MOSFET – Power, Complementary ChipFET 20 V, +3.9 A / -3.0 A

Features

- Complementary N-Channel and P-Channel MOSFET
- Small Size, 40% Smaller than TSOP-6 Package
- Leadless SMD Package Featuring Complementary Pair
- ChipFET Package Provides Great Thermal Characteristics Similar to Larger Packages
- Low R_{DS(on)} in a ChipFET Package for High Efficiency Performance
- Low Profile (< 1.10 mm) Allows Placement in Extremely Thin Environments Such as Portable Electronics
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

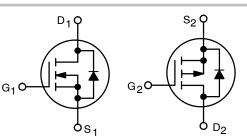
Applications

- Load Switch Applications Requiring Level Shift
- DC–DC Conversion Circuits
- Drive Small Brushless DC Motors
- Designed for Power Management Applications in Portable, Battery Powered Products

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Param	Symbol	Value	Unit					
Drain-to-Source Voltage	V _{DSS}	20	V					
Gate-to-Source Voltage			V _{GS}	±12	V			
Continuous Drain	······································				А			
Current (Note 1)	Steady State	T _A = 85°C		2.1				
	t ≤ 5	$T_A = 25^{\circ}C$		3.9				
	$P-Ch$ $T_A = 25^{\circ}C$				А			
	Steady State	$T_A = 85^{\circ}C$		-1.6				
	t ≤ 5	$T_A = 25^{\circ}C$		-3.0				
Pulsed Drain Current (Note 1)	N-Ch	t = 10 μs	I _{DM}	12	А			
	P-Ch	t = 10 μs		-9.0				
Power Dissipation (Note 1)					W			
	$t \le 5$ $T_A = 25^{\circ}C$							
Operating Junction and S Temperature	T _J , T _{STG}	–55 to 150	°C					
Lead Temperature for Sol (1/8" from case for 10 sec		rposes	ΤL	260	°C			

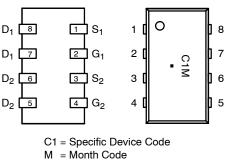
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
N-Channel	60 mΩ @ 4.5 V	3.9 A	
20 V	80 mΩ @ 2.5 V	5.9 A	
P-Channel	130 mΩ @ –4.5 V	-3.0 A	
–20 V	200 mΩ @ –2.5 V	-3.0 A	


N-Channel MOSFET

P-Channel MOSFET

= Pb-Free Package

= PD-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTHC5513T1G	ChipFET (Pb–Free)	3000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit		
Junction-to-Ambient (Note 1) Steady State			$R_{ hetaJA}$	110	°C/W
	t ≤ 5	T _A = 25°C		60	

2. Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Symbol	N/P	Test Conditio	ons	Min	Тур	Max	Unit
OFF CHARACTERISTICS (Note 3)	•		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	Ν		I _D = 250 μA	20			V
		Р	V _{GS} = 0 V	I _D = -250 μA	-20			1
Zero Gate Voltage Drain Current	I _{DSS}	Ν	V _{GS} = 0 V, V _{DS} =	= 16 V			1.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} =	–16 V			-1.0	
		Ν	V _{GS} = 0 V, V _{DS} = 16 V	′, T _J = 85 °C			5	
		Р	$V_{GS} = 0 V, V_{DS} = -16 V$	/, T _J = 85 °C			-5	
Gate-to-Source Leakage Current	I _{GSS}		$V_{DS} = 0 V, V_{GS} =$	= ±12 V			±100	nA
ON CHARACTERISTICS (Note 3)			• •			-		
Gate Threshold Voltage	V _{GS(TH)}	Ν		I _D = 250 μA	0.6		1.2	V
		Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.6		-1.2	1
Drain-to-Source On Resistance	R _{DS} (on)	Ν	$V_{GS} = 4.5 \text{ V} , \text{ I}_{D} = 2.9 \text{ A}$ $V_{GS} = -4.5 \text{ V} , \text{ I}_{D} = -2.2 \text{ A}$ $V_{GS} = 2.5 \text{ V} , \text{ I}_{D} = 2.3 \text{ A}$			0.058	0.080	
		Р				0.130	0.155	Ω
		Ν				0.077	0.115	
		Р	V_{GS} = -2.5 V, I _D = -1.7 A			0.200	0.240	
Forward Transconductance	9 FS	Ν	V _{DS} = 10 V, I _D =	2.9A		6.0		S
		Р	$V_{DS} = -10 \text{ V}$, $I_D =$	-2.2 A		6.0		
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}	Ν		V _{DS} = 10 V		180		pF
		Р		V _{DS} = -10 V		185		
Output Capacitance	C _{OSS}	Ν		V _{DS} = 10 V		80		
		Р	f = 1 MHz, V _{GS} = 0 V	V _{DS} = -10 V		95		
Reverse Transfer Capacitance	C _{RSS}	Ν		V _{DS} = 10 V		25]
		Р		V _{DS} = -10 V		30]
Total Gate Charge	Q _{G(TOT)}	Ν	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 2.9 A		2.6	4.0	nC
		Р	V _{GS} = -4.5 V, V _{DS} = -10	V, I _D = -2.2 A		3.0	6.0]

 V_{GS} = –4.5 V, V_{DS} = –10 V, I_{D} = –2.2 A Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 V_{GS} = 4.5 V, V_{DS} = 10 V, I_{D} = 2.9 A

 V_{GS} = -4.5 V, V_{DS} = -10 V, I_{D} = -2.2 A

 V_{GS} = 4.5 V, V_{DS} = 10 V, I_{D} = 2.9 A

0.6

0.5

0.7

0.9

 Q_{GS}

 Q_{GD}

Ν

Ρ

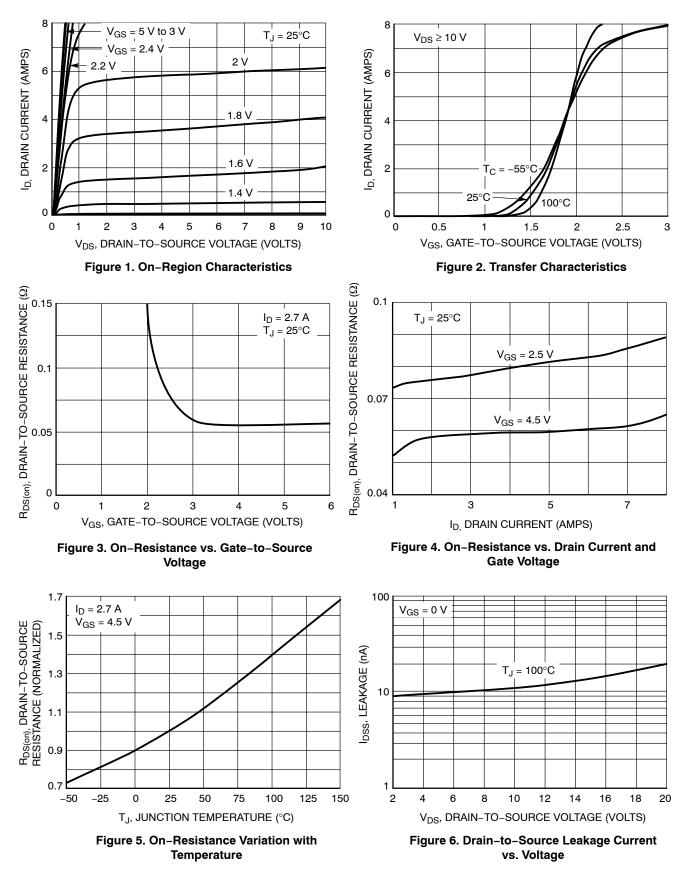
Ν

Ρ

3. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

Gate-to-Source Gate Charge

Gate-to-Drain "Miller" Charge


ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Conditi	ons	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (No	ote 4)							
Turn-On Delay Time	t _{d(ON)}					5.0	10	ns
Rise Time	tr	N	V _{DD} = 16 V, V _{GS} = 4.5	V, I _D = 2.9 A,		9.0	18	
Turn-Off Delay Time	t _{d(OFF)}		R _G = 2.5 Ω			10	20]
Fall Time	t _f					3.0	6.0]
Turn-On Delay Time	t _{d(ON)}					7.0	12]
Rise Time	tr	P	V _{DD} = -16 V, V _{GS} = -4.5	5 V, I _D = −2.2 A,		13	25	
Turn-Off Delay Time	t _{d(OFF)}		$R_{\rm G} = 2.5 \Omega$		33	50		
Fall Time	t _f				27	40		
DRAIN-SOURCE DIODE CHARACTE	ERISTICS							
Forward Diode Voltage (Note 5)	V _{SD}	Ν		I _S = 2.6 A		0.8	1.15	V
		Р	V _{GS} = 0 V	I _S = -2.1 A		-0.8	-1.15	
Reverse Recovery Time (Note 4)	t _{RR}	Ν		l _S = 1.5 A		12.5		ns
		Р		I _S = -1.5 A		32		
Charge Time	t _a	Ν		l _S = 1.5 A		9.0		
		Р	V _{GS} = 0 V, I _S = -1.5 A			10		
Discharge Time	t _b	Ν	dl _S / dt = 100 A/μs	l _S = 1.5 A		3.5		
		Р		I _S = -1.5 A		22		
Reverse Recovery Charge	Q _{RR}	Ν		l _S = 1.5 A		6.0		nC
		Р		I _S = -1.5 A		15	1	1

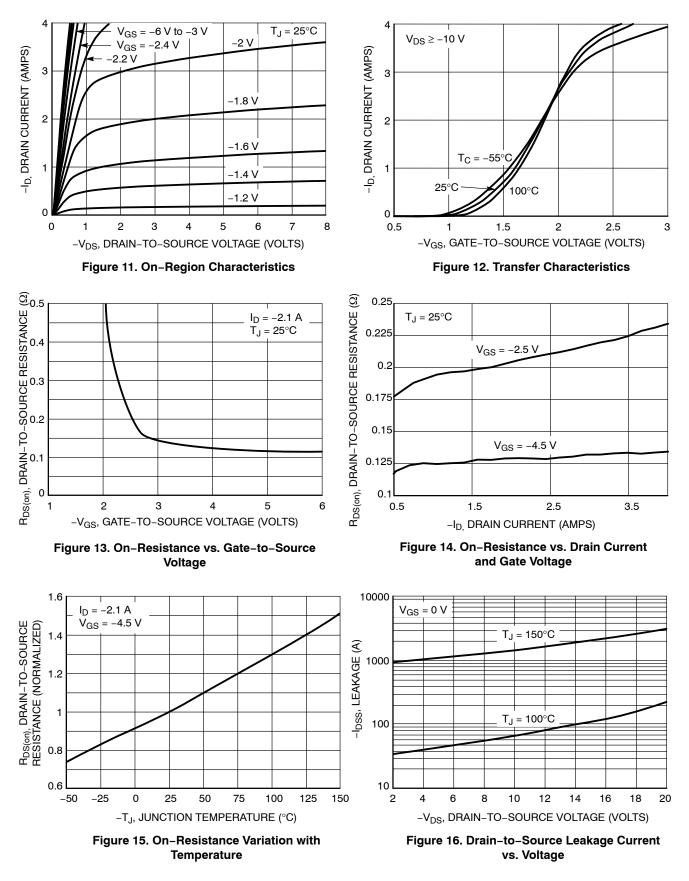
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Switching characteristics are independent of operating junction temperatures.
5. Pulse Test: Pulse Width ≤ 250 µs, Duty Cycle ≤ 2%.

TYPICAL N-CHANNEL PERFORMANCE CURVES

(T_J = 25°C unless otherwise noted)

TYPICAL N-CHANNEL PERFORMANCE CURVES

(T_J = $25^{\circ}C$ unless otherwise noted)

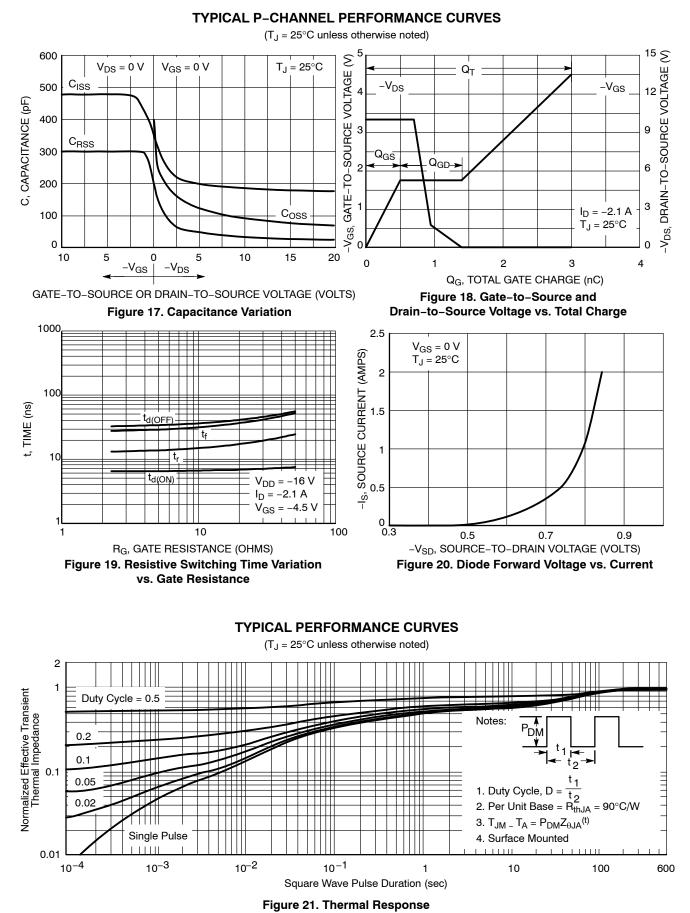

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES

(T_J = $25^{\circ}C$ unless otherwise noted)

SOLDERING FOOTPRINT*

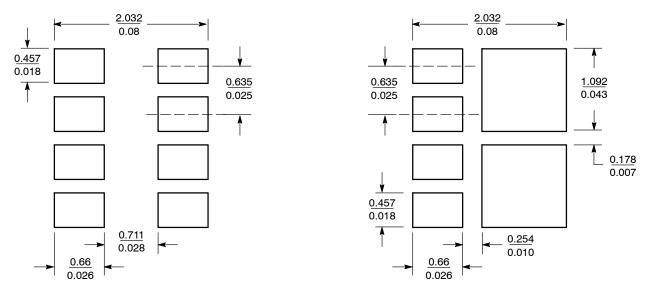


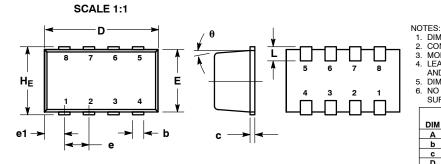
Figure 22. Basic

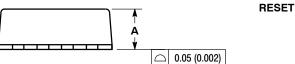
Figure 23. Style 2

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BASIC PAD PATTERNS

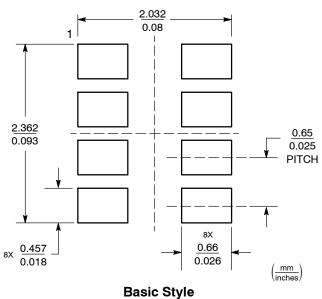
The basic pad layout with dimensions is shown in Figure 22. This is sufficient for low power dissipation MOSFET applications, but power semiconductor performance requires a greater copper pad area, particularly for the drain leads.


The minimum recommended pad pattern shown in Figure 23 improves the thermal area of the drain connections (pins 5, 6, 7, 8) while remaining within the

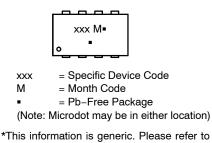

confines of the basic footprint. The drain copper area is 0.0019 sq. in. (or 1.22 sq. mm). This will assist the power dissipation path away from the device (through the copper lead–frame) and into the board and exterior chassis (if applicable) for the single device. The addition of a further copper area and/or the addition of vias to other board layers will enhance the performance still further.

ChipFET™ CASE1206A-03 **ISSUE K**

DATE 19 MAY 2009


1.

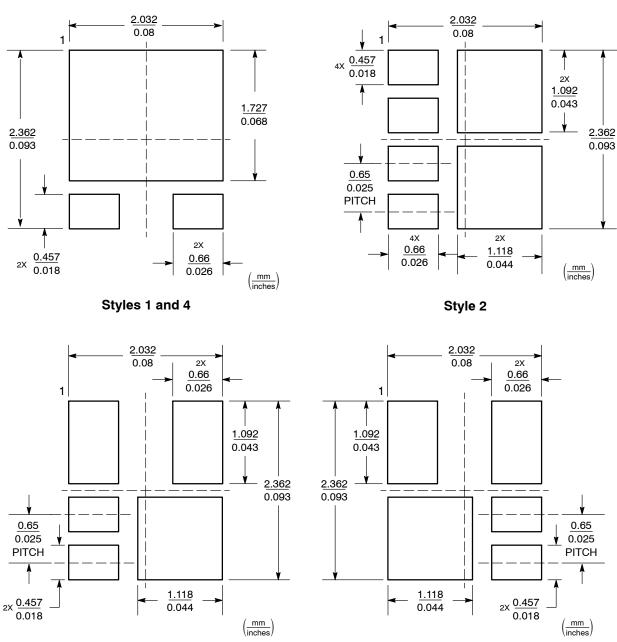
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2.
- CONTROLLING DIMENSION: MILLINGTER.
 MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE.
 LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE. 6.


	м	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
с	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е		0.65 BSC			0.025 BSC)
e1		0.55 BSC			0.022 BSC	;
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ		5° NOM			5° NOM	

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. GATE 5. SOURCE 6. DRAIN	STYLE 2: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6 DRAIN 2	STYLE 3: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN	STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. COLLECTOR 4. BASE 5. EMITTER 6. COLLECTOR	STYLE 5: PIN 1. ANODE 2. ANODE 3. DRAIN 4. DRAIN 5. SOURCE 6. CATE	STYLE 6: PIN 1. ANODE 2. DRAIN 3. DRAIN 4. GATE 5. SOURCE 6. DDAIN
5. SOURCE 6. DRAIN 7. DRAIN 8. DRAIN	5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	5. DHAIN 6. DRAIN 7. CATHODE 8. CATHODE	5. EMITTER 6. COLLECTOR 7. COLLECTOR 8. COLLECTOR	5. SOURCE 6. GATE 7. CATHODE 8. CATHODE	6. DRAIN 7. DRAIN

SOLDERING FOOTPRINT

GENERIC **MARKING DIAGRAM***


device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present.

OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	ChipFET		PAGE 1 OF 2				
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

ChipFET™ CASE 1206A–03 ISSUE K

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

Style 3

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Style 5

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	ChipFET	PAGE 2 OF 2				
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative