

DRV8932 Quad Half-Bridge Driver With Integrated Current Sense

1 Features

- Quad Half-bridge driver
 - Can drive up to four Solenoid Loads, Two DC Motors, One Stepper Motor, or Other Loads
- Integrated current sensing and regulation
- 4.5-V to 33-V Operating supply voltage range
- Low $R_{DS(ON)}$: 900 mΩ HS + LS at 24 V, 25°C
- 1.5-A maximum drive current at 24 V, 25°C
- Pin to pin compatible with -
 - **DRV8955**: 48-V, 330 mΩ HS + LS
 - **DRV8935**: 33-V, 330 mΩ HS + LS
- Configurable Off-Time PWM Chopping
 - 7, 16, 24 or 32 µs
- Supports 1.8-V, 3.3-V, 5.0-V logic inputs
- Low-current sleep mode (2 µA)
- Spread spectrum clocking for low electromagnetic interference (EMI)
- Small package and footprint
- Protection features
 - VM undervoltage lockout (UVLO)
 - Charge pump undervoltage (CPUV)
 - Overcurrent protection (OCP)
 - Thermal shutdown (OTSD)
 - Fault condition output (nFAULT)

2 Applications

- Refrigerator Damper and Ice Maker
- Textile Machines
- Office and Home Automation
- Factory Automation and Robotics
- Gaming Machines
- Washers, Dryers and Dishwashers
- General Purpose Solenoid Loads

3 Description

The DRV8932 provides four half-bridge drivers for industrial applications. The device can be used for driving up to four solenoid loads, two DC motors, one Stepper motor, or other loads.

The output stage for each channel consists of N-channel power MOSFETs configured in a half bridge. A simple PWM interface allows easy interface with the controller. The DRV8932 operates off a single power supply and supports a wide input supply range from 4.5 V to 33 V. The DRV8932 can supply up to 1.5-A peak or 1.05-A RMS output current per channel (dependent on PCB design).

A low-power sleep mode is provided to achieve a low quiescent current draw by shutting down much of the internal circuitry. Internal protection functions are provided for undervoltage-lockout, overcurrent protection on each FET, short circuit protection, and overtemperature. Fault conditions are indicated by the nFAULT pin.

Device Information ⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DRV8932PPWPR	HTSSOP (28)	9.7mm x 4.4mm
DRV8932PRGER	VQFN (24)	4.0mm x 4.0mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

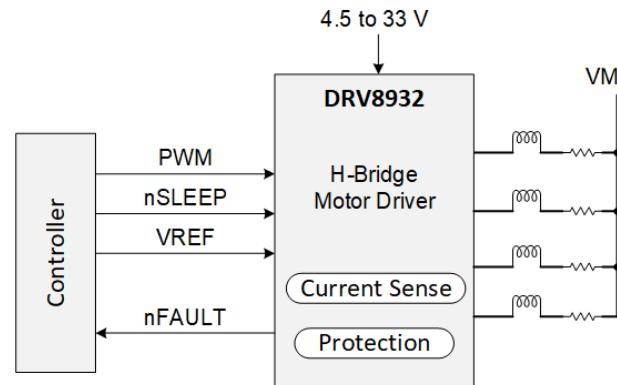


Figure 3-1. DRV8932 Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	7.4 Device Functional Modes.....	19
2 Applications	1	8 Application and Implementation	21
3 Description	1	8.1 Application Information.....	21
4 Revision History	2	8.2 Typical Application.....	21
5 Pin Configuration and Functions	3	9 Power Supply Recommendations	24
Pin Functions.....	4	9.1 Bulk Capacitance.....	24
6 Specifications	6	10 Layout	25
6.1 Absolute Maximum Ratings.....	6	10.1 Layout Guidelines.....	25
6.2 ESD Ratings.....	6	11 Device and Documentation Support	27
6.3 Recommended Operating Conditions.....	7	11.1 Documentation Support.....	27
6.4 Thermal Information.....	7	11.2 Related Links.....	27
6.5 Electrical Characteristics.....	8	11.3 Receiving Notification of Documentation Updates.....	27
7 Detailed Description	10	11.4 Community Resources.....	27
7.1 Overview.....	10	11.5 Trademarks.....	27
7.2 Functional Block Diagrams.....	11	12 Mechanical, Packaging, and Orderable Information	28
7.3 Feature Description.....	12		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (May 2020) to Revision A (November 2020)	Page
• Changed Device Status to "Production Data".....	1

5 Pin Configuration and Functions

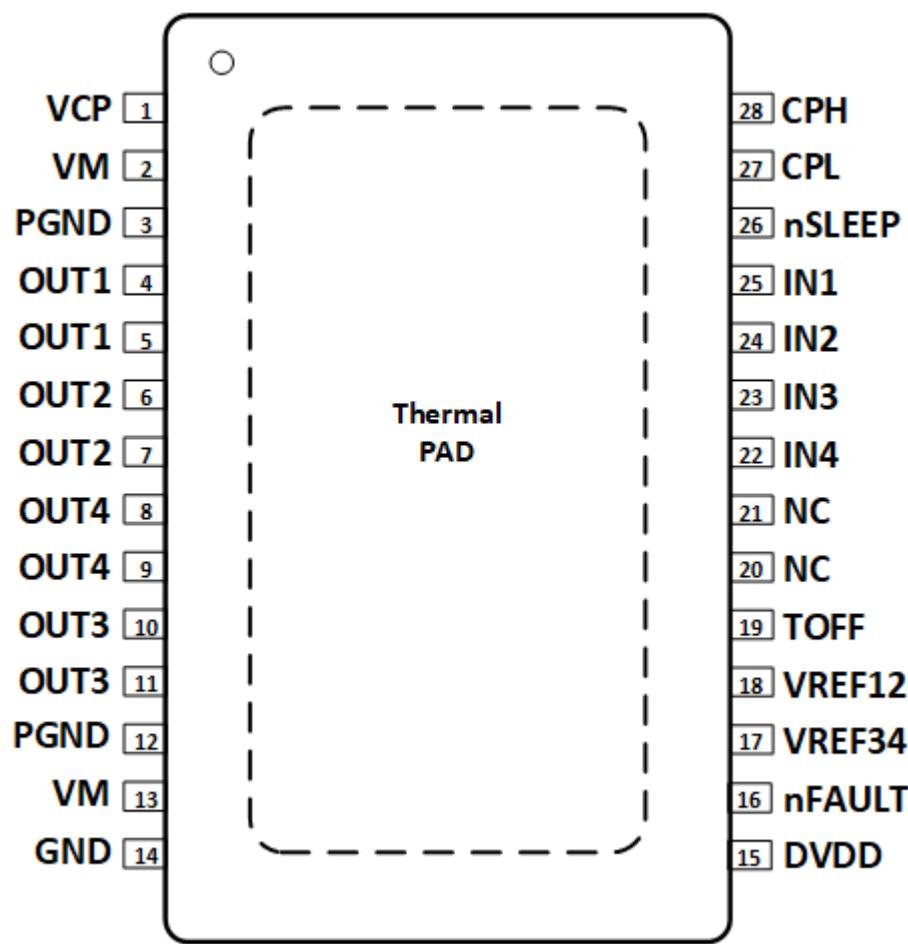


Figure 5-1. PWP PowerPAD™ Package 28-Pin HTSSOP Top View DRV8932

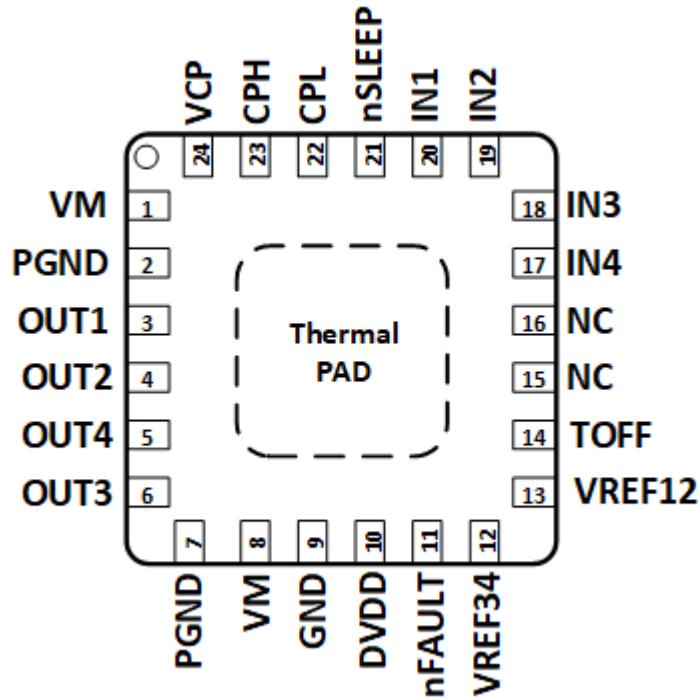


Figure 5-2. RGE Package 24-Pin VQFN with Exposed Thermal PAD Top View DRV8932

Pin Functions

PIN			TYPE	DESCRIPTION
NAME	PWP	RGE		
IN1	25	20	I	PWM input. Logic controls the state of Half-bridge 1; internal pulldown.
IN2	24	19	I	PWM input. Logic controls the state of Half-bridge 2; internal pulldown.
IN3	23	18	I	PWM input. Logic controls the state of Half-bridge 3; internal pulldown.
IN4	22	17	I	PWM input. Logic controls the state of Half-bridge 4; internal pulldown.
OUT1	4, 5	3	O	Output of Half-bridge 1.
OUT2	6, 7	4	O	Output of Half-bridge 2.
OUT3	10, 11	6	O	Output of Half-bridge 3.
OUT4	8, 9	5	O	Output of Half-bridge 4.
VREF12	18	13	I	Reference voltage input pin. Controls the current level for Half-bridges 1 and 2.
VREF34	17	12	I	Reference voltage input pin. Controls the current level for Half-bridges 3 and 4.
NC	20, 21	15, 16	-	No Connect.
CPH	28	23	PWR	Charge pump switching node. Connect a X7R, 0.022- μ F, VM-rated ceramic capacitor from CPH to CPL.
CPL	27	22		
GND	14	9	PWR	Device ground. Connect to system ground.
TOFF	19	14	I	Sets the off-time during current chopping; quad-level pin.
DVDD	15	10	PWR	Logic supply voltage. Connect a X7R, 0.47- μ F to 1- μ F, 6.3-V or 10-V rated ceramic capacitor to GND.
VCP	1	24	O	Charge pump output. Connect a X7R, 0.22- μ F, 16-V ceramic capacitor to VM.
VM	2, 13	1, 8	PWR	Power supply. Connect to supply voltage and bypass to PGND with two 0.01- μ F ceramic capacitors (one for each pin) plus a bulk capacitor rated for VM.

PIN			TYPE	DESCRIPTION
NAME	PWP	RGE		
PGND	3, 12	2, 7	PWR	Power ground. Connect to system ground.
nFAULT	16	11	O	Fault indication. Pulled logic low with fault condition; open-drain output requires an external pullup resistor.
nSLEEP	26	21	I	Sleep mode input. Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown resistor.
PAD	-	-	-	Thermal pad. Connect to system ground.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range referenced with respect to GND (unless otherwise noted)

	MIN	MAX	UNIT
Power supply voltage (VM)	-0.3	35	V
Charge pump voltage (VCP, CPH)	-0.3	$V_{VM} + 7$	V
Charge pump negative switching pin (CPL)	-0.3	V_{VM}	V
nSLEEP pin voltage (nSLEEP)	-0.3	V_{VM}	V
Internal regulator voltage (DVDD)	-0.3	5.75	V
Control pin voltage (IN1, IN2, IN3, IN4, nFAULT, TOFF)	-0.3	5.75	V
Open drain output current (nFAULT)	0	10	mA
Reference input pin voltage (VREF12, VREF34)	-0.3	5.75	V
Continuous phase node pin voltage (OUT1, OUT2, OUT3, OUT4)	-1	$V_{VM} + 1$	V
Transient 100 ns phase node pin voltage (OUT1, OUT2, OUT3, OUT4)	-3	$V_{VM} + 3$	V
Peak drive current (OUT1, OUT2, OUT3, OUT4)	Internally Limited		A
Operating ambient temperature, T_A	-40	125	°C
Operating junction temperature, T_J	-40	150	°C
Storage temperature, T_{stg}	-65	150	°C

Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001	±2000	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101	Corner pins for PWP (1, 14, 15, and 28) ±750	
		Other pins	±500	

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{VM}	Supply voltage range for normal (DC) operation	4.5	33	V
V_I	Logic level input voltage	0	5.5	V
V_{REF}	Reference rms voltage range (VREF)	0.05	3.3	V
f_{PWM}	Applied PWM signal (IN1, IN2, IN3, IN4)	0	100	kHz
I_{FS}	Peak output current	0	1.5	A
T_A	Operating ambient temperature	-40	125	°C
T_J	Operating junction temperature	-40	150	°C

6.4 Thermal Information

THERMAL METRIC		PWP (HTSSOP)	RGE (VQFN)	UNIT
		28 PINS	24 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	33.0	43.0	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	28.0	35.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	12.9	19.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.7	1.0	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	12.8	19.8	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	4.9	6.7	°C/W

6.5 Electrical Characteristics

Typical values are at $T_A = 25^\circ\text{C}$ and $V_{VM} = 24\text{ V}$. All limits are over recommended operating conditions, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
POWER SUPPLIES (VM, DVDD)						
I_{VM}	VM operating supply current nSLEEP = 1, No load		5	6.5	mA	
I_{VMQ}	VM sleep mode supply current nSLEEP = 0		2	4	μA	
t_{SLEEP}	Sleep time nSLEEP = 0 to sleep-mode	120			μs	
t_{RESET}	nSLEEP reset pulse nSLEEP low to clear fault	20	40		μs	
t_{WAKE}	Wake-up time nSLEEP = 1 to output transition		0.8	1.2	ms	
t_{ON}	Turn-on time VM > UVLO to output transition		0.8	1.2	ms	
V_{DVDD}	Internal regulator voltage	No external load, $6\text{ V} < V_{VM} < 33\text{ V}$	4.5	5	5.5	V
		$V_{VM} = 4.5\text{ V}$	4.2	4.35		V
CHARGE PUMP (VCP, CPH, CPL)						
V_{VCP}	VCP operating voltage $6\text{ V} < V_{VM} < 33\text{ V}$		$V_{VM} + 5$		V	
$f_{(VCP)}$	Charge pump switching frequency $V_{VM} > \text{UVLO}$; nSLEEP = 1		360		kHz	
LOGIC-LEVEL INPUTS (IN1, IN2, IN3, IN4, nSLEEP)						
V_{IL}	Input logic-low voltage	0	0.6		V	
V_{IH}	Input logic-high voltage	1.5	5.5		V	
V_{HYS}	Input logic hysteresis		150		mV	
I_{IL}	Input logic-low current $V_{IN} = 0\text{ V}$	-1	1		μA	
I_{IH}	Input logic-high current $V_{IN} = 5\text{ V}$		100		μA	
QUAD-LEVEL INPUTS (TOFF)						
V_{I1}	Input logic-low voltage Tied to GND	0	0.6		V	
V_{I2}		330k Ω $\pm 5\%$ to GND	1	1.25	1.4	V
V_{I3}	Input Hi-Z voltage	Hi-Z ($>500\text{k}\Omega$ to GND)	1.8	2	2.2	V
V_{I4}	Input logic-high voltage Tied to DVDD		2.7	5.5		V
I_O	Output pull-up current		10		μA	
CONTROL OUTPUTS (nFAULT)						
V_{OL}	Output logic-low voltage $I_O = 5\text{ mA}$		0.5		V	
I_{OH}	Output logic-high leakage	-1	1		μA	
MOTOR DRIVER OUTPUTS (OUT1, OUT2, OUT3, OUT4)						
$R_{DS(ONH)}$	High-side FET on resistance	$T_J = 25^\circ\text{C}$, $I_O = -1\text{ A}$	450	550	$\text{m}\Omega$	
		$T_J = 125^\circ\text{C}$, $I_O = -1\text{ A}$	700	850	$\text{m}\Omega$	
		$T_J = 150^\circ\text{C}$, $I_O = -1\text{ A}$	780	950	$\text{m}\Omega$	
$R_{DS(ONL)}$	Low-side FET on resistance	$T_J = 25^\circ\text{C}$, $I_O = 1\text{ A}$	450	550	$\text{m}\Omega$	
		$T_J = 125^\circ\text{C}$, $I_O = 1\text{ A}$	700	850	$\text{m}\Omega$	
		$T_J = 150^\circ\text{C}$, $I_O = 1\text{ A}$	780	950	$\text{m}\Omega$	
CURRENT REGULATION (VREF)						
K_V	Transimpedance gain $V_{REF} = 3.3\text{ V}$	2.09	2.2	2.31	V/A	
I_{VREF}	VREF Leakage Current $V_{REF} = 3.3\text{ V}$			8.25	μA	
t_{OFF}	PWM off-time	TOFF = 0	7		μs	
		TOFF = 1	16			
		TOFF = Hi-Z	24			
		TOFF = 330 k Ω to GND	32			

Typical values are at $T_A = 25^\circ\text{C}$ and $V_{VM} = 24\text{ V}$. All limits are over recommended operating conditions, unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ΔI_{TRIP}	Current trip accuracy	$I_O = 1.5\text{ A}, 10\%$ to 20% current setting	-15		15	%
		$I_O = 1.5\text{ A}, 20\%$ to 67% current setting	-10		10	
		$I_O = 1.5\text{ A}, 68\%$ to 100% current setting	-5		5	
PROTECTION CIRCUITS						
V_{UVLO}	VM UVLO lockout	VM falling, UVLO falling	4.1	4.25	4.35	V
		VM rising, UVLO rising	4.2	4.35	4.45	
$V_{UVLO,HYS}$	Undervoltage hysteresis	Rising to falling threshold		100		mV
V_{CPUV}	Charge pump undervoltage	VCP falling		$V_{VM} + 2$		V
I_{OCP}	Overcurrent protection	Current through any FET	2.5			A
t_{OCP}	Overcurrent deglitch time			1.8		μs
T_{OTSD}	Thermal shutdown	Die temperature T_J	150	165	180	$^\circ\text{C}$
T_{HYS_OTSD}	Thermal shutdown hysteresis	Die temperature T_J		20		$^\circ\text{C}$

7 Detailed Description

7.1 Overview

The DRV8932 integrates four 1.5-A half-H bridges for industrial applications. The device supports a wide 4.5-V to 33-V supply voltage and can drive up to four solenoid loads.

A simple PWM interface option allows easy interfacing to the outputs. The trip point for current regulation is controlled by the value of the VREF pin voltage. The PWM off-time, t_{OFF} , can be adjusted to 7, 16, 24, or 32 μ s. A low-power sleep mode is included which lets the system save power when not driving the load.

A variety of integrated protection features protect the device in the case of a system fault. These include undervoltage lockout (UVLO), charge pump undervoltage (CPUV), overcurrent protection (OCP), and overtemperature shutdown (TSD). Fault conditions are indicated on the nFAULT pin.

7.2 Functional Block Diagrams

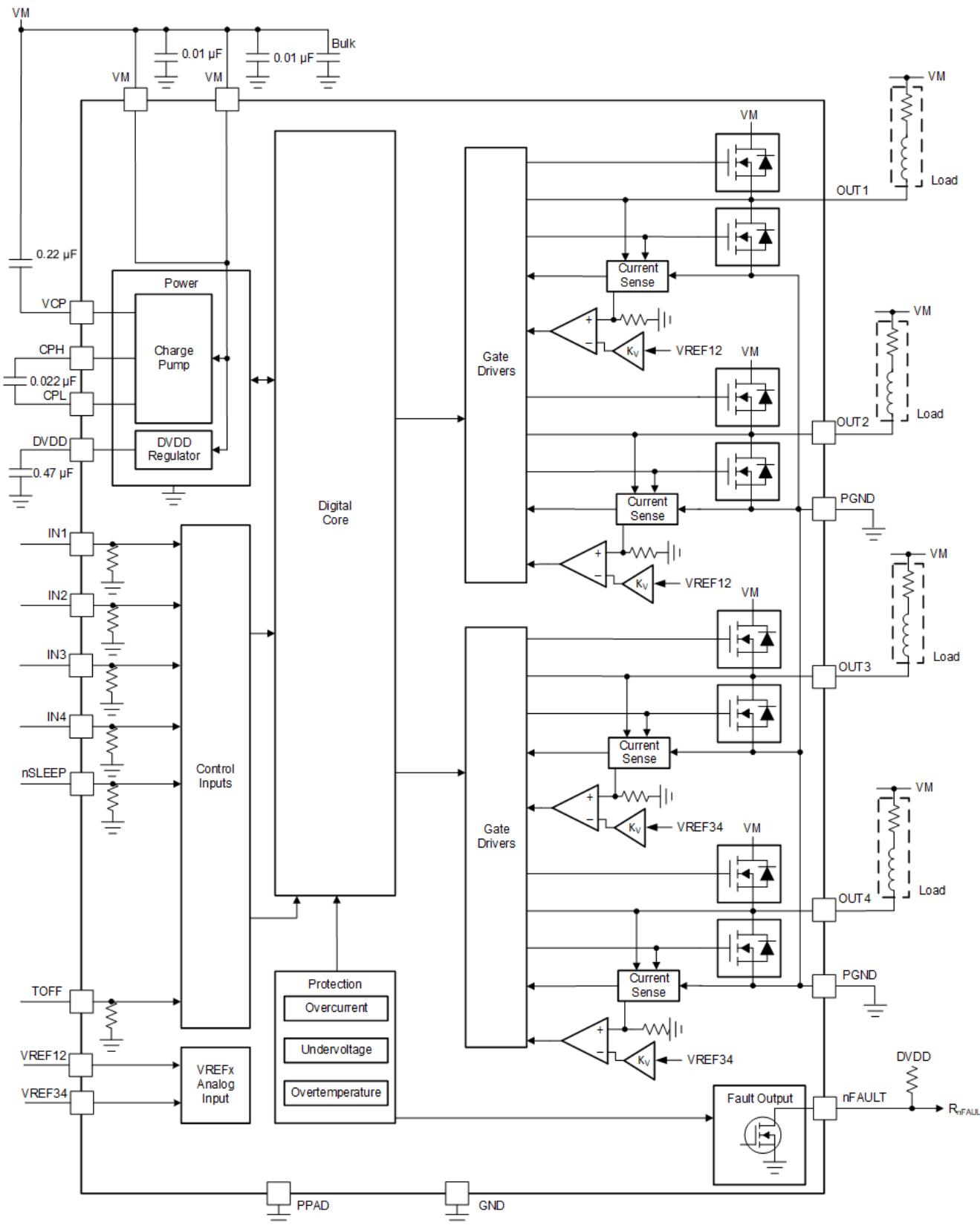
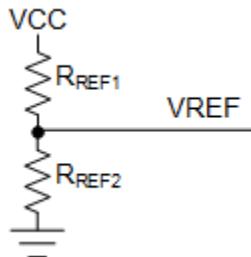



Figure 7-1. DRV8932 Block Diagram

7.3 Feature Description

The following table shows the recommended values of the external components for the driver.

Figure 7-2. Resistor divider connected to the VREF pins

VCC is not a pin on the device, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled up to DVDD.

Table 7-1. External Components

COMPONENT	PIN 1	PIN 2	RECOMMENDED
C_{VM1}	VM	PGND	Two X7R, 0.01- μ F, VM-rated ceramic capacitors
C_{VM2}	VM	PGND	Bulk, VM-rated capacitor
C_{VCP}	VCP	VM	X7R, 0.22- μ F, 16-V ceramic capacitor
C_{SW}	CPH	CPL	X7R, 0.022- μ F, VM-rated ceramic capacitor
C_{DVDD}	DVDD	GND	X7R, 0.47- μ F to 1- μ F, 6.3-V or 10-V rated ceramic capacitor
R_{nFAULT}	VCC	nFAULT	>4.7-k Ω resistor
R_{REF1}	VREF12	VCC	Resistor to limit chopping current. It is recommended that the value of parallel combination of R_{REF1} and R_{REF2} should be less than 50-k Ω .
R_{REF2} (Optional)	VREF12	GND	
R_{REF3}	VREF34	VCC	Resistor to limit chopping current. It is recommended that the value of parallel combination of R_{REF3} and R_{REF4} should be less than 50-k Ω .
R_{REF4} (Optional)	VREF34	GND	

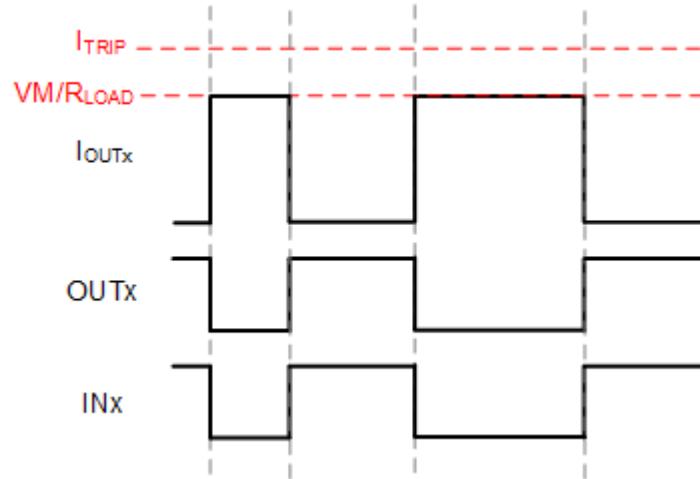
VCC is not a pin on the DRV8932, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled up to DVDD.

7.3.1 Bridge Control

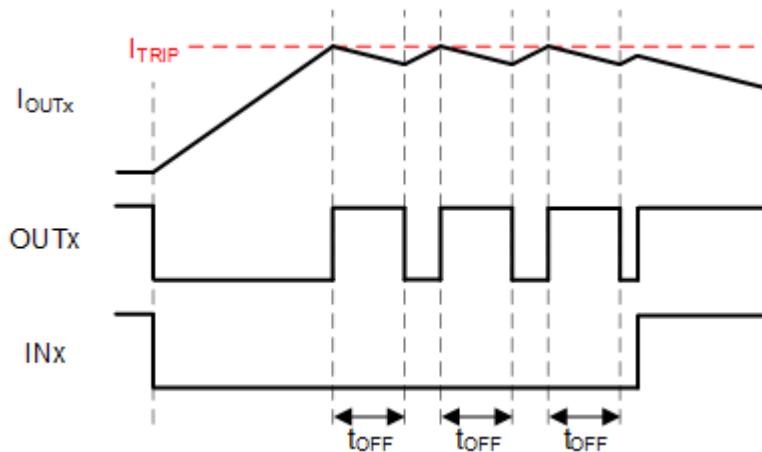
The INx input pins directly control the state (high or low) of the OUTx outputs. The truth table is shown below.

Table 7-2. DRV8932 Control Interface

nSLEEP	INx	OUTx	DESCRIPTION
0	X	Hi-Z	Sleep mode; Half-bridge disabled (Hi-Z)
1	0	L	OUTx Low-side ON
1	1	H	OUTx High-side ON


7.3.2 Current Regulation

When an output load is connected to the VM supply, the load current can be regulated to the ITRIP level. The ITRIP current level for OUT1 and OUT2 outputs is controlled by the VREF12 pin, and the ITRIP level for OUT3 and OUT4 outputs is controlled by the VREF34 pin. The ITRIP current (I_{TRIP}) can be calculated as I_{TRIP} (A) = V_{REF} (V) / 2.2 (V/A). The V_{REF} voltage can be programmed by connecting resistor dividers from DVDD pin to ground. Both V_{REF} pins can be tied together to program the same ITRIP current for all four output channels.


The DRV8932 can simultaneously drive four resistive or inductive loads connected to VM supply. With INx = 0, the low side FET is turned ON till the current increases and hits the ITRIP level. Once the load current equals ITRIP, the low-side FET is turned OFF and the high-side FET is turned on for a period of off-time determined by the TOFF pin. After the off-time expires, the low-side FET is again turned ON and the cycle repeats. The OFF

time settings can be changed on the fly. After a OFF time setting change, the new OFF time is applied after a 10 μ s de-glitch time.

For resistive loads connected to VM, if the ITRIP is higher than the (VM / R_{LOAD}), the load current is regulated at VM / R_{LOAD} level while $INx = 0$. For inductive loads connected to VM, it should be ensured that the current decays enough every cycle to prevent runaway and triggering overcurrent protection. The different scenarios are shown below -

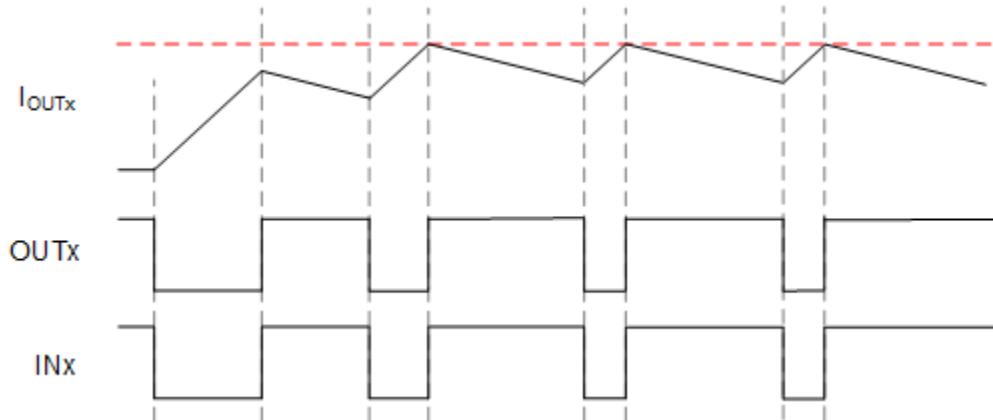
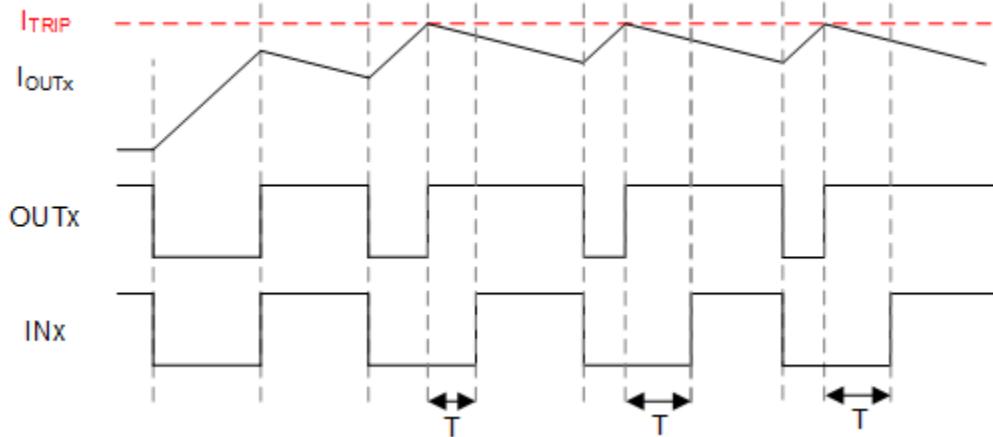
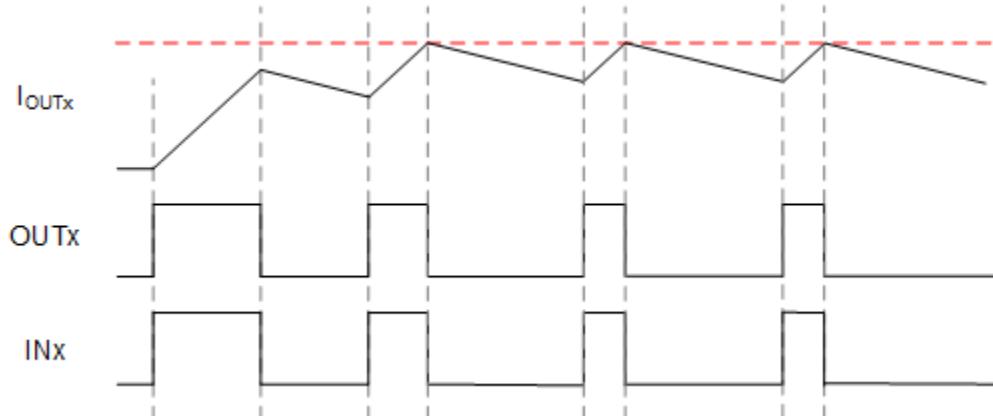

Figure 7-3. Resistive Load Connected to VM, Cycle-by-cycle control, I_{TRIP} is higher than VM/R_{LOAD} .

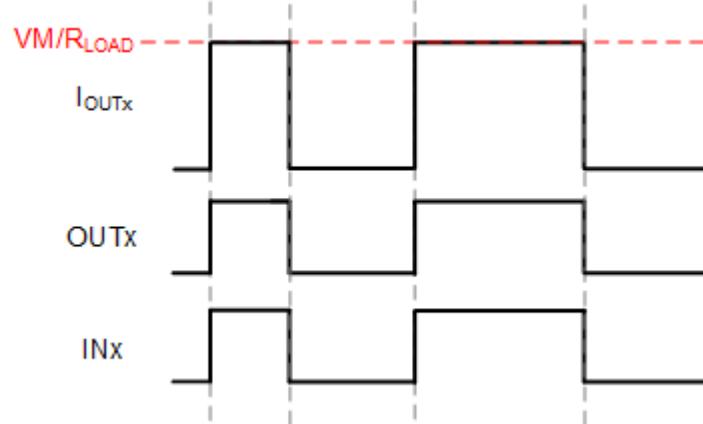
Figure 7-4. Inductive Load Connected to VM, fixed off-time current chopping


In this scenario, with $INx = 0$, the high-side MOSFET is turned on for t_{OFF} duration after I_{OUT} exceeds ITRIP. After t_{OFF} , the low side MOSFET is again turned on till I_{OUT} exceeds ITRIP again. The fixed off-time mode allows for a simple current chopping scheme without involvement from the external controller. Fixed off-time mode will support 100% duty cycle current regulation.

Another way of controlling the load current is the cycle-by-cycle control mode, where PWM pulse width of the INx input pins are controlled. This allows for additional control of the current chopping scheme by the external controller. For loads connected to VM, when $INx = 0$, the current through the load builds up; and when $INx = 1$, the current through the load decays. By properly choosing the duty cycle of the INx pulse, current can be regulated to a target value. Various such scenarios are shown below -


Figure 7-5. Inductive Load Connected to VM, Cycle-by-cycle control

This scenario requires INx pin duty cycle adjustment to ensure that the current does not run away.


Figure 7-6. Inductive Load Connected to VM, Cycle-by-cycle control, T has to be less than T_{OFF} of the DRV8932.

Similarly, current through loads connected to ground can be controlled by controlling the INx pin pulse width - INx = 1 builds up the current, and INx = 0 decays the current. Two such scenarios are shown below -

Figure 7-7. Inductive Load Connected to ground, Cycle-by-cycle control

This scenario requires INx pin duty cycle adjustment to ensure that the current does not run away.

Figure 7-8. Resistive Load Connected to ground, Cycle-by-cycle control

**Table 7-3. Off-Time
Settings**

TOFF	OFF-TIME t_{OFF}
0	7 μ s
1	16 μ s
Hi-Z	24 μ s
330k Ω to GND	32 μ s

7.3.3 Decay Modes

7.3.3.1 Blanking time

After the current is enabled in the low-side FET, the current sense comparator is ignored for a period of time (t_{BLANK}) before enabling the current-sense circuitry. The blanking time also sets the minimum drive time of the PWM. The blanking time is approximately 1 μ s.

7.3.4 Charge Pump

A charge pump is integrated to supply a high-side N-channel MOSFET gate-drive voltage. The charge pump requires a capacitor between the VM and VCP pins to act as the storage capacitor. Additionally a ceramic capacitor is required between the CPH and CPL pins to act as the flying capacitor.

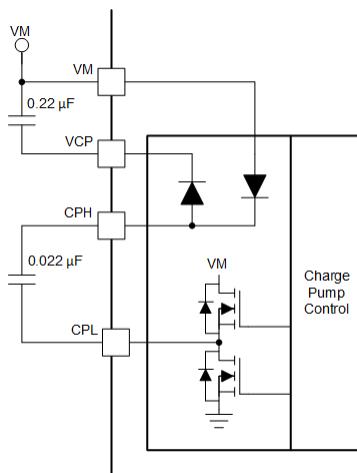
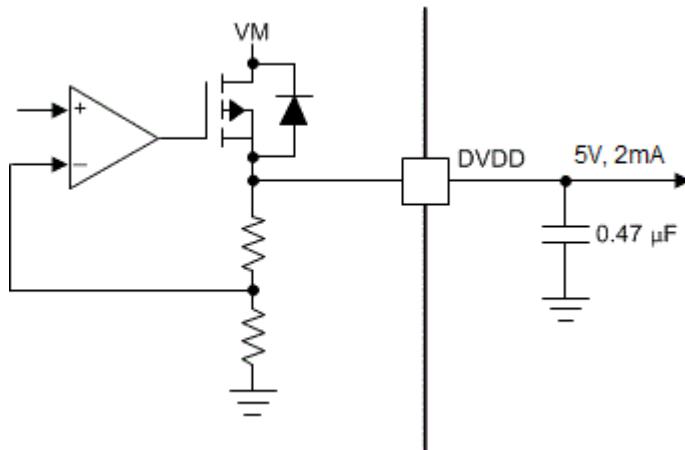



Figure 7-9. Charge Pump Block Diagram

7.3.5 Linear Voltage Regulators

A linear voltage regulator is integrated in the device. The DVDD regulator can be used to provide a reference voltage. DVDD can supply a maximum of 2 mA load. For proper operation, bypass the DVDD pin to GND using a ceramic capacitor.

The DVDD output is nominally 5-V. When the DVDD LDO current load exceeds 2 mA, the output voltage drops significantly.

Figure 7-10. Linear Voltage Regulator Block Diagram

If TOFF must be tied permanently high, tying it to the DVDD pin instead of an external regulator is preferred. This method saves power when the VM pin is not applied or in sleep mode: the DVDD regulator is disabled and current does not flow through the input pulldown resistors. For reference, logic level inputs have a typical pulldown of 200 kΩ.

The nSLEEP pin cannot be tied to DVDD, else the device will never exit sleep mode.

7.3.6 Logic and Quad-Level Pin Diagrams

Figure 7-11 gives the input structure for logic-level pins IN1, IN2, IN3, IN4 and nSLEEP:

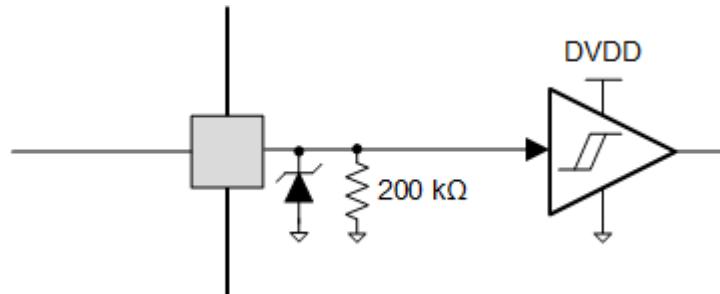


Figure 7-11. Logic-level Input Pin Diagram

Quad-level logic pin TOFF has the following structure as shown in Figure 7-12.

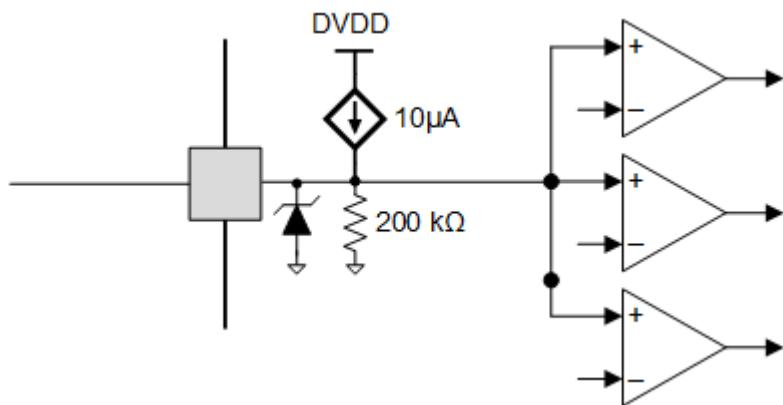


Figure 7-12. Quad-Level Input Pin Diagram

7.3.6.1 nFAULT Pin

The nFAULT pin has an open-drain output and should be pulled up to a 5-V, 3.3-V or 1.8-V supply. When a fault is detected, the nFAULT pin will be logic low. nFAULT pin will be high after power-up. For a 5-V pullup, the nFAULT pin can be tied to the DVDD pin with a resistor. For a 3.3-V or 1.8-V pullup, an external supply must be used.

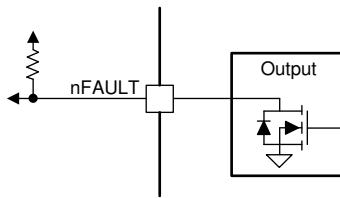


Figure 7-13. nFAULT Pin

7.3.7 Protection Circuits

The devices are fully protected against supply undervoltage, charge pump undervoltage, output overcurrent, and device overtemperature events.

7.3.7.1 VM Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pin falls below the UVLO-threshold voltage for the voltage supply, all the outputs are disabled, and the nFAULT pin is driven low. The charge pump is disabled in this condition. Normal

operation resumes (motor-driver operation and nFAULT released) when the VM undervoltage condition is removed.

7.3.7.2 VCP Undervoltage Lockout (CPUV)

If at any time the voltage on the VCP pin falls below the CPUV voltage, all the outputs are disabled, and the nFAULT pin is driven low. The charge pump remains active during this condition. Normal operation resumes (motor-driver operation and nFAULT released) when the VCP undervoltage condition is removed.

7.3.7.3 Overcurrent Protection (OCP)

An analog current-limit circuit on each FET limits the current through the FET by removing the gate drive. If this current limit persists for longer than the t_{OCP} time, the half-bridge in which OCP is detected is disabled and the nFAULT pin is driven low. The charge pump remains active during this condition. Once the OCP condition is removed, normal operation resumes after applying an nSLEEP reset pulse or a power cycling.

7.3.7.4 Thermal Shutdown (OTSD)

If the die temperature exceeds the thermal shutdown limit (T_{OTSD}) all MOSFETs in the H-bridge are disabled, and the nFAULT pin is driven low. After the junction temperature falls below the overtemperature threshold limit minus the hysteresis ($T_{OTSD} - T_{HYS_OTSD}$), normal operation resumes after applying an nSLEEP reset pulse or a power cycling.

7.3.7.5 Fault Condition Summary

Table 7-4. Fault Condition Summary

FAULT	CONDITION	ERROR REPORT	HALF-BRIDGE	CHARGE PUMP	LOGIC	RECOVERY
VM undervoltage (UVLO)	$VM < V_{UVLO}$	nFAULT	All Disabled	Disabled	Reset ($V_{DVDD} < 3.9 V$)	Automatic: $VM > V_{UVLO}$
CP undervoltage (CPUV)	$VCP < V_{CPUV}$	nFAULT	All Disabled	Operating	Operating	$VCP > V_{CPUV}$
Overcurrent (OCP)	$I_{OUT} > I_{OCP}$	nFAULT	Half-bridge with OCP is Disabled	Operating	Operating	Latched
Thermal Shutdown (OTSD)	$T_J > T_{TSD}$	nFAULT	AllDisabled	Disabled	Operating	Latched

7.4 Device Functional Modes

7.4.1 Sleep Mode (nSLEEP = 0)

The state of the device is managed by the nSLEEP pin. When the nSLEEP pin is low, the device enters a low-power sleep mode. In sleep mode, all the internal MOSFETs are disabled and the charge pump is disabled. The t_{SLEEP} time must elapse after a falling edge on the nSLEEP pin before the device enters sleep mode. The device is brought out of sleep automatically if the nSLEEP pin is brought high. The t_{WAKE} time must elapse before the device is ready for inputs.

7.4.2 Operating Mode (nSLEEP = 1)

When the nSLEEP pin is high, and $VM > UVLO$, the device enters the active mode. The t_{WAKE} time must elapse before the device is ready for inputs.

7.4.3 nSLEEP Reset Pulse

A fault can be cleared through a quick nSLEEP pulse. This pulse width must be greater than 20 μs and shorter than 40 μs . If nSLEEP is low for longer than 40 μs but less than 120 μs , the faults are cleared and the device may or may not shutdown, as shown in the timing diagram. This reset pulse does not affect the status of the charge pump or other functional blocks.

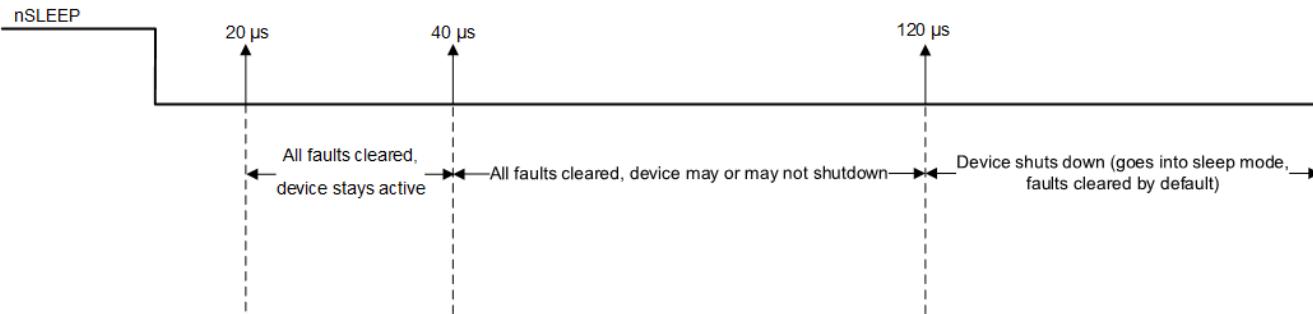


Figure 7-14. nSLEEP Reset Pulse

7.4.4 Functional Modes Summary

Table 7-5 lists a summary of the functional modes.

Table 7-5. Functional Modes Summary

CONDITION		CONFIGURATION	HALF-BRIDGE	DVDD Regulator	CHARGE PUMP	Logic
Sleep mode	4.5 V < VM < 33 V	nSLEEP pin = 0	Disabled	Disabled	Disabled	Disabled
Operating	4.5 V < VM < 33 V	nSLEEP pin = 1	Operating	Operating	Operating	Operating

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DRV8932 is a four channel half-bridge driver with protection features. The device can be used to drive one stepper motor, multiple brushed DC motors, or up to four solenoid loads.

8.2 Typical Application

The following design procedure can be used to configure the DRV8932. In this application, the device will be used to drive four solenoid loads.

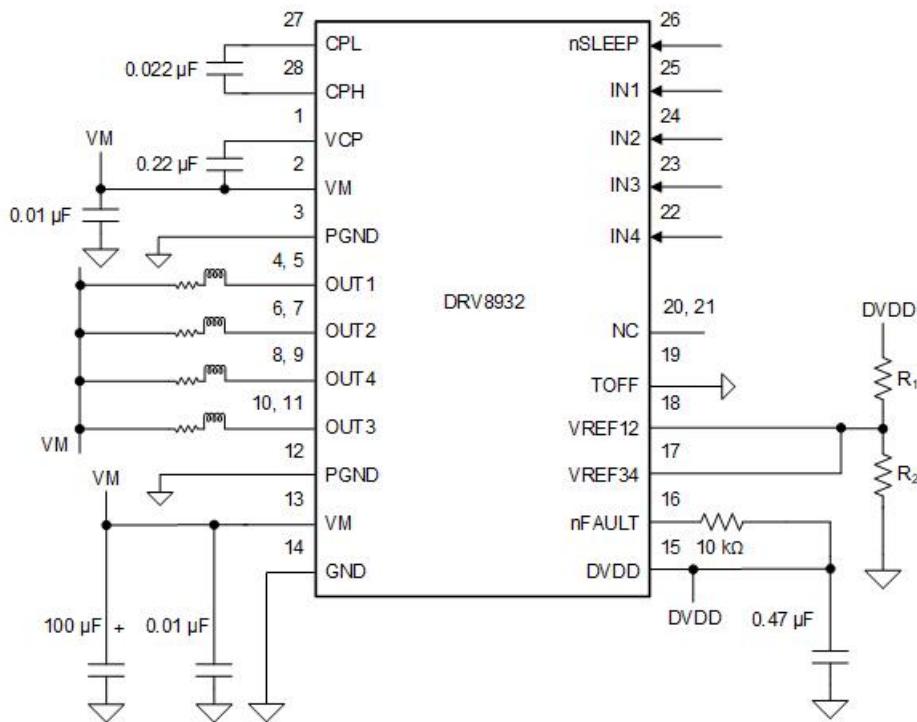


Figure 8-1. Typical Application Schematic

8.2.1 Design Requirements

Table 8-1 lists the design input parameters for a typical application.

Table 8-1. Design Parameters

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE
Supply voltage range	VM	19-29 V
Current per Channel	I _{OUT}	600 mA
PWM Frequency	f _{PWM}	40 kHz

8.2.2 Detailed Design Procedure

8.2.2.1 Current Regulation

When an output load is connected to the VM supply, the load current can be regulated to the ITRIP level. The ITRIP current level for OUT1 and OUT2 outputs is controlled by the VREF12 pin, and the ITRIP level for OUT3 and OUT4 outputs is controlled by the VREF34 pin. The ITRIP current (ITRIP) can be calculated as $ITRIP (A) = VREF (V) / 2.2 (V/A)$. The VREF voltage can be programmed by connecting resistor dividers from DVDD pin to ground. Both VREF pins can be tied together to program the same ITRIP current for all four output channels.

8.2.2.2 Power Dissipation and Thermal Calculation

The output current and power dissipation capabilities of the device are heavily dependent on the PCB design and external system conditions. This section provides some guidelines for calculating these values.

Total power dissipation for the device is composed of three main components. These are the power MOSFET $R_{DS(ON)}$ (conduction) losses, the power MOSFET switching losses and the quiescent supply current dissipation. While other factors may contribute additional power losses, these other items are typically insignificant compared to the three main items.

$$P_{TOT} = P_{COND} + P_{SW} + P_Q$$

For loads connected to VM, assuming that all the outputs are loaded with same current, total conduction loss can be expressed as -

$$P_{COND} = 4 \times (I_{OUT})^2 \times R_{DS(ONL)}$$

As the high-side and low-side MOSFETs of the DRV8935 have the same on-resistance, the conduction loss will be independent of the duty cycle of the input PWM or the amount of PWM off-time. It should be noted that $R_{DS(ON)}$ has a strong correlation with the device temperature. A curve showing the normalized $R_{DS(ON)}$ with temperature can be found in the Typical Characteristics curves.

$$P_{COND} = 4 \times (0.6-A)^2 \times 0.45-\Omega = 0.648-W$$

P_{SW} can be calculated from the nominal supply voltage (VM), regulated output current (I_{OUT}), switching frequency (f_{PWM}) and the device output rise (t_{RISE}) and fall (t_{FALL}) time specifications.

Assuming that all the four outputs are switching simultaneously -

$$P_{SW} = 4 \times (P_{SW_RISE} + P_{SW_FALL})$$

$$P_{SW_RISE} = 0.5 \times VM \times I_{OUT} \times t_{RISE} \times f_{PWM}$$

$$P_{SW_FALL} = 0.5 \times VM \times I_{OUT} \times t_{FALL} \times f_{PWM}$$

$$P_{SW_RISE} = 0.5 \times 24 V \times 0.6 A \times 100 ns \times 40 kHz = 0.0288 W$$

$$P_{SW_FALL} = 0.5 \times 24 V \times 0.6 A \times 100 ns \times 40 kHz = 0.0288 W$$

$$P_{SW} = 4 \times (0.0288W + 0.0288W) = 0.2304 W$$

P_Q can be calculated from the nominal supply voltage (VM) and the I_{VM} current specification.

$$P_Q = VM \times I_{VM} = 24 V \times 5 mA = 0.12 W$$

The total power dissipation (P_{TOT}) is calculated as the sum of conduction loss, switching loss and the quiescent power loss.

$$P_{TOT} = P_{COND} + P_{SW} + P_Q = 0.648-W + 0.2304-W + 0.12-W = 0.9984-W$$

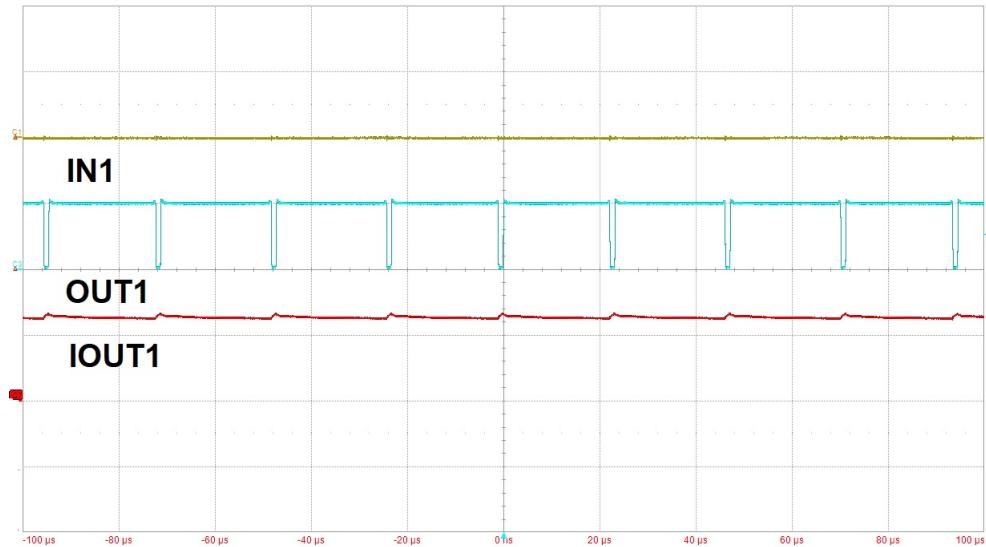
For an ambient temperature of T_A and total power dissipation (P_{TOT}), the junction temperature (T_J) is calculated as

$$T_J = T_A + (P_{TOT} \times R_{\theta JA})$$

Considering a JEDEC standard 4-layer PCB, the junction-to-ambient thermal resistance ($R_{\theta JA}$) is 33 °C/W for the HTSSOP package and 43 °C/W for the VQFN package.

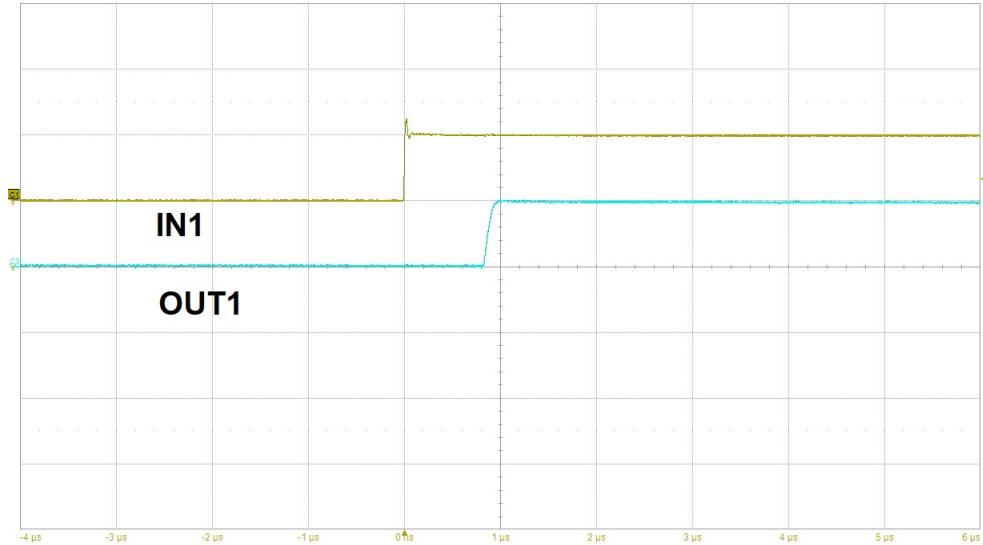
Assuming 25°C ambient temperature, the junction temperature for the HTSSOP package is calculated as -

$$T_J = 25^\circ\text{C} + (0.9984 \cdot W \times 33^\circ\text{C}/W) = 57.95^\circ\text{C}$$


The junction temperature for the VQFN package is calculated as -

$$T_J = 25^\circ\text{C} + (0.9984 \cdot W \times 43^\circ\text{C}/W) = 67.93^\circ\text{C}$$

It should be ensured that the device junction temperature is within the specified operating region.


8.2.2.3 Application Curves

CH1 = IN1 (3 V/div), CH3 = OUT1 (24 V/div), CH7 = IOUT1 (500 mA/div)

Figure 8-2. Current Regulation with VM-connected Load

CH1 = IN1 (3 V/div), CH3 = OUT1 (24 V/div)

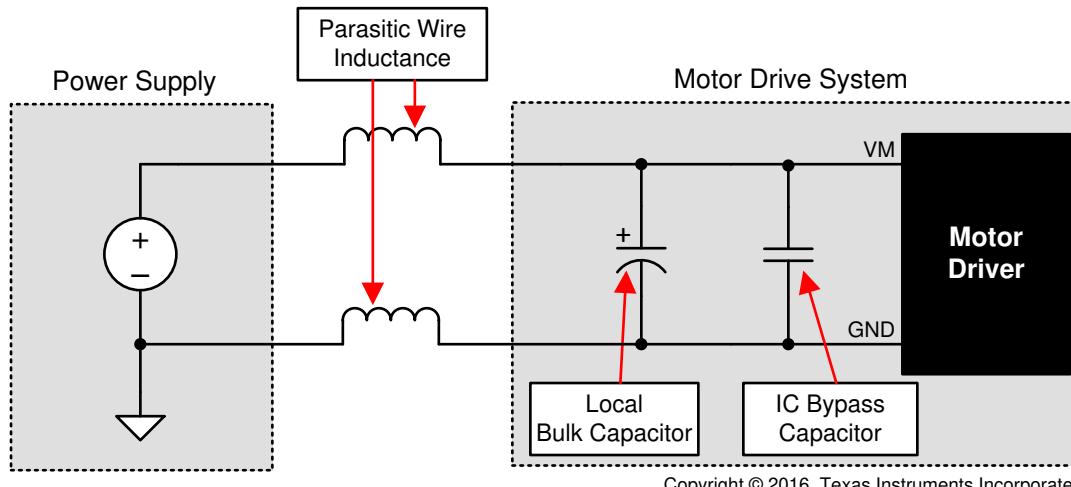
Figure 8-3. Input-to-Output Propagation Delay

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply (VM) range from 4.5 V to 33 V. A 0.01- μ F ceramic capacitor rated for VM must be placed at each VM pin as close to the device as possible. In addition, a bulk capacitor must be included on VM.

9.1 Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.


The amount of local capacitance needed depends on a variety of factors, including:

- The highest current required by the motor system
- The power supply's capacitance and ability to source current
- The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed DC, brushless DC, stepper)
- The motor braking method

The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.

Figure 9-1. Example Setup of Motor Drive System With External Power Supply

10 Layout

10.1 Layout Guidelines

The VM pin should be bypassed to PGND using a low-ESR ceramic bypass capacitor with a recommended value of $0.01\ \mu\text{F}$ rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick trace or ground plane connection to the device PGND pin.

The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component can be an electrolytic capacitor.

A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of $0.022\ \mu\text{F}$ rated for VM is recommended. Place this component as close to the pins as possible.

A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of $0.22\ \mu\text{F}$ rated for 16 V is recommended. Place this component as close to the pins as possible.

Bypass the DVDD pin to ground with a low-ESR ceramic capacitor. A value of $0.47\ \mu\text{F}$ rated for 6.3 V is recommended. Place this bypassing capacitor as close to the pin as possible.

The thermal PAD must be connected to system ground.

10.1.1 Layout Example

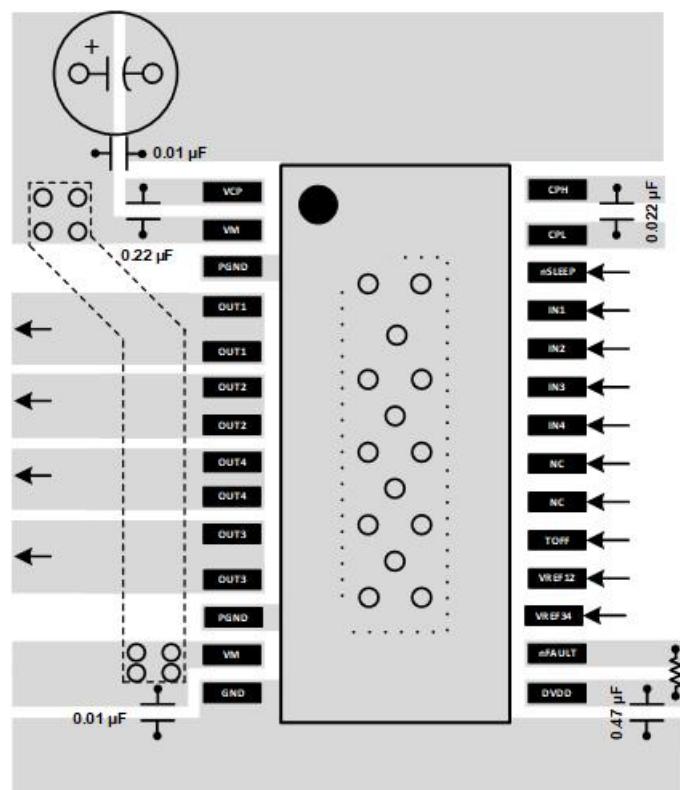


Figure 10-1. HTSSOP Layout Example

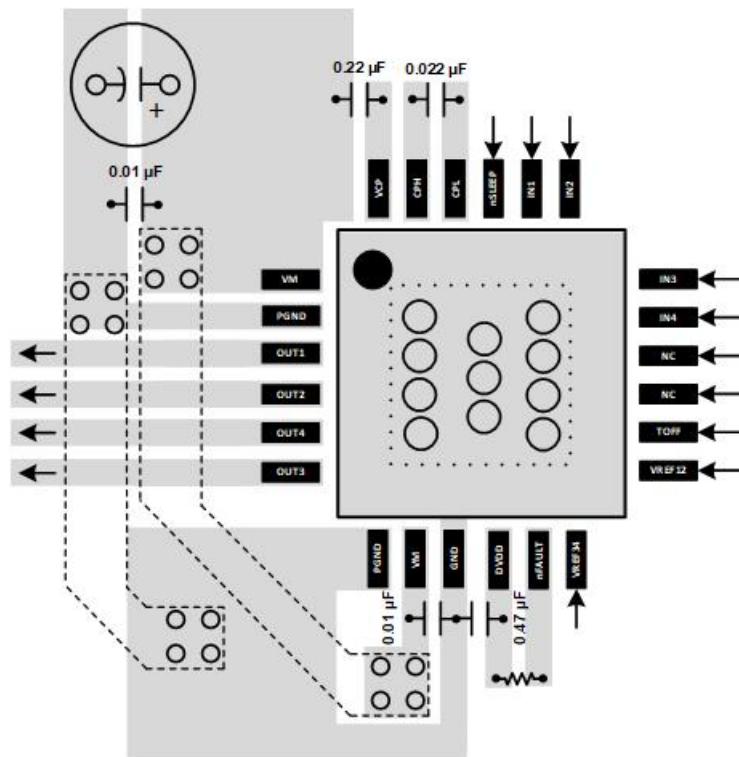


Figure 10-2. QFN Layout Example

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, *PowerPAD™ Thermally Enhanced Package* application report
- Texas Instruments, *PowerPAD™ Made Easy* application report
- Texas Instruments, *Current Recirculation and Decay Modes* application report
- Texas Instruments, *Calculating Motor Driver Power Dissipation* application report
- Texas Instruments, *Understanding Motor Driver Current Ratings* application report
- Texas Instruments, *High Resolution Microstepping Driver With the DRV88xx Series* application report

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

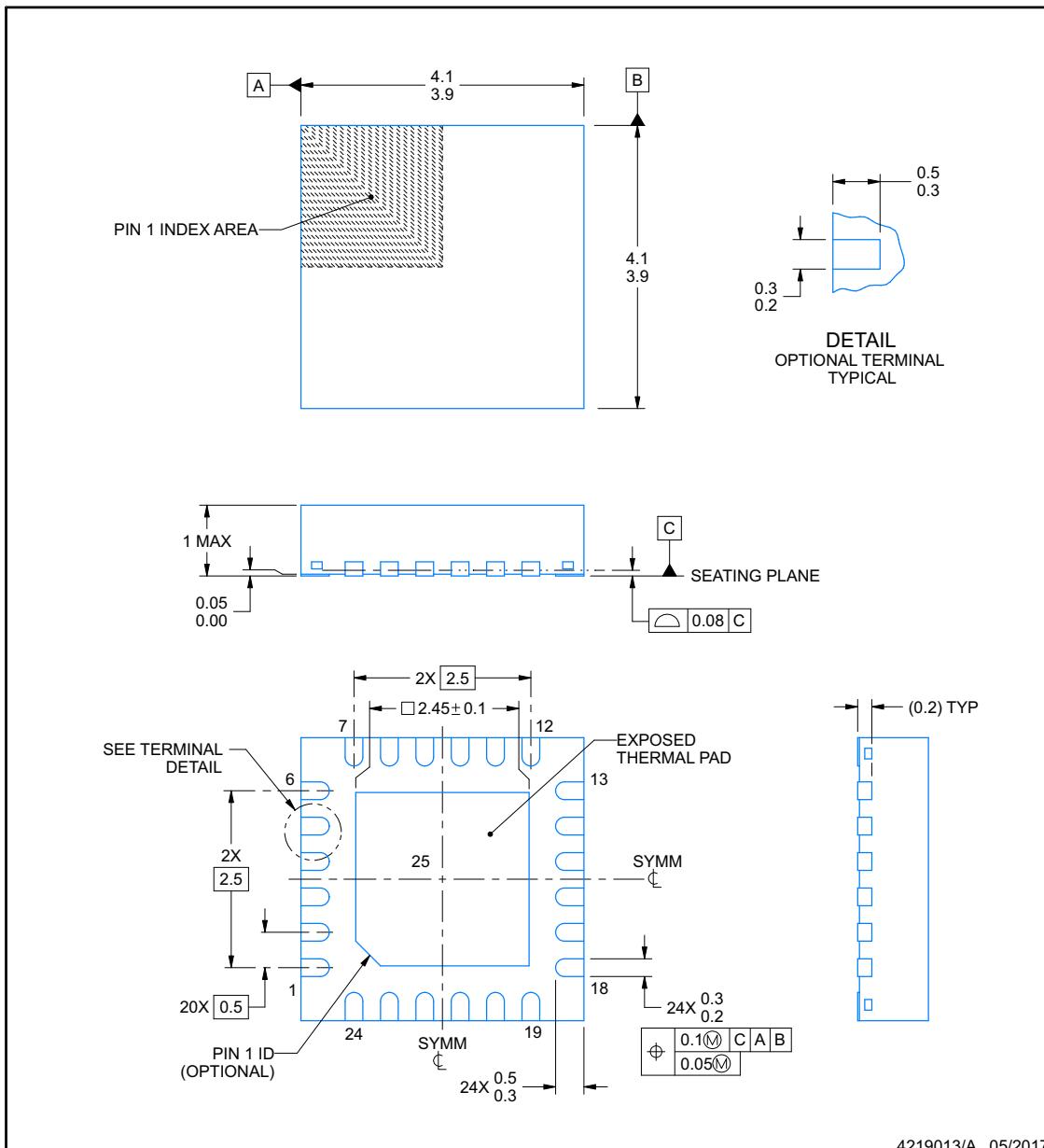
11.4 Community Resources

11.5 Trademarks

All trademarks are the property of their respective owners.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

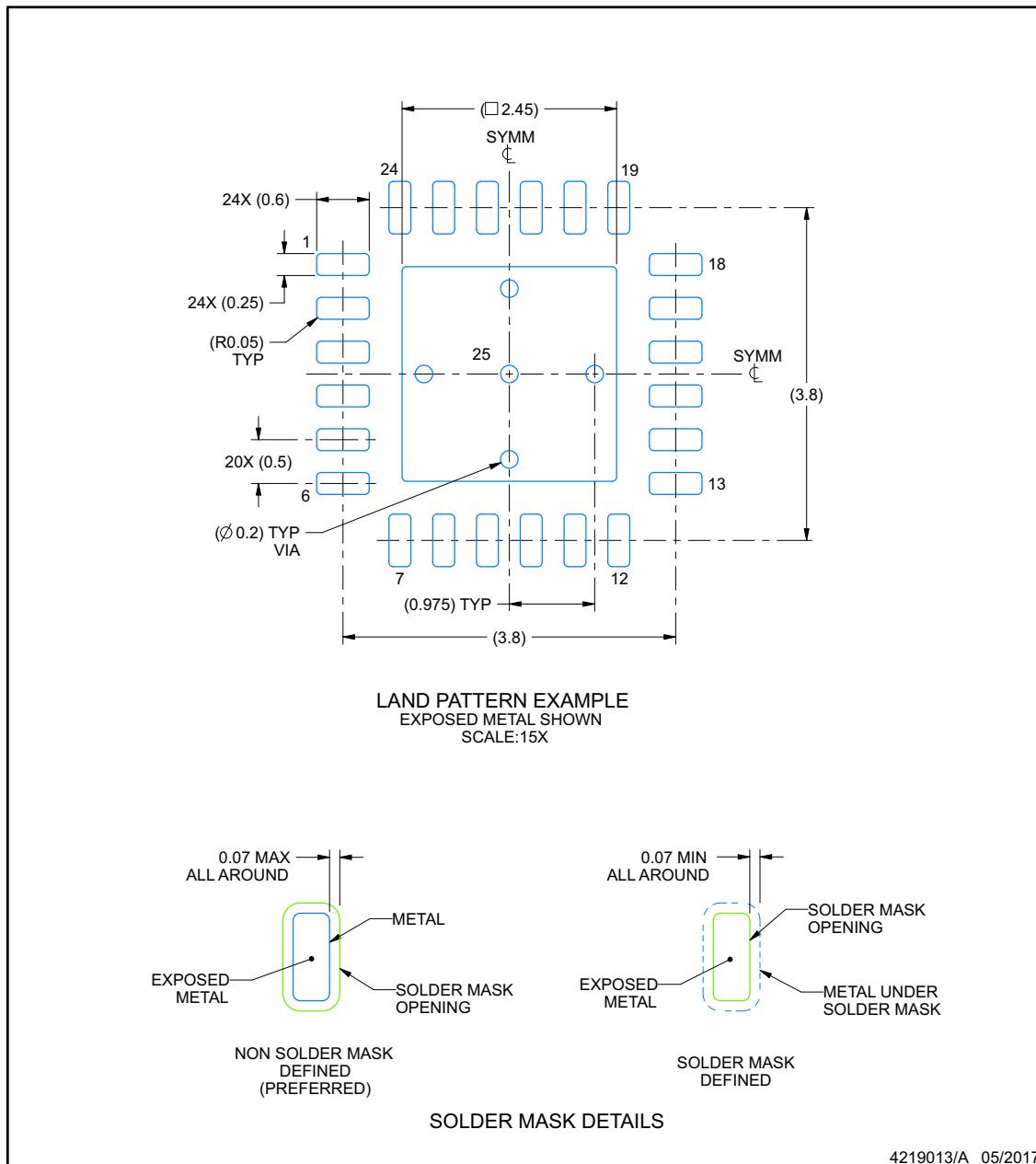

PACKAGE OUTLINE

RGE0024B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

4219013/A 05/2017


NOTES:

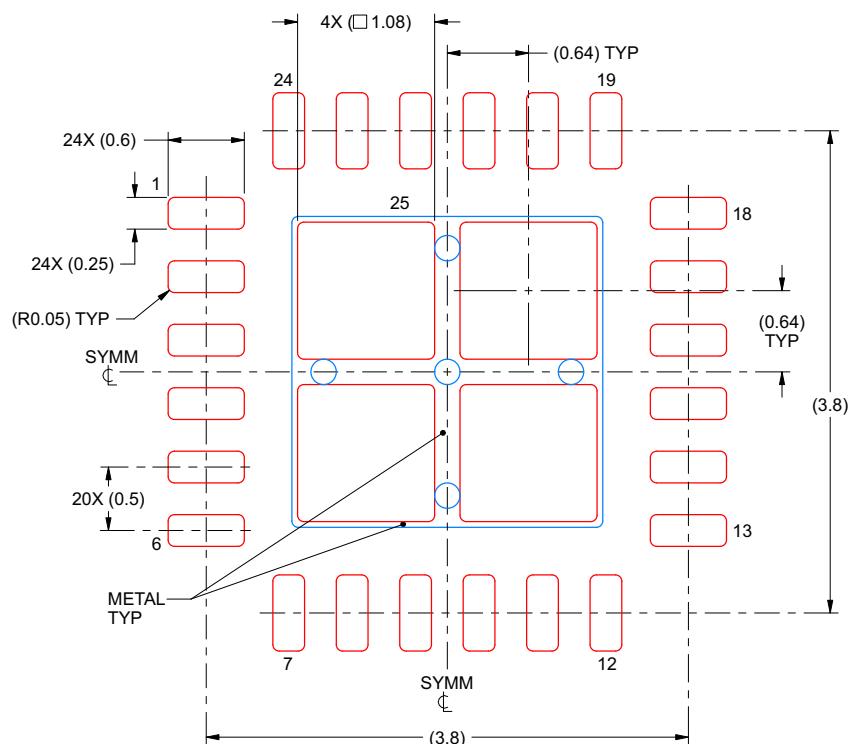
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RGE0024B
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RGE0024B

VQFN - 1 mm max height

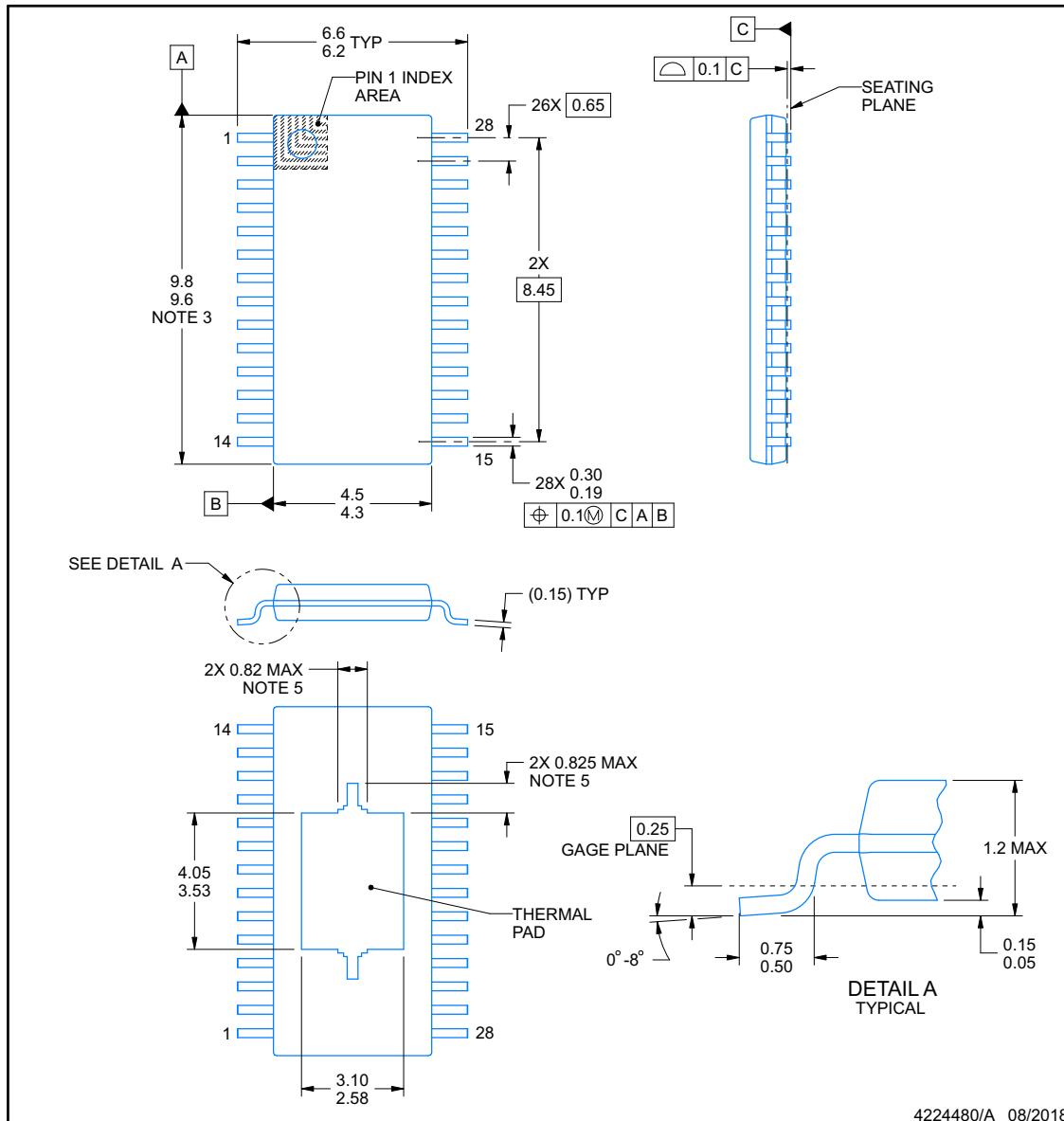
PLASTIC QUAD FLATPACK - NO LEAD

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

EXPOSED PAD 25
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:20X

4219013/A 05/2017

NOTES: (continued)


6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

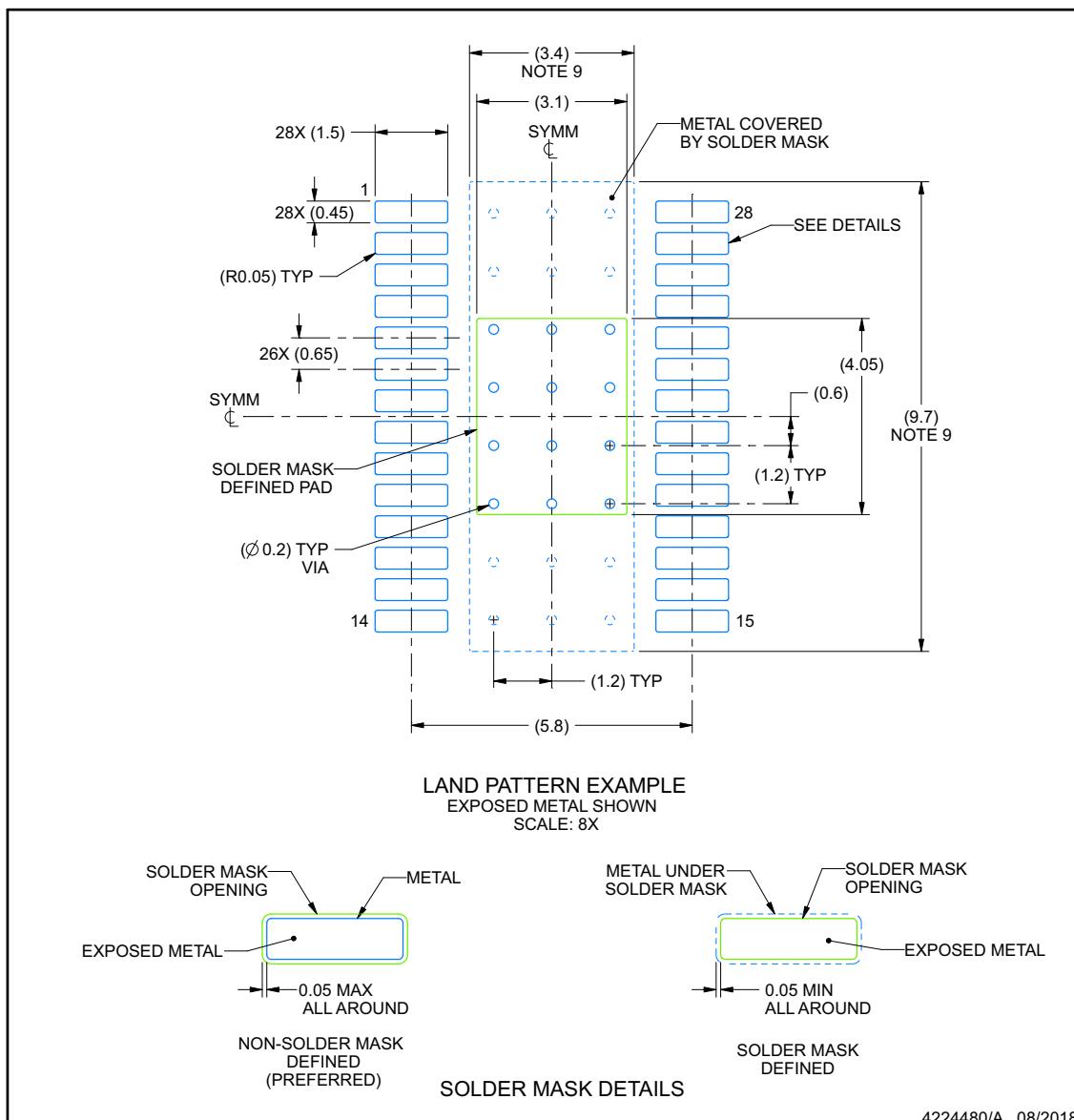
PACKAGE OUTLINE

PWP0028M

PowerPAD™ TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.
5. Features may differ or may not be present.

EXAMPLE BOARD LAYOUT

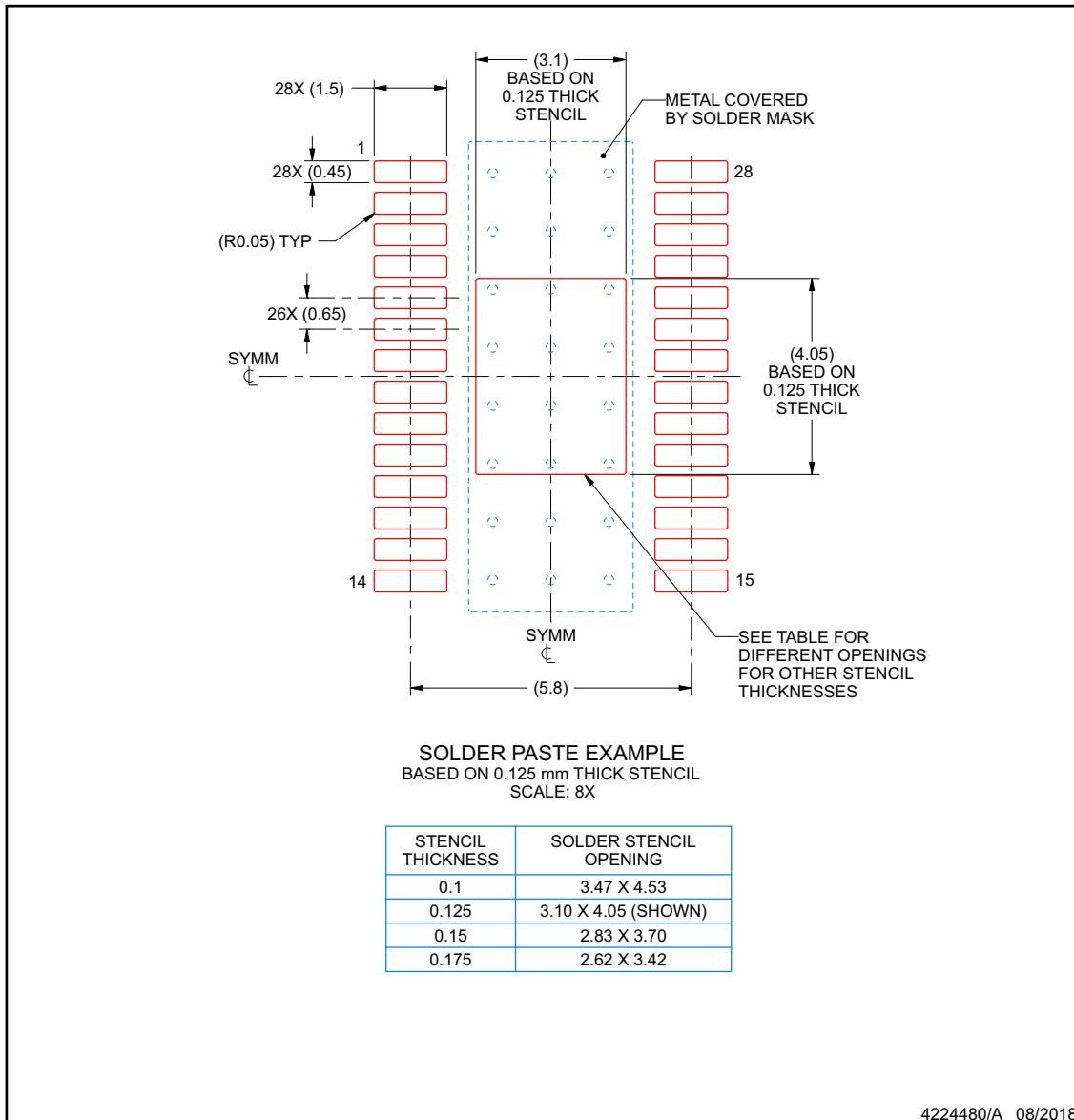
PWP0028M

PowerPAD™ TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

4224480/A 08/2018


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
9. Size of metal pad may vary due to creepage requirement.
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

PWP0028M

PowerPAD™ TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

4224480/A 08/2018

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
12. Board assembly site may have different recommendations for stencil design.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DRV8932PPWPR	ACTIVE	HTSSOP	PWP	28	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	DRV8932P	Samples
DRV8932PRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	DRV 8932P	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

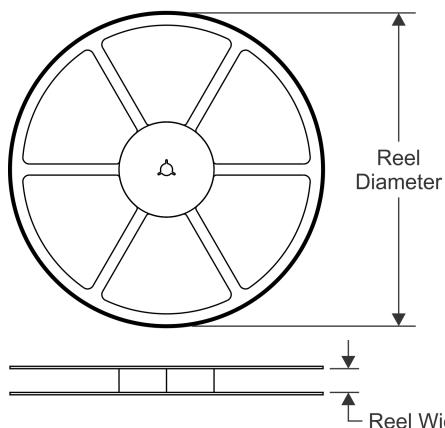
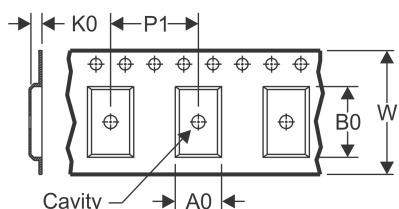
(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

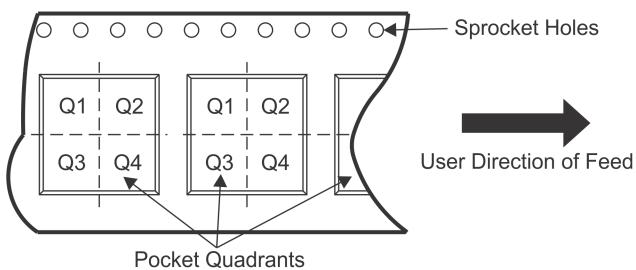
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

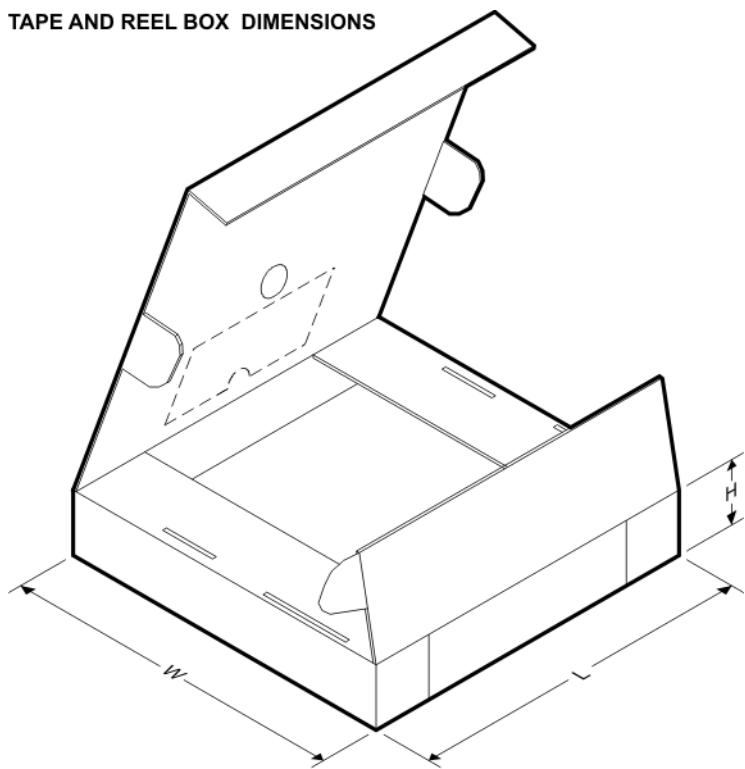
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.



(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

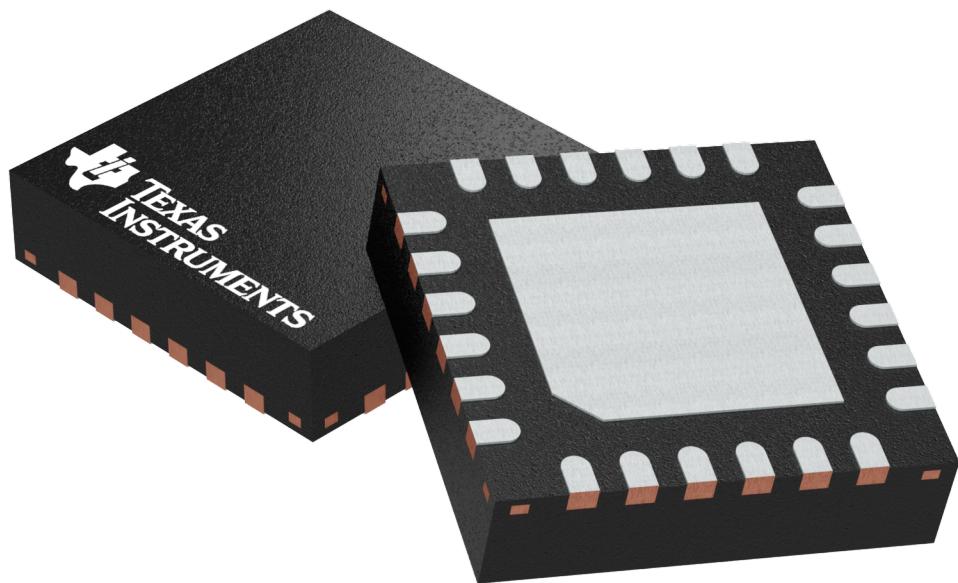
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV8932PPWPR	HTSSOP	PWP	28	2500	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
DRV8932PRGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DRV8932PPWPR	HTSSOP	PWP	28	2500	853.0	449.0	35.0
DRV8932PRGER	VQFN	RGE	24	3000	367.0	367.0	35.0

GENERIC PACKAGE VIEW

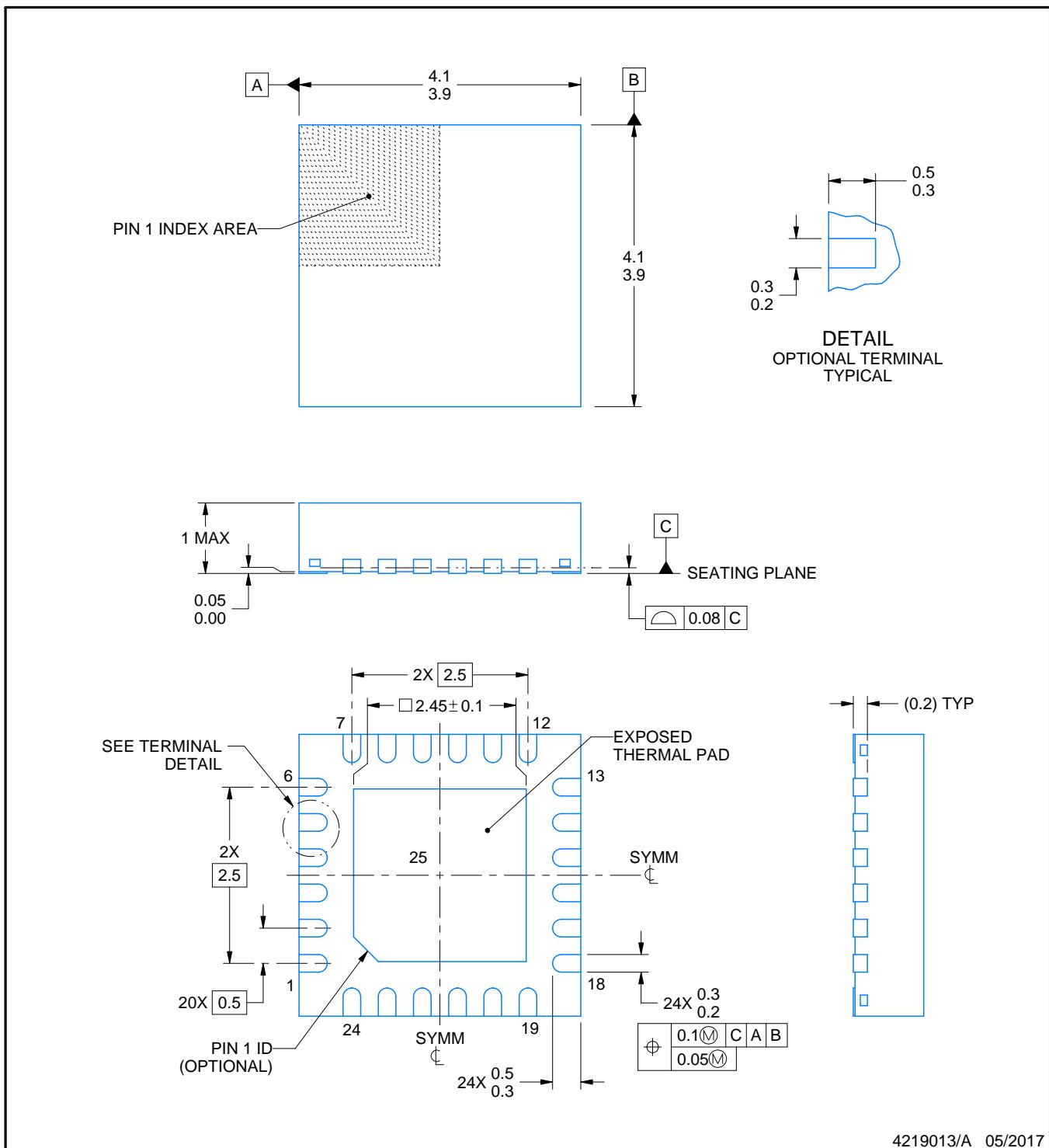
RGE 24

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4204104/H

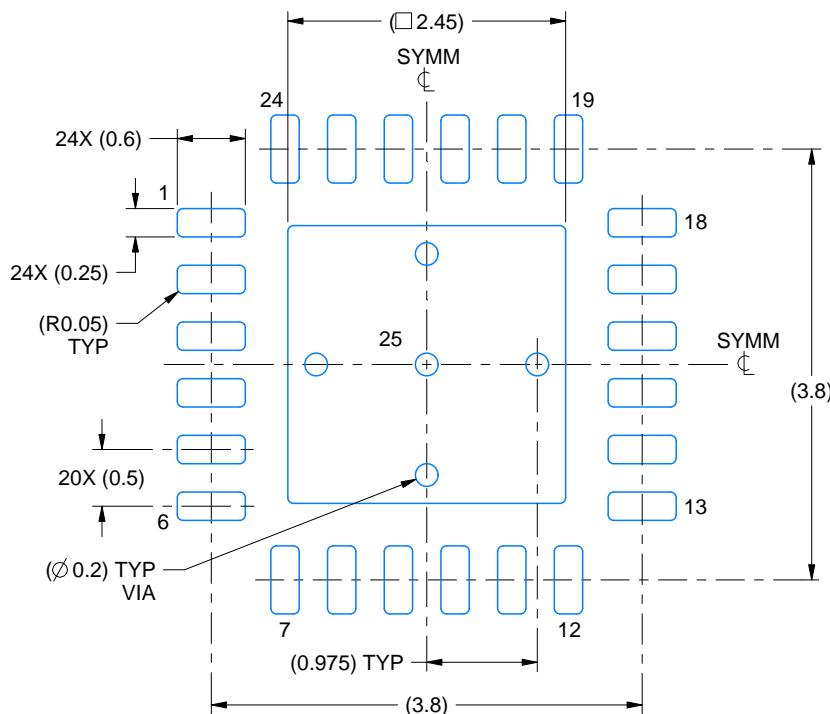

RGE0024B

PACKAGE OUTLINE

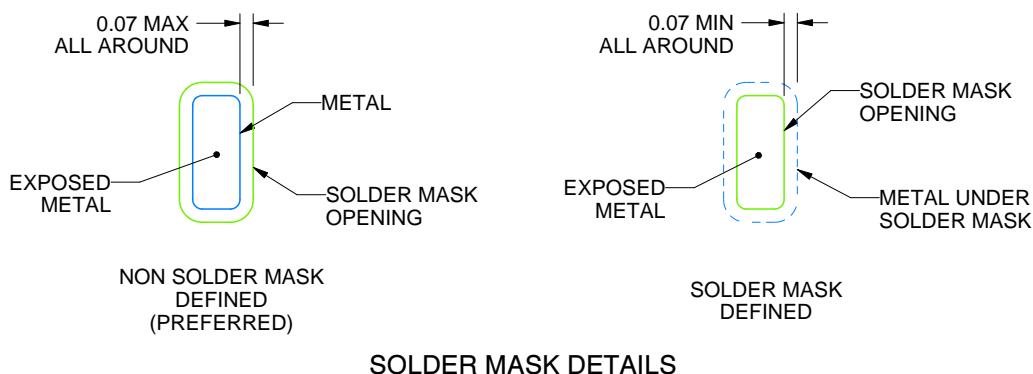
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT


RGE0024B

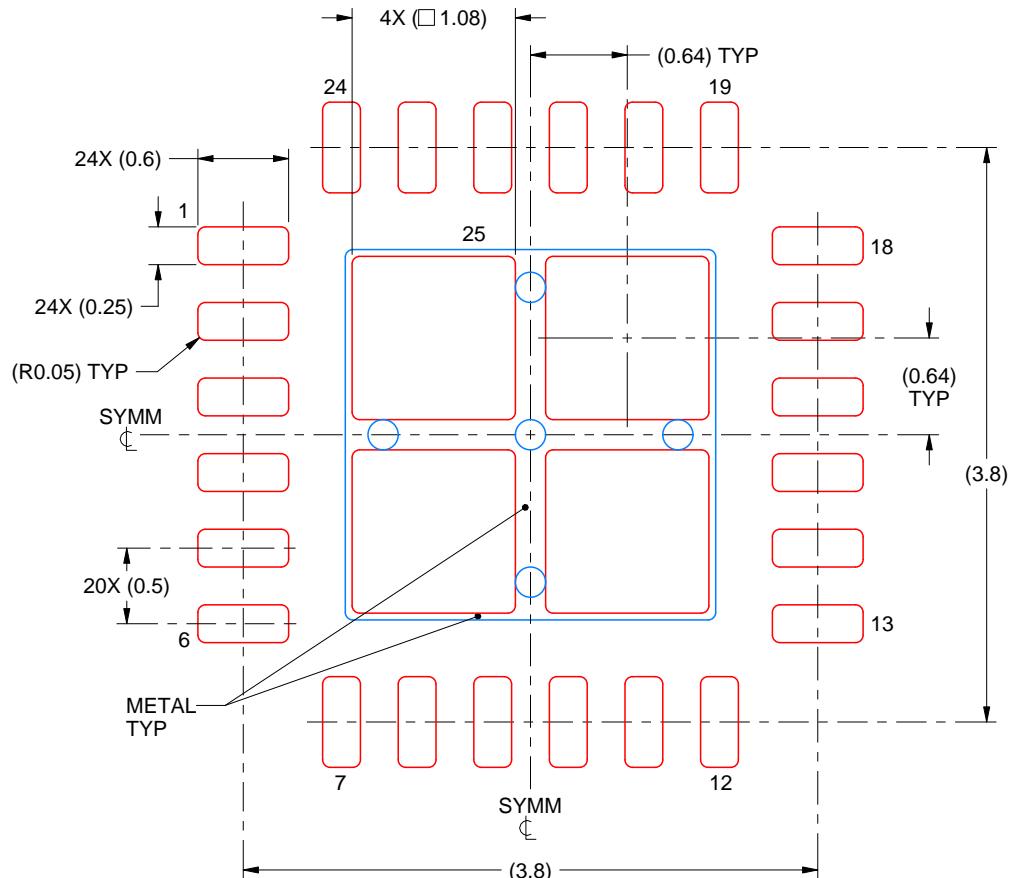
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X

4219013/A 05/2017

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RGE0024B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

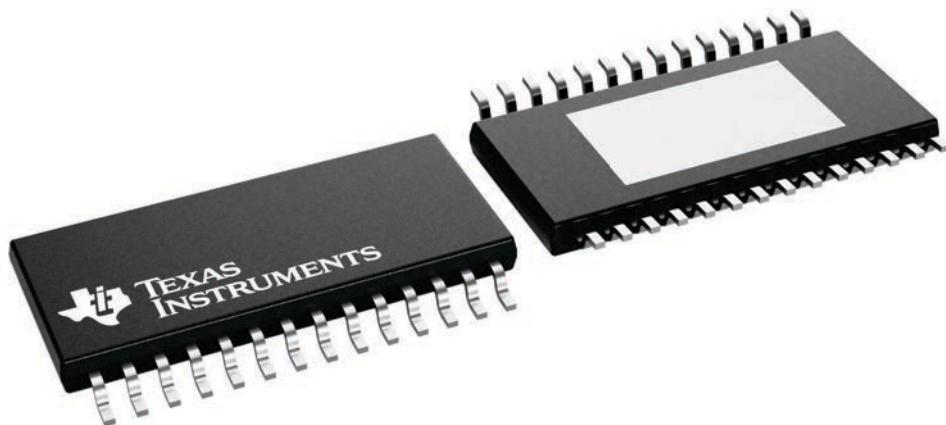
EXPOSED PAD 25
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:20X

4219013/A 05/2017

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

GENERIC PACKAGE VIEW


PWP 28

4.4 x 9.7, 0.65 mm pitch

PowerPAD™ TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4224765/B

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (<https://www.ti.com/legal/termsofsale.html>) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated