOVERY POWER RECTIFIER 8.0 AMPERES, 600 VOLTS



TO-220AC CASE 221B STYLE 1

TO-220 FULLPAK CASE 221AG STYLE 1

MARKING DIAGRAMS

MSR860/D

A = Assembly Location Y = Year

Y = Year

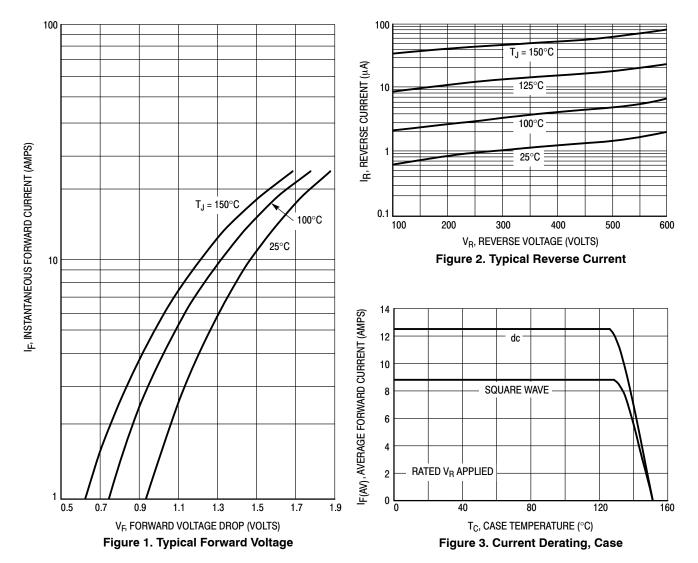
WW = Work Week

G = Pb-Free Package

KA = Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping
MSR860G	TO-220AC (Pb-Free)	50 Units / Rail
MSRF860G	TO-220FP (Pb-Free)	50 Units / Rail


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Va	lue	Unit
Maximum Instantaneous Forward Voltage (I _F = 8.0 A) (Note 1)	V _F	T _J = 25°C	T _J = 150°C	V
Maximum Typical		1.7 1.4	1.3 1.1	
Maximum Instantaneous Reverse Current (V _R = 600 V)	I _R	T _J = 25°C	T _J = 150°C	μΑ
Maximum Typical		10 2.0	1000 80	
Maximum Reverse Recovery Time (Note 2)	t _{rr}	T _J = 25°C	T _J = 125°C	ns
(V _R = 400 V, I _F = 8.0 A, di/dt = 200 A/μs) Maximum Typical		120 95	190 125	
Typical Recovery Softness Factor $(V_R = 400 \text{ V}, I_F = 8.0 \text{ A}, \text{di/dt} = 200 \text{ A/}\mu\text{s})$	s = t _b /t _a	2.5	3.0	
Maximum Peak Reverse Recovery Current ($V_R = 400 \text{ V}$, $I_F = 8.0 \text{ A}$, di/dt = 200 A/ μ s)	I _{RRM}	5.8	8.3	Α
Maximum Reverse Recovery Charge ($V_R = 400 \text{ V}, I_F = 8.0 \text{ A}, \text{ di/dt} = 200 \text{ A/}\mu\text{s}$)	Q _{RR}	350	700	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 1. Pulse Test: Pulse Width \leq 380 μ s, Duty Cycle \leq 2%
- 2. $T_{\mbox{\footnotesize{RR}}\mbox{\footnotesize{MRM}}}$ measured projecting from 25% of $I_{\mbox{\footnotesize{RRM}}}$ to zero current

TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL ELECTRICAL CHARACTERISTICS

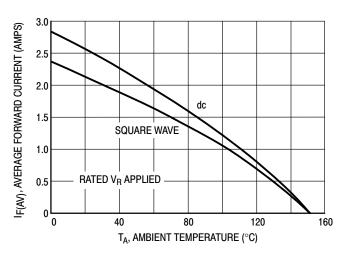


Figure 4. Current Derating, Ambient

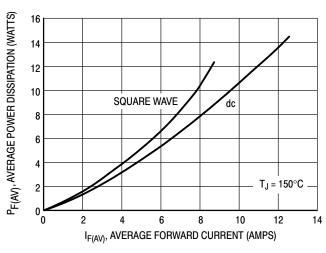


Figure 5. Power Dissipation

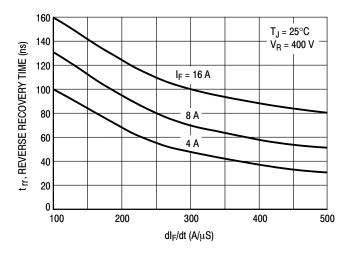


Figure 6. Typical Reverse Recovery Time

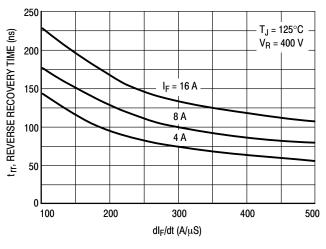


Figure 7. Typical Reverse Recovery Time

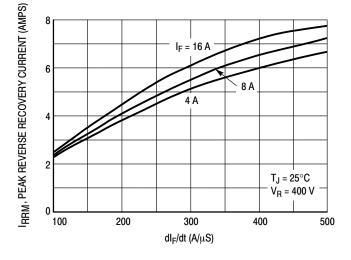


Figure 8. Typical Peak Reverse Recovery Current

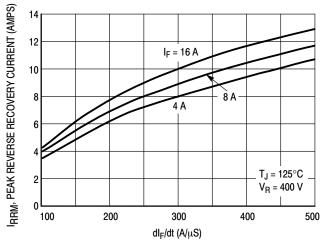
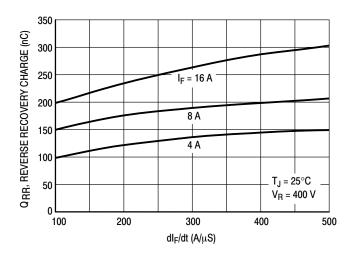



Figure 9. Typical Peak Reverse Recovery Current

TYPICAL ELECTRICAL CHARACTERISTICS

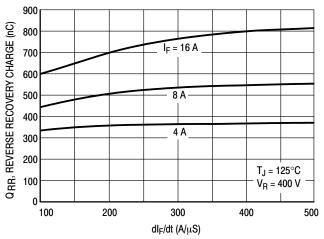
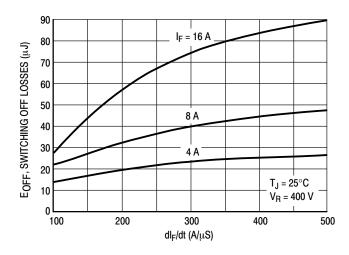



Figure 10. Typical Reverse Recovery Charge

Figure 11. Typical Reverse Recovery Charge

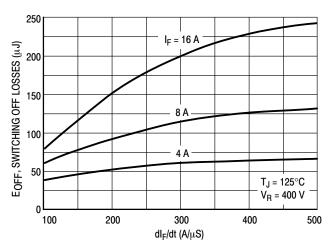


Figure 12. Typical Switching Off Losses

Figure 13. Typical Switching Off Losses

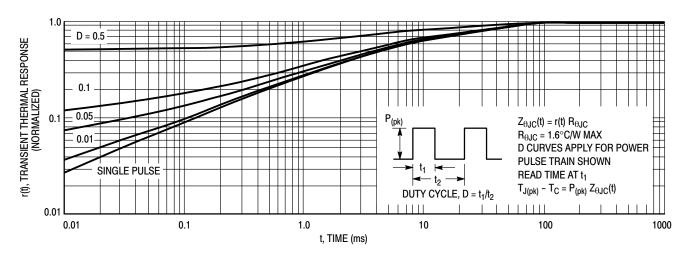


Figure 14. Thermal Response (MSR860)

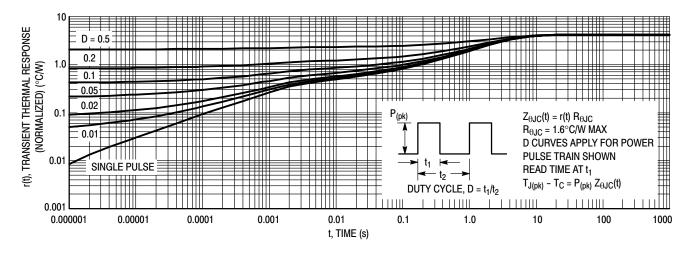


Figure 15. Thermal Response, (MSRF860) Junction-to-Case (R_{θJC})

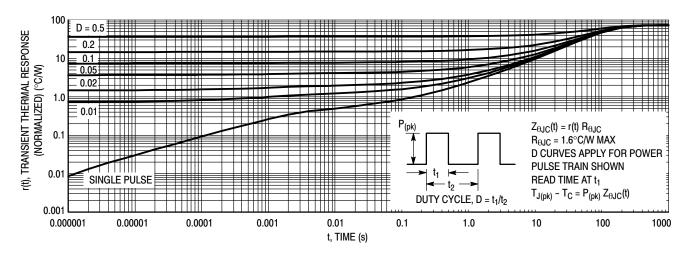
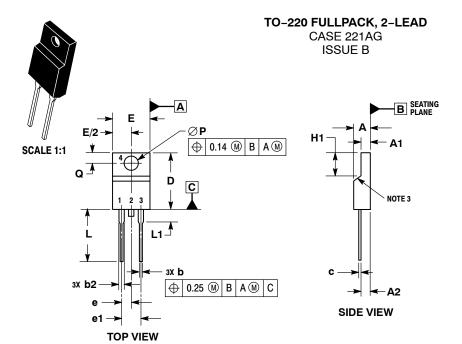
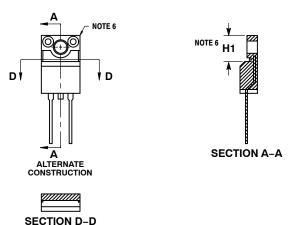




Figure 16. Thermal Response, (MSRF860) Junction-to-Ambient (R_{0JA})

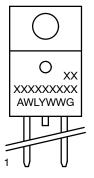
DATE 27 AUG 2015

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

- Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.


 3. CONTOUR UNCONTROLLED IN THIS AREA.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS AND TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY.

 5. DIMENSION DE DOES NOT INCLUDE DAMBAR
- PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.30	4.70	
A1	2.50	2.90	
A2	2.50	2.90	
b	0.54	0.84	
b2	1.10	1.40	
С	0.49	0.79	
D	14.22	15.88	
E	9.65	10.67	
е	2.54 BSC		
e1	5.08 BSC		
H1	6.40	6.90	
L	12.70	14.73	
L1		2.80	
P	3.00	3.40	
Q	2.80	3.20	

GENERIC MARKING DIAGRAM*

= Assembly Location

WL = Wafer Lot

= Year

WW = Work Week

= Pb-Free Package G

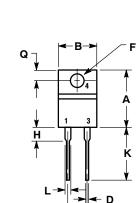
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

		Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED		
	DESCRIPTION:	TO-220 FULLPACK, 2-LEA	AD	PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS



TO-220, 2-LEAD CASE 221B-04 ISSUE F

DATE 12 APR 2013

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

_				
	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.595	0.620	15.11	15.75
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.82
D	0.025	0.039	0.64	1.00
F	0.142	0.161	3.61	4.09
G	0.190	0.210	4.83	5.33
Н	0.110	0.130	2.79	3.30
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.14	1.52
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.14	1.39
T	0.235	0.255	5.97	6.48
U	0.000	0.050	0.000	1.27

STYLE 1: PIN 1. CATHODE 2. N/A 3. ANODE

PIN 1. ANODE 2. N/A 3. CATHODE 4. ANODE

DOCUMENT NUMBER:	98ASB42149B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220, 2-LEAD		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative