High Voltage High and Low Side Driver

The NCP5181 is a High Voltage Power MOSFET Driver providing two outputs for direct drive of 2 N–channel power MOSFETs arranged in a half–bridge (or any other high–side + low–side) configuration.

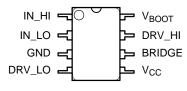
It uses the bootstrap technique to insure a proper drive of the High–side power switch. The driver works with 2 independent inputs to accommodate any topology (including half–bridge, asymmetrical half–bridge, active clamp and full–bridge...).

Features

- High Voltage Range: up to 600 V
- dV/dt Immunity ±50 V/nsec
- Gate Drive Supply Range from 10 V to 20 V
- High and Low DRV Outputs
- Output Source / Sink Current Capability 1.4 A / 2.2 A
- 3.3 V and 5 V Input Logic Compatible
- Up to V_{CC} Swing on Input Pins
- Matched Propagation Delays between Both Channels
- Outputs in Phase with the Inputs
- Independent Logic Inputs to Accommodate All Topologies
- Under V_{CC} LockOut (UVLO) for Both Channels
- Pin to Pin Compatible with IR2181(S)
- These are Pb–Free Devices

Applications

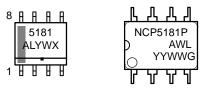
- High Power Energy Management
- Half–bridge Power Converters
- Any Complementary Drive Converters (asymmetrical half-bridge, active clamp)
- Full-bridge Converters
- Bridge Inverters for UPS Systems


PIN ASSIGNMENT

PIN	FUNCTION		
IN_HI	Logic Input for High Side Driver Output In Phase		
IN_LO	Logic Input for Low Side Driver Output In Phase		
GND	Ground		
DRV_LO	Low Side Gate Drive Output		
V _{CC}	Low Side and Main Power Supply		
V _{BOOT}	Bootstrap Power Supply		
DRV_HI	High Side Gate Drive Output		
BRIDGE	Bootstrap Return or High Side Floating Supply Return		

ON Semiconductor®

www.onsemi.com



SOIC-8 D SUFFIX CASE 751

PDIP-8 P SUFFIX CASE 626

MARKING DIAGRAMS

NCP5181P,

5181 = Specific Device Code A = Assembly Location

- L = Wafer Lot
- Y, YY = Year
- W, WW = Work Week
- G or = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NCP5181PG	PDIP-8 (Pb-Free)	50 Units/Tube
NCP5181DR2G	SOIC-8 (Pb-Free)	2.500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

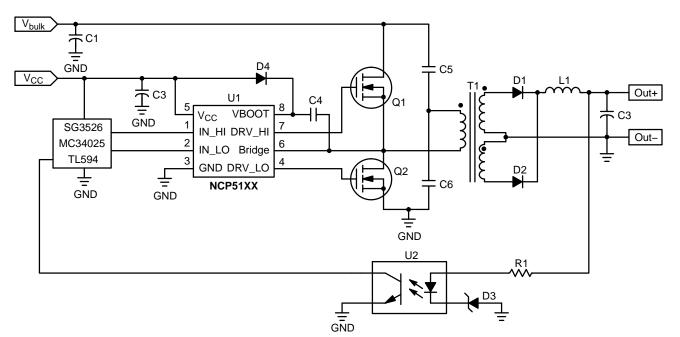


Figure 1. Typical Application

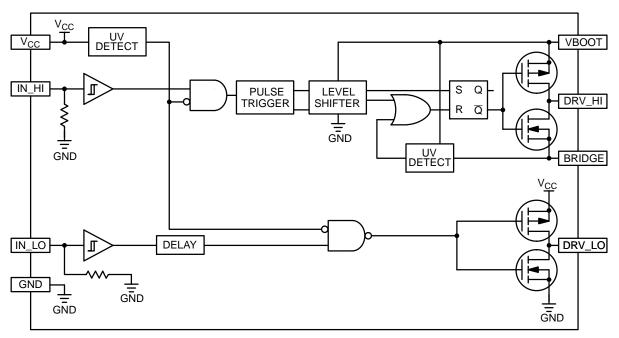


Figure 2. Detailed Block Diagram

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Main Power Supply Voltage	V _{CC}	-0.3 to 20	V
VHV: High Voltage BOOT Pin	V _{BOOT}	-1 to 620	V
VHV: High Voltage BRIDGE Pin	V _{BRIDGE}	-1 to 600	V
VHV: Floating Supply Voltage	V _{BOOT} – V _{BRIDGE}	0 to 20	V
VHV: High Side Output Voltage	V _{DRV_HI}	V _{BRIDGE} -0.3 to V _{BOOT} +0.3	V
Low Side Output Voltage	V _{DRV_LO}	–0.3 to V _{CC} +0.3	V
Allowable Output Slew Rate	dV _{BRIDGE} /d _t	50	V/ns
Inputs IN_HI, IN_LO	V _{IN_XX}	-1.0 to V _{CC} +0.3	V
ESD Capability: Human Body Model (All Pins Except Pins 6–7–8) Machine Model (All Pins Except Pins 6–7–8)		2.0 200	kV V
Latchup Capability per Jedec JESD78			
Power Dissipation and Thermal Characteristics PDIP8: Thermal Resistance, Junction–to–Air SO–8: Thermal Resistance, Junction–to–Air	R _{θJA} R _{θJA}	100 178	°C/W
Maximum Operating Junction Temperature	T _{J_max}	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (V _{CC} = V _{boot} = 15 V, V _{and} = V _{bridge} , -40°C < T _A < 125°C, Outputs loaded with 1 nF))
--	---

Rating	Symbol	T _A −40°C to 125°C		5°C	Units
OUTPUT SECTION					
		Min	Тур	Max	
Output High Short Circuit pulsed Current V_{DRV} = 0 V, PW \leq 10 μ s, (Note 1)	I _{DRVhigh}	-	1.4	-	А
Output Low Short Circuit Pulsed Current $V_{DRV} = V_{CC}$, PW \leq 10 μ s, (Note 1)	I _{DRVlow}	-	2.2	-	A
Output Resistor (Typical Value @ 25°C Only) Source	R _{OH}	-	5	12	Ω
Output Resistor (Typical Value @ 25°C Only) Sink	R _{OL}	_	2	8	Ω
DYNAMIC OUTPUT SECTION				•	
Rating	Symbol	Min	Тур	Max	Units
Turn–on Propagation Delay (V _{bridge} = 0 V)	t _{ON}	-	100	170	ns
Turn–off Propagation Delay (V _{bridge} = 0 V or 50 V) (Note 2)	t _{OFF}	-	100	170	ns
Output Voltage Risetime (from 10% to 90% @ V_{CC} = 15 V) with 1 nF Load	t _r	-	40	60	ns
Output Voltage Falling Edge (from 90% to 10% @ V _{CC} = 15 V) with 1 nF Load	t _f	-	20	40	ns
Propagation Delay Matching between the High Side and the Low Side @ 25°C (Note 3)	Δ_{t}	-	20	35	ns
Minimum Input Pulse Width that Changes the Output	t _{PW}	_	-	100	ns
INPUT SECTION					
Low Level Input Voltage Threshold	V _{IN}	_	-	0.8	V
Input Pulldown Resistor (V _{IN} < 0.5 V)	R _{IN}	_	200	-	kΩ
High Level Input Voltage Threshold	V _{IN}	2.3	-	-	V
SUPPLY SECTION					
V _{CC} UV Startup Voltage Threshold	V _{CC_stup}	7.9	8.9	9.8	V
V _{CC} UV Shutdown Voltage Threshold	V _{CC_shtdwn}	7.3	8.2	9.0	V
Hysteresis on V _{CC}	V _{CC_hyst}	0.3	0.7	-	V
V _{boot} Startup Voltage Threshold Reference to Bridge Pin (V _{boot_stup} = V _{boot} – V _{bridge})	V _{boot_stup}	7.9	8.9	9.8	V
Vboot UV Shutdown Voltage Threshold	V _{boot_shtdwn}	7.3	8.2	9.0	V
Hysteresis on V _{boot}	V _{boot_shtdwn}	0.3	0.7	-	V
Leakage Current on High Voltage Pins to GND (V _{BOOT} = V _{BRIDGE} = DRV_HI = 600 V)	I _{HV_LEAK}	-	0.5	40	μΑ
Consumption in Active Mode $(V_{CC} = V_{boot}, f_{sw} = 100 \text{ kHz and } 1 \text{ nF Load on Both Driver Outputs})$	I _{CC1}	-	4.5	6.5	mA
Consumption in Inhibition Mode (V _{CC} = V _{boot})	I _{CC2}	-	250	400	μΑ
V _{CC} Current Consumption in Inhibition Mode	I _{CC3}	-	215	-	μΑ
Vboot Current Consumption in Inhibition Mode	I _{CC4}	_	35	-	μΑ

*Note: see also characterization curves

1. Guaranteed by design. 2. Turn-off propagation delay @ V_{bridge} = 600 V is guaranteed by design 3. See characterization curve for Δ_t parameters variation on the full range temperature. 4. Timing diagram definition see Figures 4, 5 and 6.

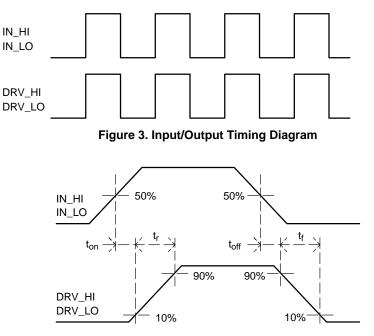
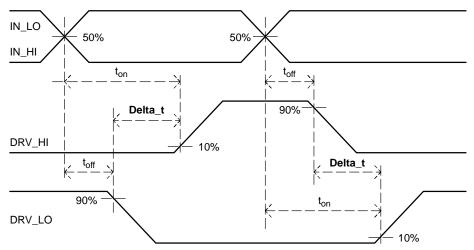
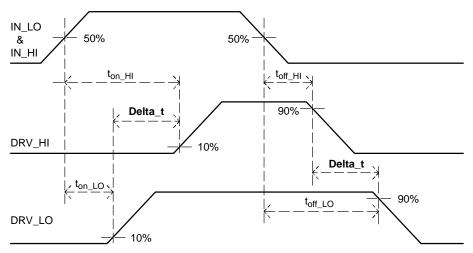
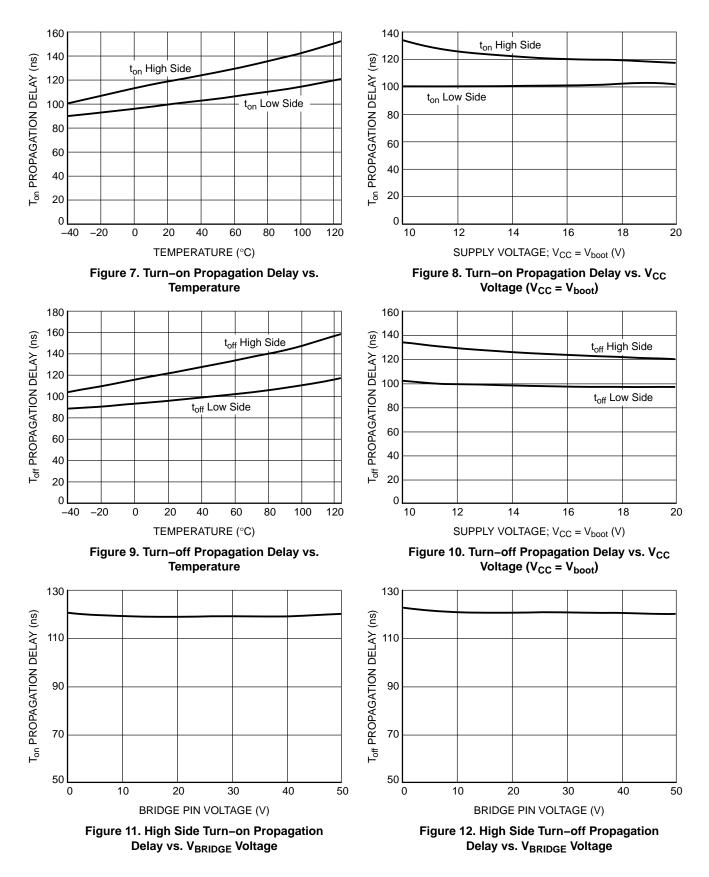
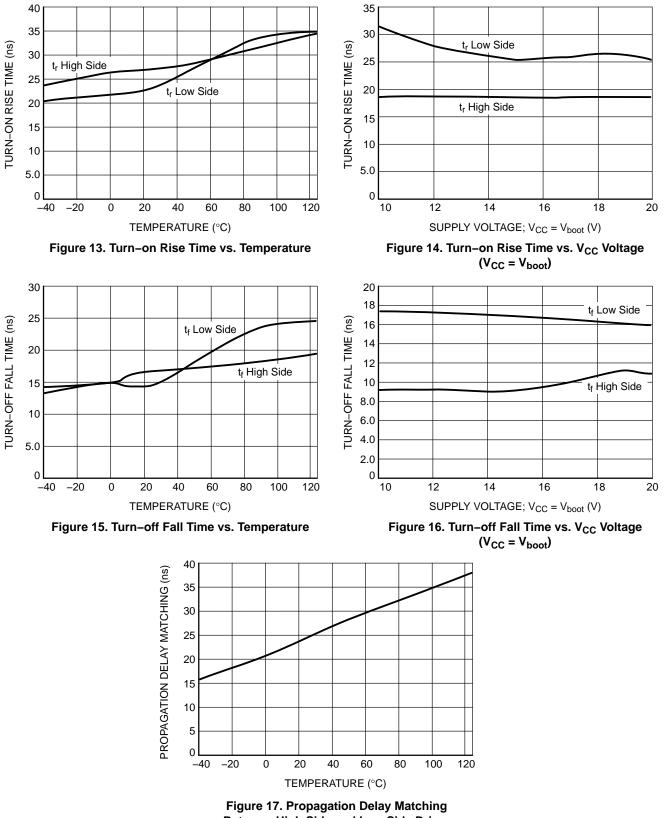
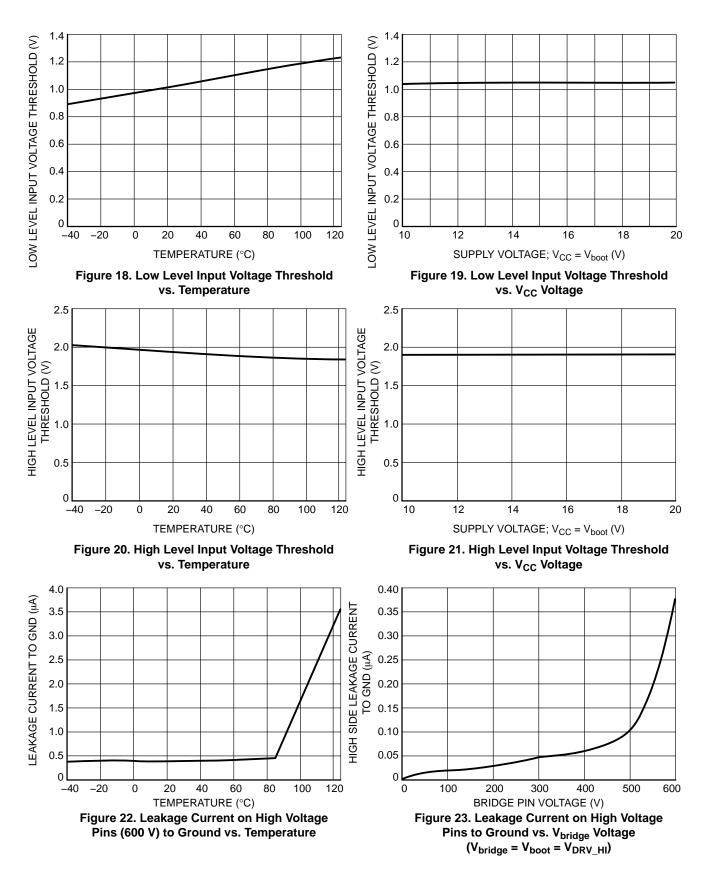
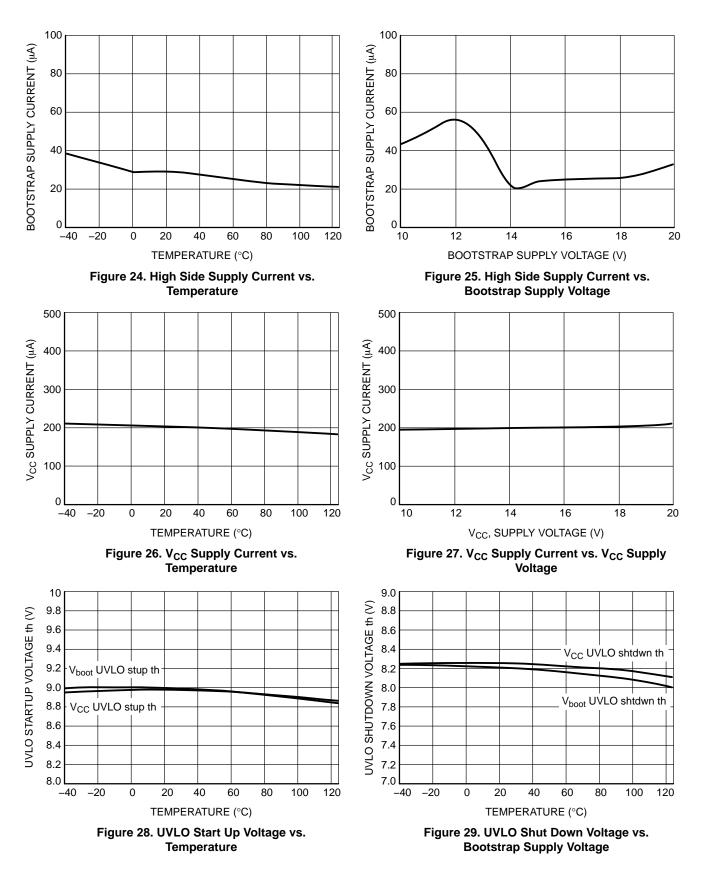


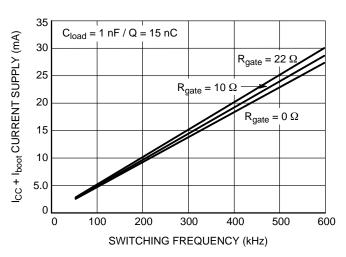
Figure 4. Switching Time Waveform Definitions

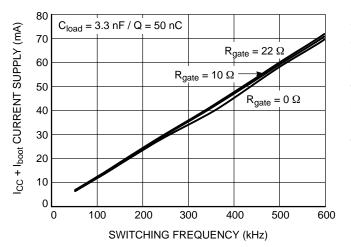

Figure 5. Delay Matching Waveforms Definition

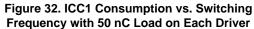





TYPICAL CHARACTERISTICS




Between High Side and Low Side Driver



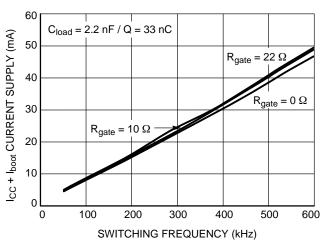


Figure 31. ICC1 Consumption vs. Switching Frequency with 33 nC Load on Each Driver

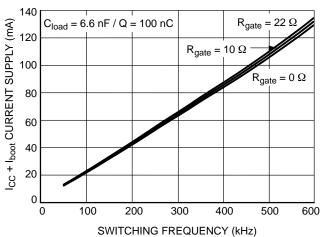
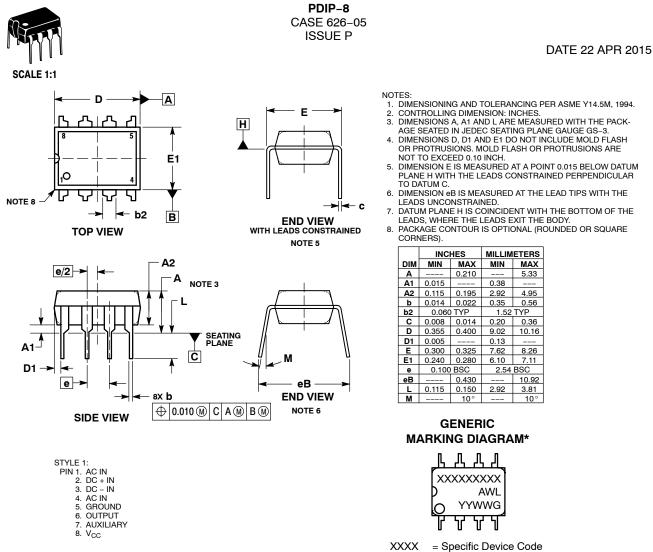
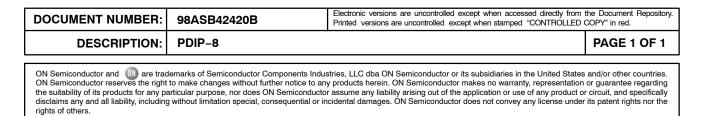
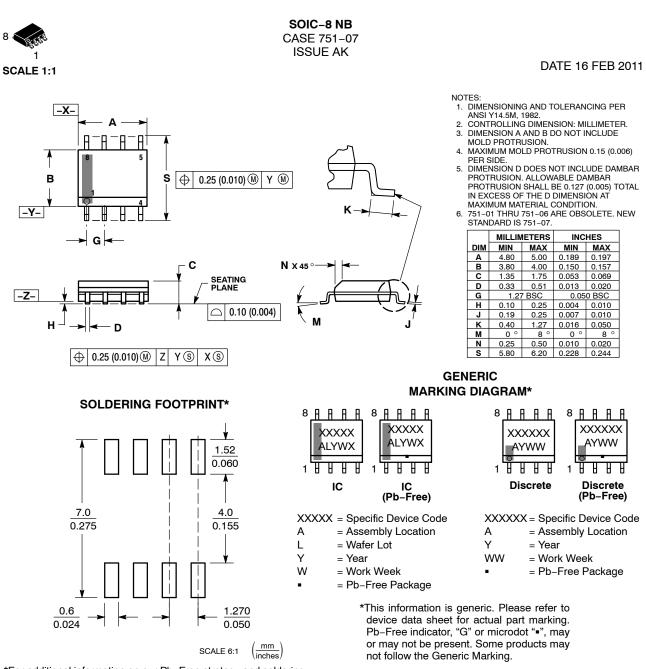



Figure 33. ICC1 Consumption vs. Switching Frequency with 100 nC Load on Each Driver




A = Assembly Location

- WL = Wafer Lot
- YY = Year
- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. 6. BASE 7 BASE 8. EMITTER STYLE 5: PIN 1. DRAIN 2. DRAIN З. DRAIN DRAIN 4. 5. GATE 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6. BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. 4. TXE 5. RXE 6. VFF GND 7. 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 З. CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. EMITTER, #1 BASE, #2 2. З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 З. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND BIAS 2 INPUT 6. 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. 5. P-DRAIN 6. P-DRAIN N-DRAIN 7. 8. N-DRAIN STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1
STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd
STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 7. DRAIN 1 8. DRAIN 1
STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON
STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1
STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT
STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER З. COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE CATHODE COLLECTOR/ANODE 6. 7. COLLECTOR/ANODE 8. STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.

8

rights of others.

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative