

 LPCXpresso Experiment Kit - Userôs Guide

Copyright 2013 © Embedded Artists AB

 EA-USG-1206 Rev A

LPCXpresso Experiment Kit
Userõs Guide

Learn embedded programming with NXPôs LPC1000
family of Cortex-M0/M3 microcontrollers!

LPCXpresso Experiment Kit - Userõs Guide Page 2

Copyright 2013 © Embedded Artists AB

Embedded Artists AB
Davidshallsgatan 16
211 45 Malmö
Sweden

info@EmbeddedArtists.com
http://www.EmbeddedArtists.com

Copyright 2013 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Please send your
comments to support@EmbeddedArtists.com.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

mailto:info@EmbeddedArtists.com
http://www.embeddedartists.com/
mailto:support@EmbeddedArtists.com

LPCXpresso Experiment Kit - Userõs Guide Page 3

Copyright 2013 © Embedded Artists AB

Table of Contents
1 Document Revision History 7

2 Introduction 8

2.1 Features 8

2.2 ESD Precaution 9

2.3 General Handling Care 9

2.4 Code Read Protection 9

2.5 CE Assessment 9

2.6 Other Products from Embedded Artists 9

2.6.1 Design and Production Services 9

2.6.2 OEM / Evaluation / QuickStart Boards and Kits 10

3 LPCXpresso Experiment Kit 11

3.1 Embedded Systems Programming 12

4 Kit Content 13

5 Powering Options 25

6 Soldering 27

6.1 Component Placement 27

7 Experiments 29

7.1 Preparation 29

7.2 Control a LED 29

7.2.1 Lab 1a: Control LED 30

7.2.2 Lab 1b: GPIO and Bit Masking 35

7.2.3 Lab 1c: Delay Function ï LED Flashing 36

7.2.4 Lab 1d: Morse Code 37

7.3 Read a Digital Input 38

7.3.1 Lab 2a: Read Push-button 38

7.3.2 Lab 2b: GPIO and Bit Masking 41

7.3.3 Lab 2c: Logic between inputs and output 41

7.3.4 Lab 2d: Toggling LED 44

7.3.5 Lab 2e: Sampling of Inputs 44

7.4 Control Multiple LEDs 46

7.4.1 Lab 3a: LEDs in Running-One Pattern 46

7.4.2 Lab 3b: Control of Running-One Pattern 47

7.4.3 Lab 3c: Rotary Switch Control of Running-One Pattern 48

7.5 Print Messages 49

7.5.1 Lab 4a: Semihosting and printf() 49

7.5.2 Lab 4b: Semihosting Performance Test 51

7.5.3 Lab 4c: Printing Events 51

7.5.4 Lab 4d: Reading from the Console 51

LPCXpresso Experiment Kit - Userõs Guide Page 4

Copyright 2013 © Embedded Artists AB

7.6 Read an Analog Input 53

7.6.1 Lab 5a: Read Trimming Potentiometer 53

7.6.2 Lab 5b: Event Threshold 56

7.6.3 Lab 5c: Read Light Sensor 56

7.6.4 Lab 5d: ADC Noise Test 57

7.7 Pulse Width Modulation 58

7.7.1 Lab 6a: PWM Control of a LED 58

7.7.2 Lab 6b: PWM Control of a LED, cont. 1 59

7.7.3 Lab 6c: PWM Control of a LED, cont. 2 59

7.7.4 Lab 6d: PWM Control of two LEDs 60

7.8 Control an RGB-LED 61

7.8.1 Lab 7a: Test RGB-LED 61

7.8.2 Lab 7b: Control RGB-LED 62

7.9 Control a 7-segment Display 63

7.9.1 Lab 8a: Test 7-segment Display 64

7.9.2 Lab 8b: Control 7-segment Display 64

7.9.3 Lab 8c: Control 7-segment Display, cont. 66

7.9.4 Lab 8d: Control Dual Digit 7-segment Display 66

7.9.5 Lab 8e: Control 7-segment Display via Shift Register 68

7.10 Work with a Timer 71

7.10.1 Lab 9a: Create Exact Delay Function 71

7.11 PWM via a Timer 72

7.11.1 Lab 10a: Control RGB-LED 74

7.11.2 Lab 10b: Buzzer and Melodies 74

7.11.3 Lab 10c: Control a Servo Motor 75

7.12 Work with a Serial Bus ð SPI 78

7.12.1 Lab 11a: Access Shift Register 81

7.12.2 Lab 11b: Control 7-segment Display 82

7.12.3 Lab 11c: Access SPI E2PROM 82

7.13 Work with Interrupts 87

7.13.1 Lab 12a: Generate IRQ via GPIO 89

7.13.2 Lab 12b: Timer IRQ 90

7.13.3 Lab 12c: Timer IRQ with Callback 91

7.13.4 Lab 12d: Nested Interrupts 92

7.13.5 Lab 12e: Control Dual Digit 7-segment Display 93

7.14 Work with a Serial Bus ð I2C 94

7.14.1 Lab 13a: Solder Surface Mounted Components 95

7.14.2 Lab 13b: Read LM75 Temperature Sensor 96

7.14.3 Lab 13c: Control LEDs via PCA9532 97

7.15 Work with a Serial Bus ð UART 100

7.15.1 Lab 14a: Transmitting and Receiving via the UART 106

7.15.2 Lab 14b: Direct printf() to UART 106

7.15.3 Lab 14c: Interrupt driven UART handling and ring buffers 107

7.16 Extra: Work with RF-module 112

7.16.1 Lab 15a: XBeeÊ RF-Module 113

7.16.2 Lab 15b: GPS Receiver 117

LPCXpresso Experiment Kit - Userõs Guide Page 5

Copyright 2013 © Embedded Artists AB

7.17 Extra: Work with Serial Expansion Connector 123

7.17.1 Lab 16a: 128x128 OLED Graphical Display 123

7.18 Extra: Work with USB Device 126

7.18.1 Lab 17a: USB Device ï HID 126

7.18.2 Lab 17b: USB Device ï Mouse HID 127

7.19 Extra: Work with USB Host 128

7.19.1 Lab 18a: USB Host 128

7.20 Extra: Work with Ethernet Interface 129

7.20.1 Lab 19a: easyWeb Web Server 129

7.20.2 Lab 19b: lwIP TCP/IP Stack, Web Server and FreeRTOS 130

7.21 Differences between LPCXpresso LPC111x and LPC1114 in DIL28 133

8 Projects 135

8.1 Interface a Color Sensor 135

8.2 Interface a Real-time Clock (RTC) 135

8.3 Interface a GPS Module 135

8.4 Interface an SD/MMC Memory Card 135

8.5 Interface an Accelerometer and Gyro 135

8.6 Control a LED Matrix 136

8.7 Create a Game with Display + Accelerometer or Gyro 136

8.8 Create General Menu System for a Display 136

8.9 Retrieve Information from Web Servers 136

8.10 USB Mouse Emulation 136

8.11 Registry in E2PROM 137

8.12 Real-Time Dynamic Data with JAVA Applet 137

8.13 Multiplayer Game via RF-module 137

8.14 Home Alarm System 137

8.15 Polyphonic Audio Generation 138

8.16 Audio Processing 138

8.17 Home Automation 138

8.18 Control a Robot 138

8.19 RS-485 Network 138

8.20 Interface an FPGA/CPLD Chip 138

8.21 Analog Electronic Experiments 138

9 LPCXpresso IDE ð How to get Started 139

9.1 Importing Projects 139

9.2 Working with a Project and Compiling 141

9.3 Debugging a Project and Downloading 142

9.3.1 Downloading Just Code 146

9.4 Create own Projects by Copy Existing Project 150

9.5 Common Problems 151

9.5.1 Error message: Failed on chip setup 152

LPCXpresso Experiment Kit - Userõs Guide Page 6

Copyright 2013 © Embedded Artists AB

10 Further Information 153

LPCXpresso Experiment Kit - Userõs Guide Page 7

Copyright 2013 © Embedded Artists AB

1 Document Revision History

Revision Date Description

PA1 2012-07-16 Work in progress.

PA2 2013-01-14 Work in progress.

PA3 2013-01-25 First version to be released. All experiments are still not complete.

PA4 2013-01-29 Minor corrections/clarifications.

PA5 2013-02-25 Completed section 7.9 - 7.10.

PA6 2013-03-19 Completed section 7.11-7.14. Cleanup in variable declarations in
code fragments. Added instructions about creating driver structured
source code.

PA7 2013-04-08 Completed section 7.15. Changed all code fragments to use
predefined typedefs for variable declaration. Minor corrections.

PA8 2013-06-13 Completed section 7.16-7.20. Minor corrections/clarifications.

LPCXpresso Experiment Kit - Userõs Guide Page 8

Copyright 2013 © Embedded Artists AB

2 Introduction
Thank you for buying Embedded Artistsô LPCXpresso Experiment Kit designed to work with NXPôs
ARM Cortex-M0/M3 LPCXpresso target boards.

This document is a Userôs Guide that describes the LPCXpresso Experiment Kit that describes
hardware as well as software related to the kit.

2.1 Features

The kit has been created as a guided tour to learn embedded programming with NXPôs LPC1000
microcontroller family with Cortex-M0/M3 cores from ARM. The experiments can be performed on a
breadboard for maximum flexibility and ease of use. It is also possible to solder the components to a
printed circuit board (pcb) and learn soldering at the same time.

Components included in the kit are:

¶ 8x LEDs

¶ 2x Trimming potentiometers

¶ 7x push-buttons

¶ RGB-LED

¶ Light sensor (analog)

¶ Temperature sensor (analog)

¶ 7-segment LED, dual digit

¶ E2PROM with SPI interface

¶ Temperature sensor with I2C interface (only for pcb mounting)

¶ Piezo buzzer

¶ Rotary quadrature encoder (only for pcb mounting)

¶ Shift register

¶ I2C ports expander (PCA9532, only for pcb mounting)

¶ USB Host connector (only for pcb mounting)

¶ USB Device connector (only for pcb mounting)

¶ RJ45 connector for Ethernet (only for pcb mounting)

¶ 14-pos serial expansion connector, for interface to for example graphical displays

¶ 3x servo connectors. Note that servos are not included.

¶ XBeeÊ compatible socket (for ZigBee and WiFi modules). Note that RF module is not
included.

¶ LPC1114 in DIL28 package, with 12MHz crystal and SWD connector (only for pcb mounting)

¶ Local +3.3V voltage regulator

¶ Miscellaneous resistors, capacitors, transistors and connectors

¶ Breadboard with cables

¶ Naked PCB

LPCXpresso Experiment Kit - Userõs Guide Page 9

Copyright 2013 © Embedded Artists AB

2.2 ESD Precaution

Please note that the LPCXpresso Experiment Kit come without any case/box
and all components are exposed for finger touches ï and therefore extra
attention must be paid to ESD (electrostatic discharge) precaution.

Always work with the LPCXpresso Experiment Kit in a place with proper
ESD protection.

Avoiding electrostatic discharge is all about having the same electric potential
and to avoid building up charges between different areas where you work. This
is easily accomplished by having a conductive surface on your workbench and connecting yourself
with this surface via a wrist wrap.

Note that Embedded Artists does not replace boards that have been damaged by ESD.

2.3 General Handling Care

Handle the LPCXpresso Experiment Kit and all included components with care. The board is not
mounted in a protective case/box and is not designed for rough physical handling. Connectors and
components can wear out after excessive use. The LPCXpresso Experiment Kit is designed for
prototyping use, and not for integration into an end-product.

2.4 Code Read Protection

The LPC1000 family has a Code Read Protection function (specifically CRP3, see datasheet for
details) that, if enabled, will make the microcontroller impossible to reprogram (unless the user
program has implemented such functionality).

Note that Embedded Artists does not replace LPC1000 family chip where the chip has CRP3
enabled. Itôs the userôs responsibility to not invoke this mode by accident.

2.5 CE Assessment

The LPCXpresso Experiment Kit is CE marked. See separate CE Declaration of Conformity document.

The LPCXpresso Experiment Kit is a class A product. In a domestic environment this product may
cause radio interference in which case the user may be required to take adequate measures.

EMC emission test has been performed on the LPCXpresso Experiment Kit. Standard interfaces like
Ethernet, USB, serial have been in use. Connecting other devices to the product via the general
expansion connectors may alter EMC emission. It is the userôs responsibility to make sure EMC
emission limits are not exceeded when connecting other devices to the general expansion connectors
of the LPCXpresso Experiment Kit.

Due to the nature of the LPCXpresso Experiment Kit ï an evaluation board not for integration into an
end-product ï fast transient immunity tests and conducted radio-frequency immunity tests have not
been executed. Externally connected cables are assumed to be less than 3 meters. The general
expansion connectors where internal signals are made available do not have any other ESD protection
than from the chip themselves. Observe ESD precaution.

2.6 Other Products from Embedded Artists

Embedded Artists have a broad range of LPC1000/2000/3000/4000 based boards that are very low
cost and developed for prototyping / development as well as for OEM applications. Modifications for
OEM applications can be done easily, even for modest production volumes. Contact Embedded Artists
for further information about design and production services.

2.6.1 Design and Production Services

Embedded Artists provide design services for custom designs, either completely new or modification to
existing boards. Specific peripherals and I/O can be added easily to different designs, for example,

LPCXpresso Experiment Kit - Userõs Guide Page 10

Copyright 2013 © Embedded Artists AB

communication interfaces, specific analog or digital I/O, and power supplies. Embedded Artists has a
broad, and long, experience in designing industrial electronics in general and with NXPôs
LPC1000/2000/3000/4000 microcontroller families in specific. Our competence also includes wireless
and wired communication for embedded systems. For example IEEE802.11b/g (WLAN), BluetoothÊ,
ZigBeeÊ, ISM RF, Ethernet, CAN, RS485, and Fieldbuses.

2.6.2 OEM / Evaluation / QuickStart Boards and Kits

Visit Embedded Artistsô home page, www.EmbeddedArtists.com, for information about other OEM /
Evaluation / QuickStart boards / kits or contact your local distributor.

LPCXpresso Experiment Kit - Userõs Guide Page 11

Copyright 2013 © Embedded Artists AB

3 LPCXpresso Experiment Kit
The LPCXpresso Experiment Kit has been created as a guided tour to learn embedded programming
with NXPôs LPC1000 microcontroller family with Cortex-M0/M3 cores from ARM. The experiments can
be performed on a breadboard for maximum flexibility and ease of use. It is also possible to solder the
components to a printed circuit board (pcb) and learn soldering at the same time. Figure 1 illustrates
the two ways of working with the kit. To the left, all components have been soldered to the pcb and the
LPCXpresso board is mounted in a socket on the pcb. To the right, a bread board is used and wires
connect directly between the bread board and the LPCXpresso board. Note that the LPCXpresso
board is not included in the normal LPCXpresso Experiment Kit.

Figure 1 ð Breadboard Experiments and Working with PCB

The kit is based on the LPC1000 LPCXpresso evaluation boards, which is a whole family of boards.
All experiments are based around the LPCXpresso LPC1115/1114 board unless otherwise noted.
The term LPC111x will be used for the rest of the document to indicate both LPC1115 and LPC1114.
Some of the experiments (Ethernet and USB related) are based on the LPCXpresso LPC1769 board. It
is also possible to work with the LPC1114 in DIL28 package, which is a breadboard friendly package.

The suggested work flow is as follows: first start with performing the experiments with a group of
components on the bread board together with an LPCXpresso board. When done with the
experiments, solder the components to the pcb. Continue with the next group of components. Some
components only work on the pcb, simply because they do not fit into the bread board. Perform the
experiments related to these components when they have been soldered to the pcb. There are of
course other ways of working, for example soldering all components to the pcb at the end of all
experiments or work separately with the LPC1114 in DIL28 package instead of an LPCXpresso board.
Note that in the latter case, an LPC-LinkÊ is needed to program the LPC1114. The LPC-Link is the
ñdebugger halfò of an LPCXpresso board.

The LPC111x is built around a Cortex-M0Ê core from ARM and the LPC1769 has a Cortex-M3Ê
core. Most things addressed with the experiments are general to all microcontrollers and embedded
systems programming in general. The details are however slightly different between different
microcontrollers, for example the different functionality and registers tin the on-chip peripherals.

After having worked with the LPCXpresso Experiment Kit, and completed the experiments, you will
have gained several competences at basic level:

¶ embedded programming

¶ professional debugging techniques

¶ microcontrollers and how they interact with their environment

LPCXpresso Experiment Kit - Userõs Guide Page 12

Copyright 2013 © Embedded Artists AB

¶ electronic design in general

¶ how to work with a breadboard

¶ how to solder

It is assumed that you know how to program in C. You do not have to be an experienced user but
at least know about the basics. If not, the Internet is full of ANSI-C tutorials. A good start can be
https://en.wikibooks.org/wiki/C_Programming.

The program development environment (also called Integrated Development Environment ï IDE, for
short) used is the LPCXpresso IDE, which is a Eclipse-based IDE, a GNU C-compiler, linker, libraries
and an enhanced GDB debugger. For more information see [5].

3.1 Embedded Systems Programming

Embedded systems programming is truly multi-disciplinary. An engineer must master many knowledge
areas in order to do a good job. There are at least five of these areas:

1) General programming knowledge
(C, algorithms and data structures, understanding the development environment, debugging
techniques, safe programming styles, version handling, documentation, etc.)

2) Knowledge about programming close to the hardware / Firmware programming
(interrupts, memory mapped accesses for control registers, types of memories, etc.)

3) Knowledge about the specific hardware
(details about microcontroller used incl. all peripherals, I/O, communication interfaces, etc.)

4) Application programming
(real-time operating systems, program frameworks, user interfaces, drivers, logging, field
updates, boot loader structures, factory calibration/settings, configuration management,
communication protocols, graphical programming, security, etc.)

5) Last but not least, the domain knowledge ï the functional that the product under development
shall implement.

When working through the experiments in the LPCXpresso Experiment Kit you will increase your
knowledge in the first three areas.

Enjoy working with the LPCXpresso Experiment Kit!

LPCXpresso Experiment Kit - Userõs Guide Page 13

Copyright 2013 © Embedded Artists AB

4 Kit Content
In this chapter we will take a closer look at the different components included in the LPCXpresso
Experiment Kit.

The table below contains photos and a description of all components in order to simplify identification.
Note that photos are only typical in the sense that they illustrate the components typical visual
appearance. Exact appearance can differ for the components in the kit that you have received. The
number of components shown in a picture can also differ from delivered quantity.

Most components are specified with a Digikey or Mouser equivalent. If a component gets damaged, a
new one can typically be ordered from Digikey, Mouser or any preferred component distributor. The
Digikey/Mouser number is just to get the key data of the component. The actual components in the
component kit might very well be of different brands.

Component Description Note

Breadboard

http://en.wikipedia.org/
wiki/Breadboard

Digikey: 438-1109-ND
Mouser: 854-BB400T

Cables, male-to-male

http://en.wikipedia.org/
wiki/Jump_wire

Prototype cables can be
ordered from Embedded
Artists web shop in 50 pcs
packages (EA-ACC-017).

Connectors for
LPCXpresso board

11mm long pins

There is another pair of
headers that looks very
similar. This pair of
connectors has longer pins.
The other pair has shorter
pins.

This pair of connectors shall
be soldered to an
LPCXpresso board to make
it experiment friendly ï make
it simple to connect cables to
the pins.

There is no distributor
equivalent for this
component.

LPCXpresso Experiment Kit - Userõs Guide Page 14

Copyright 2013 © Embedded Artists AB

Tantal capacitor
C1, C2, C12
22uF

http://en.wikipedia.org/
wiki/Tantalum_capacitor

This component is polarized.
One of the two pins is longer
than the other. This is the
positive side. There is also a
small plus sign printed on the
components on the long pin
side.

AVX: TAP226K010SCS
Digikey: 478-1874-ND
Mouser: 581-
TAP226K010SCS

Ceramic capacitor
C3, C4
18pF

http://en.wikipedia.org/
wiki/Ceramic_capacitor

The printed numbers on this
component is ñ180ò.

This is not a polarized
component.

Murata:
RPE5C2A180J2P1Z03B
Digikey: 490-3632-ND
Mouser: 81-
RPE5CA180J2P1Z03B

Ceramic capacitor
C5, C6, C7, C8, C9, C13
100nF

http://en.wikipedia.org/
wiki/Ceramic_capacitor

The printed numbers on this
component is ñ104ò.

This is not a polarized
component.

Kemet: C320C104K5R5TA
Digikey: 399-4264-ND
Mouser: 80-C320C104K5R

Ceramic capacitor
C10, C11
100nF SMT

http://en.wikipedia.org/
wiki/Ceramic_capacitor

This is a surface mounted
component and can only be
soldered to the pcb (i.e., not
used on the bread board).

This is not a polarized
component.

Murata:
GRM21BR71E104KA01L
Digikey: 490-1673-1-ND
Mouser: 81-
GRM40X104K25L

LPCXpresso Experiment Kit - Userõs Guide Page 15

Copyright 2013 © Embedded Artists AB

Schottky diode
D1, D2
1N5817

http://en.wikipedia.org/
wiki/Semiconductor_diode

http://en.wikipedia.org/
wiki/Schottky_diode

This component is polarized.
There is a ring on one pin-
side of the components
(upper side in the picture).
This is the cathode of the
diode. The other side
(bottom side) is the anode.

Diodes Inc: 1N5817-T
Digikey: 1N5817DICT-ND
Mouser: 621-1N5817

Stand-offs
H1, H2, H3, H4

These stand-offs are
mounted in each corner of
the pcb.

AVC: BS-13S
Any standard stand-off for
4mm holes will work.

Power jack
J1

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

CUI Inc: PJ-102A
Digikey: CP-102A-ND

Connectors for
LPCXpresso board
J2

There is another pair of
headers that looks very
similar. This pair of
connectors has shorter pins.
The other pair has longer
pins.

This pair of connectors shall
be soldered to the pcb as a
socket to the LPCXpresso
board.

Sullins: PPTC271LFBN-RC
Digikey: S7025-ND

Debug connector
J3

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board). Pin 1 is in the
top/upper left corner in the
picture.

There is no distributor

LPCXpresso Experiment Kit - Userõs Guide Page 16

Copyright 2013 © Embedded Artists AB

equivalent for this
component.

RJ45, Ethernet connector
J4

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

Stewart: SI-50170-F
Digikey: 380-1103-ND

Pin list, 1x3
J5, J6, J8, J12

Sullins: PEC03SAAN
Digikey: S1012E-03-ND

Pin list, 2x3
J7 and J11 combined

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

Sullins: PEC03DAAN
Digikey: S2012E-03-ND

USB-B connector
J9

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

TE Connectivity: 292304-2
Digikey: A98573-ND
Mouser: 571-292304-2

USB-A connector
J10

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

TE Connectivity: 292336-1
Digikey: 292336-1-ND
Mouser: 571-292336-1

LPCXpresso Experiment Kit - Userõs Guide Page 17

Copyright 2013 © Embedded Artists AB

socket connector for
wireless module
J15

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

Sullins: NPPN101BFCN-RC
Digikey: S5751-10-ND

Shrouded pin list, 2x7
J16

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board). Pin 1 is in the
top/upper left corner in the
picture.

Sullins: SBH11-PBPC-D07-
ST-BK
Digikey: S9170-ND

USB mini-B connector
J17

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

Hirose: UX60-MB-5ST
Digikey: H2959CT-ND
Mouser: 798-UX60-MB-5ST

Pin list, 1x6
J18

Sullins: PEC06SAAN
Digikey: S1012E-06-ND

LEDs
LED1-LED8

http://en.wikipedia.org/
wiki/Led

This component is polarized.
One of the two pins is longer
than the other. This is the
positive side, the anode.
There is also a small cut on
the side of the plastic
package. This is on the short
pin side, which is the
negative side, the cathode.

Any 5mm LED with Vf around
1.7V and 150mcd at 20mA
current will work, for
example:
Digikey: 1080-1136-ND

LPCXpresso Experiment Kit - Userõs Guide Page 18

Copyright 2013 © Embedded Artists AB

RGB-LED
LED10

http://en.wikipedia.org/
wiki/Led

This component is polarized.
There is a small cut on one
side of the plastic package.
In the component picture to
the left, the cut is on the left
side of the package.

From left to right the four
pins in the picture are:

Red-LED cathode
All LEDs anode (positive
side)
Green-LED cathode
Blue-LED cathode

Harvatek: HT-333RGBW-A
Any RGB-LED with common
anode and a low value of
blue LED Vf (around 3.2V)
will work.

7-sigment LED, dual digit
LED9

http://en.wikipedia.org/
wiki/7-segment_display

This component is polarized.
Pin 1 is in the lower left
corner in the picture to the
left.

Lite-On Inc: LTD-4608JF
Digikey: 160-1536-5-ND
Mouser: 859-LTD-4608JF

LEDs
LED11-LED18, SMT

http://en.wikipedia.org/
wiki/Led

This is a surface mounted
component and can only be
soldered to the pcb (i.e., not
used on the bread board).

This component is polarized.
There are green marks on
the cathode side.

Harvatek: HT17-2102SURC
Possible substitute is
Kingbright: APT2012SURCK
Digikey: 754-1133-1-ND
Mouser: 604-
APT2012SURCK

LPCXpresso Experiment Kit - Userõs Guide Page 19

Copyright 2013 © Embedded Artists AB

PNP transistor, BC557B
Q1, Q2, Q3

http://en.wikipedia.org/
wiki/Bjt_transistor

This component is polarized.
One side of the plastic
package is flat and the other
side is rounded. When
mounting this component
make sure it is turned
correctly.

ON Semiconductor:
BC557BRL1G
Digikey:
BC557BRL1GOSCT-ND
Mouser: 863-BC557BRL1G

Resistor, 15 Kohm, 7 pcs
R1, R3, R35, R36, R41,
R42, R59

http://en.wikipedia.org/
wiki/Resistor

Color: Brown, Green, Black,
Red

This is not a polarized
component.

Yageo: MFR-25FBF-52-
15K0
Digikey: 15.0KXBK-ND

Resistor, 0 ohm, 1 pcs
R2

http://en.wikipedia.org/
wiki/Resistor

Color: Black

This is not a polarized
component.

Yageo: ZOR-25-B-52-0R
Digikey: 0.0QBK-ND

Resistor, 330 ohm, 30
pcs
R4, R5, R6, R8, R9, R10,
R11, R12, R13, R14,
R15, R16, R17, R18,
R19, R21, R22, R23,
R25, R29, R30, R31,
R32, R33, R34, R37,
R38, R62, R63, R64

http://en.wikipedia.org/
wiki/Resistor

Color: Orange, Orange,
Black, Black

This is not a polarized
component.

Yageo: CFR-25JB-52-330R
Digikey: 330QBK-ND

LPCXpresso Experiment Kit - Userõs Guide Page 20

Copyright 2013 © Embedded Artists AB

Trimming potentiometer,
22 Kohm, 2 pcs
R7, R20

http://en.wikipedia.org/
wiki/Potentiometer

10Kohm equivalent from
Bourns Inc.: 3352E-1-103LF
Digikey: 3352E-103LF-ND

Photo resistor, 1 pcs
R24

http://en.wikipedia.org/
wiki/Photo_resistor

This is not a polarized
component.

Advanced Photonix: PDV-
P9002-1
Digikey: PDV-P9002-1-ND

Resistor, 220 ohm, 2 pcs
R27, R28

http://en.wikipedia.org/
wiki/Resistor

Color: Red, Red, Black,
Black

This is not a polarized
component.

Yageo: FMP100JR-52-220R
Digikey: 220WCT-ND

Resistor, 1.5 Kohm, 8 pcs
R26, R39, R40, R60,
R61, R65, R66, R67

http://en.wikipedia.org/
wiki/Resistor

Color: Brown, Green, Black,
Brown

This is not a polarized
component.

Yageo: FMP100JR-52-1K5
Digikey: 1.5KWCT-ND

LPCXpresso Experiment Kit - Userõs Guide Page 21

Copyright 2013 © Embedded Artists AB

Resistor, 2 Kohm, 16 pcs
R43, R44, R45, R46,
R47, R48, R49, R50,
R51, R52, R53, R54,
R55, R56, R57, R58

http://en.wikipedia.org/
wiki/Resistor

This is a surface mounted
component and can only be
soldered to the pcb (i.e., not
used on the bread board).

This is not a polarized
component.

Panasonic: ERJ-6ENF2001V
Digikey: P2.00KCCT-ND

Piezo buzzer, 1 pcs
SP1

http://en.wikipedia.org/
wiki/Buzzer

This component is polarized.
One pin is longer than the
other. The longer pin is the
positive side. The top label
also indicates this side with a
small plus sign.

CUI Inc.: CEP-2242
Digikey: 102-1115-ND

Pushbuttons, 5 pcs
SW1-SW5

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board). The reason for this is
that the pins are too short to
get reliable connection on
the bread board. There are
two other special switches in
the component kit that are
suitable for bread board
usage.

Omron: B3F-1000
Digikey: SW400-ND
Mouser: 653-B3F-1000

Pushbuttons for
breadboard, 2 pcs

These switches are for
breadboard usage. Note that
the pins must be cut to
suitable length before
mounted in the breadboard.

Panasonic: EVQ-11L05R
Digikey: P8079SCT-ND
Mouser: 667-EVQ-11L05R

LPCXpresso Experiment Kit - Userõs Guide Page 22

Copyright 2013 © Embedded Artists AB

Rotary encoder, 1 pcs
SW6

This component and can
only be soldered to the pcb
(i.e., not used on the bread
board).

Below is without center
switch.
Panasonic: EVE-
GA1F1724B
Digikey: P10859-ND
Mouser: 667-EVE-
GA1F1724B

Voltage regulator,
MCP1700-330, 1 pcs
U1

http://en.wikipedia.org/
wiki/Low-
dropout_regulator

This component is polarized.
One side of the plastic
package is flat and the other
side is rounded. When
mounting this component,
make sure it is turned
correctly.

Microchip: MCP1700-
3302E/TO
Digikey: MCP1700-
3302E/TO-ND
Mouser: 579-MCP1700-
3302E/TO

Microcontroller,
LPC1114FN28, 1 pcs
U2

This component is polarized.
There is a cut in one end of
the plastic package, on the
short side. This indicates
where pin 1 is located. When
mounting this component
make sure it is turned
correctly.

NXP: LPC1114FN28/102
Digikey:
LPC1114FN28/102,12-ND
Mouser: 771-
LPC1114FN28/1021

LPCXpresso Experiment Kit - Userõs Guide Page 23

Copyright 2013 © Embedded Artists AB

Headers for U2 This pair of connector headers
can (optionally) be soldered to
the pcb as a socket for U2. By
adding these
connectors/headers it is
possible to either mount the
LPCXpresso board (in J2
headers) or mount U2 in these
headers. If J2 headers are
mounted but these headers
are not, then it is not possible
to mount U2.

Sullins: PPTC141LFBN-RC
Digikey: S7012-ND

Shift register, 74HC595,
1 pcs
U3

http://en.wikipedia.org/
wiki/Shift_register

This component is polarized.
There is a cut in one end of
the plastic package, on the
short side. This indicates
where pin 1 is located ï lower
left side in the picture to the
left. When mounting this
component make sure it is
turned correctly.

NXP: 74HC595N
Digikey: 568-1484-5-ND
Mouser: 771-74HC595N

Temperature sensor,
MCP9701, 1 pcs
U4

This component is polarized.
One side of the plastic
package is flat and the other
side is rounded. When
mounting this component
make sure it is turned
correctly.

Microchip: MCP9701-E/TO
Digikey: MCP9701-E/TO-ND
Mouser: 579-MCP9701-E/TO

SPI flash, 25LC080, 1
pcs
U5

http://en.wikipedia.org/
wiki/Flash_memory

This component is polarized.
There is a cut in one end of
the plastic package, on the
short side. This indicates
where pin 1 is located. When
mounting this component,
make sure it is turned
correctly.

Microchip: 25LC080D-I/P
Digikey: 25LC080D-I/P-ND
Mouser: 579-25LC080D-I/P

LPCXpresso Experiment Kit - Userõs Guide Page 24

Copyright 2013 © Embedded Artists AB

Temperature sensor,
LM75, 1 pcs
U6

This is a surface mounted
component and can only be
soldered to the pcb (i.e., not
used on the bread board).

This component is polarized.
When rotating the components
so that the printed text on the
package can be read, pin 1 is
in the lower left side on the
package. When mounting this
component make sure it is
turned correctly.

NXP: LM75BD
Digikey: 568-4688-1-ND
Mouser: 771-LM75BD118

I2C port expander,
PCA9532, 1 pcs
U7

This is a surface mounted
component and can only be
soldered to the pcb (i.e., not
used on the bread board).

This component is polarized.
When rotating the components
so that the printed text on the
package can be read, pin 1 is
in the lower left side on the
package. When mounting this
component make sure it is
turned correctly.

NXP: PCA9532D
Digikey: 568-1039-5-ND
Mouser: 771-PCA9532D-T

12MHz HC49 crystal, 1
pcs
Y1

http://en.wikipedia.org/
wiki/Crystal_oscillator

This is not a polarized
component.

CTS-Freq. Controls: ATS120B
Digikey: CTX904-ND

LPCXpresso Experiment Kit - Userõs Guide Page 25

Copyright 2013 © Embedded Artists AB

5 Powering Options
There are a couple of different options how to power the experiments. Below is a short list,
summarizing the options:

Controller R2 Power option #1 Power via external +5V
supply (J1 or J17)

LPCXpresso board Do not mount R2 Power via USB
connector on
LPCXpresso board

Yes, can also be done

LPC1114 in DIL28 Mount R2 - Yes

mbed Do not mount R2 Power via mbed USB
connector

Yes, can also be done

If the servo interface, USB Host interface and/or RF module are used the board MUST be powered
via an external +5V supply. Powering via the USB connectors of the LPCXpresso/mbed module is
typically not enough.

Below is a more details description. Read through all different options to determine which powering
option fits your needs.

¶ The simplest and most common way is to let the LPCXpresso board generate the +3.3V
supply that is needed. This voltage is available on pin 29 on the LPCXpresso expansion
connector (see schematic for details). R2 should not be mounted in this case.

- The LPCXpresso board can supply up to about 100 mA on the +3.3V supply.
Note that by turning on all LEDs and activating all features on the board it is possible
to consume more than 100 mA.

- Note that the voltage is not exactly 3.3V, but a Schottky diode forward voltage drop
less, so around 3.15V.

¶ In case the LPCXpresso board is not powered via its USB connector an external +5V DC
supply is needed. Connect the external supply to J1 or J17 (as described below).

- If the internal +3.3V voltage regulator on the LPCXpresso board is used, R2 shall not
be mounted. Else R2 shall be mounted (and U1 is the +3.3V regulator in use).

¶ If current consumption on the +3.3V supply is higher that the LPCXpresso board can provide
an external +5V DC supply is needed. This is typically true when working with wireless/RF
modules and/or with the USB Host interface (J10 connector). When working with servo
motors an external +5V supply is absolutely needed.

- An external +5V DC supply can connect to J1, which is a 2.1mm power jack with
positive center pin. Note that there is no overvoltage protection in the design. Make
sure that the connected power supply does not supply more than +5V DC. The
current capability of the external +5V DC supply should be in the region of 1-2
Ampere.

- Connector J17 (mini-B USB connector on the back side of the pcb) can also be used
to supply an external +5V DC supply via the USB Host port on a PC/laptop/USB hub.

¶ When using the LPC1114 in DIL28 package an external +5V DC supply is needed. Feed the
+5V via J1 or J17 (as described above) and mount R2 (in order to let U1 be the +3.3V
regulator in use).

LPCXpresso Experiment Kit - Userõs Guide Page 26

Copyright 2013 © Embedded Artists AB

¶ When using an mbed module, this module can generate the needed +3.3V supply (supply
comes from its own USB connector). R2 should not be mounted in this case.

- The mbed module can supply much more current on the +3.3V supply than an
LPCXpresso board can.

- In case the mbed module is not powered via its USB connector, it is possible to
power it with an external +5V DC supply via connector J1 or J17 (as described
above).

LPCXpresso Experiment Kit - Userõs Guide Page 27

Copyright 2013 © Embedded Artists AB

6 Soldering
This chapter describes how to solder the components to the naked pcb. Note that when a component
has been soldered it can no longer be used for breadboard experiment.

This chapter will not present a full beginner tutorial on soldering, but rather point out how to get started.
There are many good soldering tutorials on the Internet, which can easily be found via a Google
search. Sparkfun has a good starting guide: http://www.sparkfun.com/tutorials/354. They also have a
series of guides for soldering SMD (Surface Mounted Device) components:
http://www.sparkfun.com/tutorials/36.

The following material is requires before you start soldering:

¶ Temperature regulated soldering iron (in the 30-80 Watt region)

¶ Thin (0.5-0.75 mm / 20-30 mil) solder with rosin-core and non-corrosive flux

¶ Damp sponge or brass sponge

¶ Wire cutter

¶ Safety glasses

It is also recommended to have a soldering fume extractor (or work in a well ventilated space and have
a fan that simply blows away the soldering fumes). In either case, be aware of the health issues with
soldering fumes.

6.1 Component Placement

The picture below illustrates the component placement on the pcb. The picture is also available as a
PDF where it is possible to search for the component designators.

http://www.sparkfun.com/tutorials/354
http://www.sparkfun.com/tutorials/36

LPCXpresso Experiment Kit - Userõs Guide Page 28

Copyright 2013 © Embedded Artists AB

Figure 2 ð LPCXpresso Experiment Kit PCB with Component Designators

LPCXpresso Experiment Kit - Userõs Guide Page 29

Copyright 2013 © Embedded Artists AB

7 Experiments
This chapter contains the experiments. It is recommended to follow the order of the experiments. It has
been compiled to give you the best learning curve. There are multiple small steps in the experiments
and they build upon each other. Where appropriate, some theoretical discussions have been added.

All experiments are based around the LPCXpresso LPC111x board unless otherwise noted. Both
LPCXpresso LPC1115 and LPC1114 boards are ok to use. Some of the experiments ï Ethernet and
USB - at the end of the chapter will use the LPCXpresso LPC1769 board. There is also a separate
section describing the differences between using the LPCXpresso LPC1115/LPC1114 and the
LPC1114 in DIL28 package.

It is recommended to download the LPC111x Userõs Manual from NXP and have it handy. This
document is also called UM10398. Many references into this document will be done and this is also
part of the learning ï how to find the relevant information in a userôs manual. It is also recommended to
have the schematic available.

It is further recommended to start working with the breadboard, as opposed to start soldering all
components to be pcb. A better time to solder the components is after having completed all the initial,
basic experiments.

7.1 Preparation

One preparation is needed before it is possible to start with the experiments. The LPCXpresso
LPC111x board must be made experiment friendly ï a header with female and make connectors shall
be soldered to the LPCXpresso board. See picture below for details. Note that there are two sets (of
two) of similar 27 position headers in the component kit. It is the headers with long pins that shall be
soldered to the LPCXpresso board.

Figure 3 ð LPCXpresso Board with Prototype Headers

7.2 Control a LED

In this first experiment you will learn how to control the I/O pins of the LPC111x microcontroller. More
specifically you will learn how to control a LED. This first experiment will have a very detailed
description since it is the first one and there are a lot of things to learn about how to create, compile,
download and debug a program in the LPCXpresso IDE. The level of details in the descriptions will
gradually decrease in later experiments.

LPCXpresso Experiment Kit - Userõs Guide Page 30

Copyright 2013 © Embedded Artists AB

7.2.1 Lab 1a: Control LED

We will start with controlling LED1 in the schematic, which is found in the schematic on page 4, upper
left corner. LED1ôs cathode is connected to signal GPIO_4-LED-SSEL.LED1ôs anode is connected to
+3.3V via a (current limiting) series resistance. Figure 4 illustrates were LED1 can be found in the
schematic. On schematic page 2, we can see that this signal is connected to PIO0_2 on the
LPCXpresso LPC1115 board. Figure 5 illustrates where to find the signal and also where to find the
+3.3V supply.

Figure 4 ð LED1 on Schematic Page 4

Figure 5 ð Signal GPIO_4-LED-SSEL on Schematic Page 2

As a first step, get a LED (representing LED1), a 330 ohm resistor (representing R4), two male-to-male
prototype cables and the breadboard from the components bag. Mount these on the breadboard and

LPCXpresso Experiment Kit - Userõs Guide Page 31

Copyright 2013 © Embedded Artists AB

connect to the LPCXpresso LPC111x board, as illustrated in Figure 6. Note that only the target
processor part of the LPCXpresso board is shown ï the black box labeled LPCXpresso board. The
photo to the left illustrates which part of the real LPCXpresso his black box represents.

Figure 6 ð Breadboard Connections for LED1 (breadboard view)

Figure 7 below illustrates how it can look like in reality. Note that the connections on the breadboard
are slightly different than outlined in Figure 6 above. It demonstrates that it is possible to make the
connections in many different, yet compatible, ways.

LPC-Link side

LPC111x target side

LPCXpresso Experiment Kit - Userõs Guide Page 32

Copyright 2013 © Embedded Artists AB

Figure 7 ð Breadboard Connections for LED1 (real photo)

The current through the Light Emitting Diode (LED) is limited and controlled by the series resistor. It
has to be limited since the voltage drop across the LED is fairly constant. The voltage difference
between the LEDôs forward voltage drop and driving voltage must be absorbed by the series resistor.
The current through the LED (and series resistor) can be calculated as I = (Vsupply ï Vleddrop) / R.
Different LEDs have different typical current levels. It can be 1, 2, 10, 20 mA for smaller LEDs. Bigger
LEDs can have much higher ratings.

The LED forward drop voltage is typically 1.5V for a red LED. Other colors have different forward
voltage drops. There are also variations between different brands. Consult the LEDôs datasheet for
details about forward voltage drop and current level. The red LEDôs included in the component kit has
a forward voltage drop of 1.5V and designed for 10mA current. With a 330 ohm series resistor the
current is limited to about 5mA, which is OK also. The light intensity at 5mA is acceptable for our
(experiment) purposes.

The current level determines the driving method. For moderate levels (typically below 4 mA) most
microcontrollers and logic gates can drive the LED directly. This is the method used in our
experiments. Some microcontrollers have high-current capacity outputs. The LPC1110 family
microcontrollers have a 20 mA output pin (PIO0_7, see datasheet for details).

Almost all output pins have higher current capabilities sinking current than driving current. It is
therefore common to connect LEDs like in Figure 4, with the cathode connected to the microcontroller
pin. When driving, current is flowing into the micro controller pin (i.e., sinking current).

Another reason for letting the microcontroller drive the LED by sinking current is that most
microcontrollers power-up with all pins as inputs with pull-up resistors enabled. This basically means
that the pin will be driven high weakly. The LED will not turn on shortly during a power-up. It will be at a
known (off) state until the application program controls the LED actively.

If the driving current is higher (> 5 mA) a high-current driver chip can be used, or discrete
transistors/mosfets.

A LED is a polarized component, meaning that it matters how the two ends are connected. The two
ends are called anode and cathode, respectively. Current flows from anode to cathode, but blocks in
the reverse direction. Sometimes the anode is called the positive side and cathode the negative side.
The cathode is typically marked somehow on a LED (shorter pin, cut in plastic package, etc).

Mounting a LED the wrong way has no catastrophic result. The result is that the LED will not light
(since current through the LED will be blocked). Failing to add the series resistor will have more sever
effects, though. Depending on high strong (how much current it can deliver) the power supply is, the
current level through the LED can become high enough to destroy the LED. Therefore, be careful to
always connect a series resistor with correct resistance value.

The LPC111x is a relatively low pin count processor with only 48 pins. This is true for the package
used on the LPCXpresso board. There are other packages with different number of pins for this
processor also. The external pins on the chip package are not enough for connecting all internal
peripheral units to unique pins. Instead each I/O pin has up to four alternative connections. Read the
LPC111x userôs manual for more information. You will have to read a lot in this document so you better
get started immediately. Have a look in chapter 7 - LPC1100/LPC1100C/LPC1100L series: I/O
configuration in the LPC111x userôs manual for a description of the how the alternative pin functions
can be controlled.

Pin PIO0_2 is controlled by register IOCON_PIO0_2. In the description for this register we can see that
there are three alternative pin functions:

- PIO0_2, a general purpose input/output, port #0, pin #2

LPCXpresso Experiment Kit - Userõs Guide Page 33

Copyright 2013 © Embedded Artists AB

- SSEL0, a control signal for peripheral block SSP

- CT16B0_CAP0, an input signal to 16-bit timer #0

Note that only one functional signal can be connected to the pin at any given point in time. It is
however possible to change during program execution. By default, after reset, the register is initialized
to PIO0_2, have a pull-up resistor enabled, input hysteresis disabled and to be a standard push/pull
GPIO output (if defined as an output). Another register controls the direction of the general purpose
digital input/output and this register initialize PIO0_2 to be an input after reset.

Hence, after a reset, PIO0_2 is an input with pull-up resistor enabled. The pin is pulled high weakly but
cannot source any larger current. That means that LED1 will be off after reset (because the LED will
turn on when PIO0_2 is pulled low and if enough current can sink into the pin).

All LPC111x registers are defined in file: LPC11xx.h . It is part of the framework needed to program

the LPC111x. Have a look in file LPC11xx.h . It is found in the CMSIS library, in the inc sub-

directory.

What address is register IOCON_PIO0_2 defined as? _________________________________
(you will have to derive the address in several steps ï tip: start searching for the LPC_IOCON register

at the end of the LPC11xx.h file. The register will be accessed as: LPC_IOCON- >PIO0_2)

Is the derived address the same as in the LPC111x userôs manual? ____________

Now, have a look in chapter 12: LPC111x/LPC11Cxx General Purpose I/O (GPIO) in the LPC111x
userôs manual for a description of how the general purpose I/O functionality is controlled. There is a
GPIO data direction register that controls the direction of each pin in a port. PIO0_2 belongs to port #0.
Bit #2 in register GPIO0DIR controls the direction of the pin. See Figure 8 for details.

Figure 8 ð GPIO Data Direction Register

Register GPIO0DATA holds the current state of the pins in port #0. Bit 2 in this register reflects the
state of pin PIO0_2. This is regardless if the pin is an input or output. If a pin is an output the value in
GPIOxDATA is driven to the pin.

Figure 9 ð GPIO Data Register

There are also several registers related to interrupt functionality. We will not work with that right now. In
later experiments we will return to this.

LPCXpresso Experiment Kit - Userõs Guide Page 34

Copyright 2013 © Embedded Artists AB

Note that registers GPIO0DIR and GPIO0DATA are accessed as LPC_GPIO0->DIR and
LPC_GPIO0->DATA, respectively.

Below is the two statements needed to first set PIO0_2 to an output and then pull the output low. This
will turn the LED on.

// Set PIO0_2 as an output

LPC_GPIO0- >DIR = LPC_GPIO0- >DIR | (0x1<<2);

// Turn LED1 on = s et PIO0_2 pin low, i.e., clear bit

LPC_GPIO0- >DATA = LPC_GPIO0- >DATA & ~(0x1<<2);

As seen, each of the registers is first read and then bit #2 is manipulated. In the first statement, bit #2
is set which makes PIO0_2 an output. In the second statement, bit #2 is set to zero. This pulls PIO0_2
low.

Note that all bits in the registers must be read and only the bit of interest shall be manipulated. The
shift operation, (0x1<<2), is a good way of writing code. The ñ<<2ò part indicates clearly that it is bit #2
that is manipulated. It is simpler for a reader of the code to quickly see this than to write the constant
value 0x04.

Below is an alternative, more compact way of writing the statements. This is a common way to write
this kind of statements.

// Set PIO0_2 as an output

LPC_GPIO0- >DIR | = (0x1<<2);

// Turn LED1 on = set PIO0_2 pin low, i.e., clear bit

LPC_GPIO0- >DATA &= ~(0x1<<2);

In real, professional programs, it is common to use defines to hide details about hardware
manipulation. Below is an example of how this can be done.

// Create defines for simple r access of LED1

#define DIR_REG_LED1 LPC_GPIO0- >DIR

#define DATA_REG_LED1 LPC_GPIO0- >DATA

#define PIO_PIN_LED1 2

#define LED1_ON DATA_REG_LED1 &= ~(1<<PIO_PIN_LED1)

#define LED1_OFF DATA_REG_LED1 |= (1<<PIO_PIN_LED1)

// Set PIO0_2 as an output

DIR_REG_LED1 |= (0x1<<PIO_PIN_LED1);

// Turn LED1 on

LED1_ON;

It is possible to take the principles further and create general macros for handling all ports and pins.
This was just an example of how to create well-structured, maintainable and professionally looking
code.

Chapter 9 contains a description how to get started with the LPCXpresso IDE. Read this chapter and
follow the guide how to import the projects. Start working with project ñlab 1aò, which is the base for
this first experiment.

After compiling and linking without errors, follow the guide how to download and run the project.

In embedded programming it is important to have full control over the variables, more specifically the
number range they can hold. The original C standard was a little vague on the number of bits different
variable types have. It is specified as ñat least X number of bitsò and there is a specified order between
different types. However in embedded programming the exact number of bits is important to keep track
of. Therefore it is common to have an include file that have created/specified new variable types with
the number of bits exactly specified. We will use this setup in all experiments.

LPCXpresso Experiment Kit - Userõs Guide Page 35

Copyright 2013 © Embedded Artists AB

Include a file called type.h in all program files. The main content of the file is presented below:

#if defined (__GNUC__)

#include <stdint.h>

#else

/* exact - width signed integer types */

typedef signed char int8_t;

typedef signed short int int16_t;

typedef signed int int32_t;

typedef signed __int64 int64_t;

/* exact - width unsigned integer types */

typedef unsigned char uint8_t;

typedef unsigned short int uint16_t;

typedef unsigned int uint32_t;

typedef unsigned __int64 uin t64_t;

#endif // __GNUC__

#ifndef NULL

#define NULL ((void *)0)

#endif

#ifndef FALSE

#define FALSE (0)

#endif

#ifndef TRUE

#define TRUE (1)

#endif

As seen, there are four signed and four unsigned variable types of length 1, 2, 4 or 8 bytes (8, 16, 32,
or 64 bits). The file also declares the commonly used constants: NULL, FALSE and TRUE.

Code becomes much more portable (between different compilers) if a common include file like this is
used. It also becomes more readable.

7.2.2 Lab 1b: GPIO and Bit Masking

There is hardware support in the GPIO peripheral block for accessing selected bits, as opposed to
accessing all of them. This is described in the LPC111x userôs manual, chapter 12.4.1 ï Write/read
data operations. In short, the GPIOxDATA register can be accessed on many different addresses. The
address used to access the register determines which bit(s) that is/are accessed.

Below is a copy of a function from NXPôs driver library for the LPC111x. As seen, it is a general
function for manipulating any GPIO output (any port, any pin). The array named
MASKED_ACCESS[é] is used to get the correct access address to the GPIOxDATA register, given
which bit(s) to access. Note that the function below only allows one bit at a time to be accessed.
(1<<bitPosi) is used to index into array MASKED_ACCESS[é]. It is possible to create more general
access functions where several pins can be controlled simultaneous, for example
MASKED_ACCESS[(1<<bitPosi1) | (1<<bitPosi2) | (1<<bitPosi3)].

/********************************* **

** Function name: GPIOSetValue

**

** Descriptions: Set/clear a bitvalue in a specific bit position

** in GPIO portX(X is the port number.)

**

** parameters: port num, bit position, bit value

** Returned v alue: None

**

***/

void

GPIOSetValue(uint32_t portNum, uint32_t bitPosi, uint32_t bitVal)

{

 // Check that bitVal is a binary value - 0 or 1

 if (bitVal <2)

 {

 /* The MASKED_ACCESS registers give the ability to write to a specific bit

LPCXpresso Experiment Kit - Userõs Guide Page 36

Copyright 2013 © Embedded Artists AB

 * (or bits) within the GPIO data register. See the LPC11/13 user manual

 * for more details.

 *

 * (1<<bitPosi) gives us the MASKED_ACCESS register specific to the bit

 * that is being requested to be set or cleared.

 *

 * (bitVal<<bitPosi) will be either be 0 or will contain a 1 in the

 * appropriate bit position that matches the MASKED_ACCESS register

 * being written to.

 */

 switch (portNum)

 {

 case PORT0:

 LPC_GPIO0- >MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi);

 break;

 case PORT1:

 LPC_GPIO1- >MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi);

 break;

 case PORT2:

 LPC_GPIO2- >MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi);

 break;

 case PORT3:

 LPC_GPIO3- >MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi);

 break;

 default:

 break;

 }

 }

}

Create a similar, general function for setting the direction of any GPIO pin (input or output). Call this

new function GPIOSetDir . The functionôs input parameters shall be port number, bit number and

direction.

After that, recreate the program from the previous experiment using these two new functions.

It is good programming practice to place functions that are related in separate files. It will enhance tile
source code structure and make it easier to maintain and understand in general. An accompanying
include file (h-file) declares the functions that are exposed to other source code files.

Place the GPIO related functions in a separate file called gpio. c and create an include file,

gpio. h, that declares the exposed functions.

Also, in order to keep the file main .c reasonable short move all defines that are related to the board

to a separate include file board.h .

7.2.3 Lab 1c: Delay Function ï LED Flashing

Next, design a program that flash with the LED ï 50 ms (milli seconds) on, 150 ms off, 50 ms on and
finally and 750 ms off. Continuously repeat this 1000 ms cycle.

In is a common task in embedded systems to operate on exact time and control external devices
exactly. In this case a LED.

One obvious solution is to create a delay function. An example is listed below that forced the CPU to
execute NOP (no operation) instructions in a loop. Use this function and test different values in order to
establish a relationship between the number of NOPs and the actual delay in time.

LPCXpresso Experiment Kit - Userõs Guide Page 37

Copyright 2013 © Embedded Artists AB

/*

 * Delay by executing a given number of NOPs.

 */

void

delayNops(uint32_t nops)

{

 volatile uint32_t i;

 for (i = 0; i < nops; i++)

 asm volatile ("nop");

}

About how many NOPs are needed for a 1 second delay? ______________________________

What does this tells you about the execution speed of the LPC111x? ______________________

Note that delay loops like this should never be used in real programs. All processor execution time is
ñlostò in the loop and no other useful work is done. Also, the delay can vary depending on what other
parts of the system do (for example how much time is spent in interrupt routines, which will be
introduced later on). Later on we will explore other method of creating exact delay functions, so for
now, the loop method will have to do.

Create a function that delays execution a specified number of milliseconds (as input parameter). Place
the function in a separate file delay.c . After that, create the program that double-flash the LED

according to the specification above.

Now can be a good time to get acquainted a bit more with the debugger, specifically single stepping.
This means that the debugger let the microcontroller execute one statement at a time, and stops after
every line. Note that for this to work the compiler optimization most not be turned on too heavily. ïO0
and ïO1 is typically what work. More optimization will rearrange the code so there are no clear
boundaries between the source code statements (= rows in the source code).

Instead of pressing the Start/Resume button it is possible to press the Step Over or Step Into
buttons. Both ñstepò buttons will stop execution after the current statement. The difference is that if the
statement involves a function call, Step Over will not single step through all statements in the function
that is called. Step Into will do just this.

The current experiment exemplified just perfect where the different is. When hitting the delay function it
is best to Step Over, instead of into it. Single stepping through all the loop iterations would take
forever.

Add a loop counter in the forever loop. Set a breakpoint in the forever loop in main() so that execution
halts every loop iteration. Verify that it is possible to get the value of the loop variable by hovering over
the variable. Remove the breakpoint and test single stepping, with both Step Over and Step Into.

Figure 10 ð LPCXpresso IDE Step Over/Into Buttons

7.2.4 Lab 1d: Morse Code

Create a function that flashes the LED according to the Morse code alphabet. Check the Wiki for

details: http://en.wikipedia.org/wiki/Morse_code. The function shall take an arbitrary string as input and
send the string by flashing the LED.

Step over Step into Pause

LPCXpresso Experiment Kit - Userõs Guide Page 38

Copyright 2013 © Embedded Artists AB

7.3 Read a Digital Input

In this experiment you will learn how to control the I/O pins of the LPC111x as inputs. More specifically
you will learn how to read a digital input that reflects that state of a push-button.

7.3.1 Lab 2a: Read Push-button

We will start with reading the state of push-button SW2 in the schematic, which is found in the
schematic on page 4, lower left corner. SW2 is connected to signal GPIO_17-KEY. Figure 11
illustrates were SW2 can be found in the schematic. On schematic page 2, we can see that this signal
is connected to PIO1_5 on the LPCXpresso LPC111x board. Figure 12 illustrates where to find the
signal and also where to find the GND pin.

Figure 11 ð SW2 on Schematic Page 4

Figure 12 ð Signal GPIO_17-KEY on Schematic Page 2

LPCXpresso Experiment Kit - Userõs Guide Page 39

Copyright 2013 © Embedded Artists AB

Keep the previously mounted LED. Get a push-button (representing SW2) and a 330 ohm resistor
(representing R31) from the components bag. Note that there are two types of push-buttons; for pcb
mounting and for breadboard mounting. It is the latter that shall be used now. Mount the push-button
and resistor on the breadboard and connect to the LPCXpresso LPC111x board, as illustrated in
Figure 13.

Figure 13 ð Breadboard Connections for SW2 and LED

It is common that microcontroller input pins have built-in pull-up resistors. If the input is not driven the
input is high. Sometimes the behavior of the pins is very programmable, for example if pull-up or pull-
down resistors and input hysteresis shall be enabled. In this experiment a pull-up resistor must be
enabled on the input pin. When pressing the push-button it will actively pull the input pin to ground.
Else the internal pull-up resistor will pull the input high.

It is important to check the datasheet how strong the pull-up resistors are so that the external signal
can pull the pin low and vice versa that the built-in pull-up resistor can pull an inactive signal high.

The series resistor is for protection if the (supposedly) input pin is an output. If that output is pulled high
by the microcontroller and the push-button is pressed, the output could be damaged due to excessive
current flowing to ground if a series resistor does not limit the current. The situation is not an imaginary
situation. Suppose there already is an application running on the microcontroller from a previous
experiment. That application might very well use the pin as an output. Before the correct application
has been downloaded the damaged can happen. Therefore it is a good practice to add series resistors
to all signals that can drive a microcontroller pin - the key in this case, which can drive the signal low.

Pin PIO1_5 is controlled by register IOCON_PIO1_5 (check chapter 7 -
LPC1100/LPC1100C/LPC1100L series: I/O configuration in the LPC111x userôs manual). In the
description for this register we can see that there are three alternative pin functions:

- PIO1_5, a general purpose input/output, port #1, pin #5

LPCXpresso Experiment Kit - Userõs Guide Page 40

Copyright 2013 © Embedded Artists AB

- RTS, a control output signal for peripheral block UART

- CT32B0_CAP0, an input signal to 32-bit timer #0

By default, after reset, the register is initialized to PIO1_5, have a pull-up resistor enabled and disabled
input hysteresis. As we know from the previous experiment, there is another register that controls the
direction of the general purpose digital input/output and this register initialize PIO1_5 to be an input
after reset.

Hence, after a reset, PIO1_5 is an input with pull-up resistor enabled. The pin is pulled high weakly
which is exactly what we need. When pressing the push-button the pin will be pulled low. The input will
be read high when no push-button is pressed and low when it is pressed.

In Experiment 1b, a function called GPIOSetDir was created. Even thought the direction of

PIO1_5 is correct from reset it is good programming practice to initialize the pin according to need. It is
simpler for other programmers to read and understand an application if there are no hidden
assumptions.

Register LPC_GPIO1->DATA holds the current state of the pins in port #1. Bit 5 in this register reflects
the state of pin PIO1_5. Since the register reflects all pins in the port the bit of interest must be masked
out. Use the same principle as presented in Lab 1a, i.e., AND with (1 << bitNumber).

Create a program that reads the state of the pin (and hence the push-button) and copy the result to a
LED. Turn on the LED when the push-button is pressed. Below is the skeleton of the program that you
shall create.

// Create defines for simpler access of LED1

#define LED 1_PORT PORT0

#define LED 1_PIN 2

#define LED_ON 0 //Low output turn LED on

#define LED_OFF 1 //High output turn LED off

// Create define for simpler access of push - button

#define SW2 _PIN 5

// Initialize pins to be inputs and outputs,

// set outputs to defined states

...

uint8_t ledState;

//enter forever loop

while (1)

{

 // Check if push - button is pressed (input is low)

 if ((LPC_GPIO1- >DATA & (1 << SW2_PIN)) == 0)

 ledState = LED_ON;

 else

 ledState = LED_OFF ;

 // Control LED

 GPIOSetValue (LED1_PORT, LED1_PIN, ledState);

}

There are many things that can be done to create macro/defines to get a better abstraction structure of
the program above. First, the push-button states (pressed, not pressed) can have constants defined.
The LPC_GPIO1->DATA register can be defined as #define SW2_DATAPORT LPC_GPIO1->DATA. It
is also possible to create a general SW2_VALUE macro where the pin state is returned.

Update the code above according to these principles (more general and better structured code).

It is also possible to create a general function GPIOGetValue(), just like GPIOSetValue(). This will be
an exercise in the next experiment.

LPCXpresso Experiment Kit - Userõs Guide Page 41

Copyright 2013 © Embedded Artists AB

7.3.2 Lab 2b: GPIO and Bit Masking

As presented in Lab 1b there is hardware support in the GPIO peripheral block for accessing selected
bits, as opposed to accessing all of them. This is described in the LPC111x userôs manual, chapter
12.4.1 ï Write/read data operations. In short, the LPC_GPIOx->DATA register can be accessed on
many different addresses. The address used to access the register determines which bit(s) that is/are
accessed.

The function prototype is presented below. Create a version of the function that utilizes the masked
read functionality. Also create a version of the function that utilizes the bit masking we have used in
previous labs.

/***

** Function name: GPIOGetValue

**

** Descriptions: Read (bit)value in a specific bit position

** in GPIO portX(X is the port number.)

**

** parameters: port num, bit position

** Returned value: 0 if bit is not set, else a non - zero value (if bit is set)

**

******************************* **/

uint8_t GPIOGetValue(uint32_t portNum, uint32_t bitPosi)

{

 ... //implemented either with ñmasked readò functionality in the GPIO hardware

 ... // or via direct bit masking with GPIOxDATA & (1 << bit)

}

Compare which functions is fastest. A simple method is to create a loop and call the function a million
times. Turn on a LED before starting the loop and turn it off after the loop. Manually clock the time the
LED is on. To get the execution time for one call, divide this LED-on-time with one million.

Place the function in file gpio.c .

7.3.3 Lab 2c: Logic between inputs and output

In this experiment we will introduce logic between the input (push-buttons) and the output (a LED and
a buzzer). Letôs begin with connecting two push-buttons, SW2 (which we already have) and SW3.
According to Figure 11 and Figure 12, SW3 is connected to signal GPIO_16-KEY, which in turn is
connected to PIO1_4. Figure 13 below illustrates how the connection can be done on the breadboard.

Create a program that reads the two push-buttons and turn on the LED only when both are pressed
simultaneous. Then change the logic so that the LED is on if only one of the push-buttons is pressed,
but not both.

The program structure will be the same as in Lab 2a and 2b, a forever loop. Read both inputs and then
calculate the output value and output it.

LPCXpresso Experiment Kit - Userõs Guide Page 42

Copyright 2013 © Embedded Artists AB

Figure 14 ð Breadboard Connections for SW2, SW3 and LED

Another output device, besides a LED, is a buzzer. A buzzer outputs a single frequency tone when
driving current through it. A PNP-transistor is controlling the current through the buzzer. Pulling the
base of the transistor low will enable the current through the transistor (and hence the buzzer). The
series resistor on the transistorôs base connection limits the current (since signal GPIO_7-BUZZ will be
close to ground, 0V, when pulled low by the LPC111x and a PNP bipolar junction transistorôs emitter-
base voltage is fixed to around 0.7V).

Figure 15 ð Buzzer on Schematic Page 4

