Parameter	Rating	Units
Load Voltage, AC/DC	70	$\mathrm{~V}_{\mathrm{P}}$
Load Current	150	$\mathrm{~mA}_{\mathrm{rms}} / \mathrm{mA}_{\mathrm{DC}}$
On-Resistance (max)	16	Ω
LED Current to Operate	1	mA

Transient Protection Characteristics

Peak Pulse Power	$\mathbf{V}_{\mathbf{w M}}$
600 W	40.2 V

Features

- Meets Requirements of EN50130-4 (Installation Class 3)
- $3750 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- 100% Solid State
- Low Drive Power Requirements
- High Reliability
- No EMI/RFI Generation
- Flammability Rating UL 94 V-0

Applications

- Security
- Sensor Circuitry
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Industrial Controls

Description

The CPC1317 is a single-pole, normally open (1-Form-A) solid state relay with bi-directional transient voltage suppressor (TVS) relay protection, which is designed to meet the requirements of EN50130-4 (installation class 3).

The relay output is constructed with efficient MOSFET switches and photovoltaic die that use IXYS Integrated Circuits Division's patented OptoMOS architecture. The input, a highly efficient infrared LED, controls the optically coupled output.

The CPC1317 is available in a space-saving 8-pin SOIC package.

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1172007
- EN/IEC 62368-1 Certified Component: TUV Certificate B 0826670008

Ordering Information

Part \#	Description
CPC1317P	8-Pin SOIC (Flatpack) (50/tube)
CPC1317PTR	8-Pin SOIC (Flatpack) (1000/reel)

Pin Configuration

Switching Characteristics of Normally Open Devices

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
SSR Output Blocking Voltage	70	$\mathrm{~V}_{\mathrm{p}}$
TVS Working Voltage, Maximum	40.2	V
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
Input Power Dissipation ${ }^{1}$	1	A
SSR Output Power Dissipation ${ }^{2}$	150	mW
TVS Peak Pulse Power $\left(\mathrm{I}_{\text {pp }}=9.3 \mathrm{~A}, 10 / 1000 \mu \mathrm{~s}\right.$ pulse)	400	mW
Isolation Voltage, Input to Output	600	W
Operating Temperature, Ambient	3750	$\mathrm{~V}_{\text {rms }}$
Storage Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
1 Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	-40 to +125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate output linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at $+25^{\circ} \mathrm{C}$, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

TVS Electrical Characteristics

Parameter	Conditions	Symbol	Min	Typ	Max
Units					
Clamping Voltage	$\mathrm{I}_{\mathrm{PP}}=9.3 \mathrm{~A}$	$\mathrm{~V}_{\mathrm{C}}$	-	-	66.5
Reverse Breakdown Voltage	$\mathrm{I}=1 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{BR}}$	44.4	-	-
Reverse Leakage Current	$\mathrm{V}_{\mathrm{WM}}=40.2 \mathrm{~V}$	I_{L}	-	-	V

SSR Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
Blocking Voltage	$\mathrm{I}_{\mathrm{L}}=1 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DRM }}$	70	-	-	V_{P}
Load Current, AC/DC Continuous	-	I_{L}	-	-	150	$m A_{\text {rms }} / \mathrm{mA}_{\text {DC }}$
Peak	$\mathrm{t}=10 \mathrm{~ms}$	LLPK	-	-	± 400	$m A_{p}$
On-Resistance ${ }^{1}$	$\mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	7	16	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=70 \mathrm{~V}_{\mathrm{P}}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	-	2.5	ms
Turn-Off	(See Timing Diagram)	$\mathrm{t}_{\text {fff }}$	-	-	2.5	
Output Capacitance	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{mAV} \mathrm{L}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	25	-	pF
Input Characteristics						
Input Control Current to Activate ${ }^{2}$	$\mathrm{L}_{\mathrm{L}}=150 \mathrm{~mA}$	$I_{\text {F }}$	-	-	1	mA
Input Dropout Current to Deactivate	-	$I_{\text {F }}$	0.1	-	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Common Characteristics						
Capacitance, Input to Output	$\mathrm{V}_{10}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{10}	-	3	-	pF

1 Measurement taken within 1 second of turn-on time.
2 For applications requiring high temperature operation $\left(>60^{\circ} \mathrm{C}\right)$ a minimum LED drive current of 3 mA is recommended.

Timing Diagram

PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at $25^{\circ} \mathrm{C}$.

PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at $25^{\circ} \mathrm{C}$.

Manufacturing Information

Moisture Sensitivity

(8)
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Classification
CPC1317P	MSL 3

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

Provided in the table below is the IPC/JEDEC J-STD-020 Classification Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ and the maximum dwell time the body temperature of these surface mount devices may be $\left(T_{C}-5\right)^{\circ} \mathrm{C}$ or greater. The Classification Temperature sets the Maximum Body Temperature allowed for these devices during reflow soldering processes.

Device	Classification Temperature $\left(T_{\mathrm{c}}\right)$	Dwell Time $\left(\mathrm{t}_{\mathrm{p}}\right)$	Max Reflow Cycles
CPC1317P	$245^{\circ} \mathrm{C}$	30 seconds	3

Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.

MECHANICAL DIMENSIONS

CPC1317P

PCB Land Pattern

CPC1317PTR Tape \& Reel

For additional information please visit our website at: https://www.ixysic.com

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.
Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.

