

Datasheet

CONN001-W N Bulkhead Jack PCB Through Hole Connector

The CONN001-W is an N jack PCB through hole connector designed for reflow-solder mounting directly to a printed circuit board. Operating from 0 GHz to 11 GHz, the CONN001-W provides superior performance by utilizing white bronze plating to reduce distortion caused by passive intermodulation (PIM). Additionally, all Linx connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

Features

- 0 to 11 GHz operation
- White Bronze plating
 - Low Passive Intermodulation (PIM)
 - Superior corrosion resistance
- N jack (female socket) connection
 - Gold plated beryllium copper center contact
- Brass hex nut, washer and silicone gasket provided
- Direct PCB attachment
- Reflow- or hand-solder assembly

Electrical Specifications

Impedance	50 Ω	
Frequency Range	0 to 11 GHz	
Voltage Rating	1500 V RMS	
Contact Resistance	Center: ≤ 1.0 mΩ Outer: ≤ 1.0 mΩ	
Selected Frequencies	2.4 GHz	6 GHz
Insertion Loss (dB max)	-0.18	-0.45
VSWR (max)	1.2	1.3

Ordering Information

Part Number	Description
CONN001-W	N bulkhead jack (female socket) PCB through hole connector with silicone gasket, washer and hex nut

Available from Linx Technologies and select distributors and representatives.

Product Dimensions

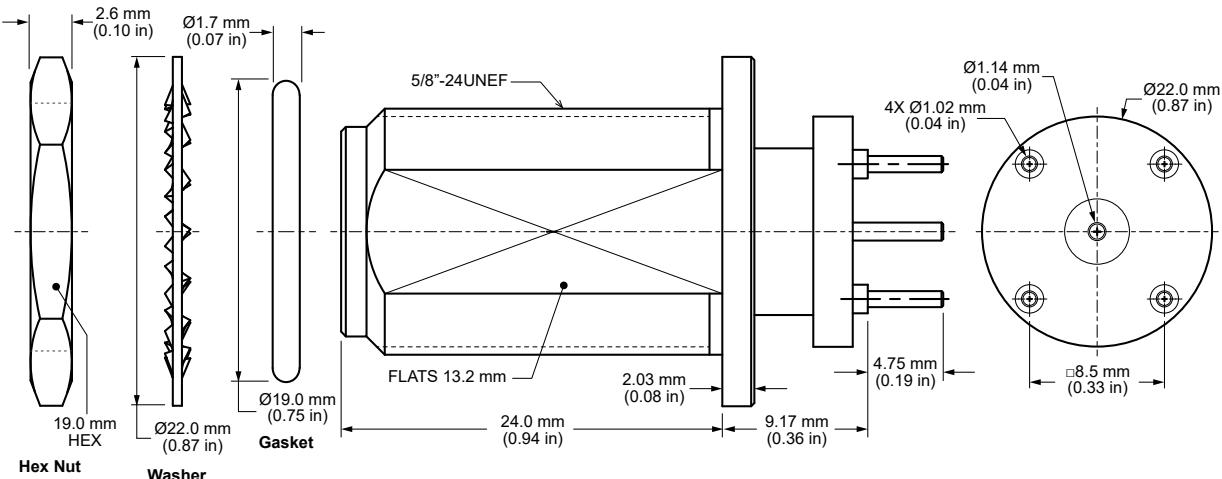


Figure 1. Product Dimensions for the CONN001-W Connector

Connector Components

Model	CONN001-W	
Connector Part	Material	Finish
Connector Body	Brass	White Bronze
Center Contact (socket)	Beryllium Copper	Gold
Pins, PCB (4x)	Brass	Tin
Insulator	PTFE	—
Gasket	Silicone	—
Washer	Brass	White Bronze
Hex Nut	Brass	White Bronze

Recommended PCB Footprint

Figure 2 shows the connectors recommended PCB footprint and through hole sizes.

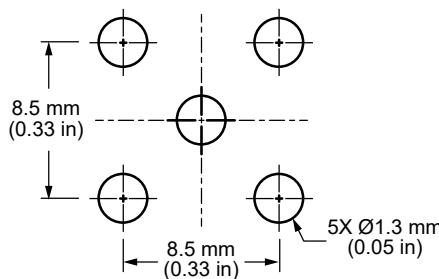


Figure 2. Recommended PCB Dimensions for the CONN001-W

Recommended Mounting

The recommended enclosure mounting dimensions are shown in Figure 3.

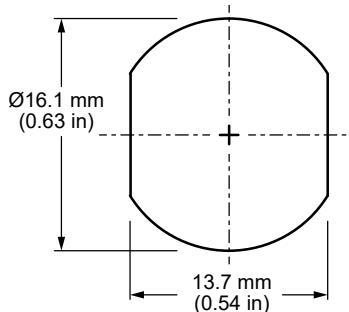


Figure 3. Recommended Enclosure Mounting Dimensions

Connector Performance

Table 1 shows insertion loss and VSWR values for the CONN001-W connector at commonly used frequencies.

Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line. VSWR describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency.

Table 1. Insertion Loss and VSWR for the CONN001-W Connector

Band	Low-Band Cellular/ ISM/LPWA	Midband Cellular/ GNSS	WiFi/ISM	WiFi 6
Frequency Range	400 MHz to 960 MHz	1.1 GHz to 5 GHz	2.4 GHz	5 GHz to 7.125 GHz
Insertion Loss (dB max)	-0.08	-0.36	-0.18	-0.52
VSWR (max)	1.1	1.2	1.2	1.3

Mechanical Specifications

Model	CONN001-W
Mounting Type	Bulkhead, PCB Through Hole Mount
Fastening Type	5/8"-24UNEF Threaded Coupling
Interface in Accordance with	MIL-STD-348A
Recommended Torque	0.85 N m (7.5 ft lbs)
Coupling Nut Retention	100 lbs. min.
Connector Durability	500 cycles min.
Weight	41.4 g (1.46 oz)

Environmental Specifications

MIL-STD, Method, Test Condition	
Corrosion (Salt spray)	MIL-STD-202 Method 101 test condition B
Thermal Shock	MIL-STD-202 Method 107 test condition B
Vibration	MIL-STD-202 Method 204 test condition B
Mechanical Shock	MIL-STD-202 Method 213 test condition I
Temperature Range	-65 °C to +165 °C
Environmental Compliance	RoHS

Reflow Solder Profile

Figure 4 shows the time and temperature data for reflow soldering the connector to a PCB.

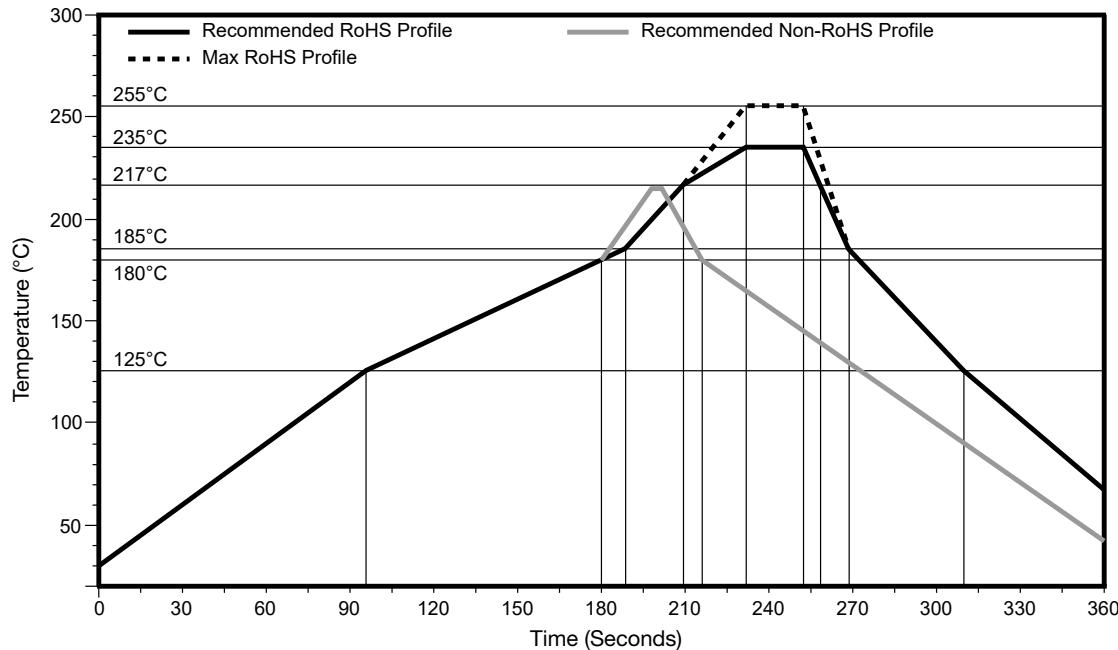


Figure 4. Recommended Reflow Solder Profile

Packaging Information

The CONN001-W connectors are individually packaged in clear plastic bags. Connectors are packaged in cartons of 120 pcs. Distribution channels may offer alternative packaging options.

Connector & Adapter Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$\text{VSWR} = \frac{10^{\frac{[\text{Return Loss}]}{20}} + 1}{10^{\frac{[\text{Return Loss}]}{20}} - 1}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_T and the power transmitted to the load after the insertion of the component P_R .

$$\text{Insertion Loss (dB)} = 10 \log_{10} \frac{P_T}{P_R}$$

Website: <http://linxtechnologies.com>
Linx Offices: 159 Ort Lane, Merlin, OR, US 97532
Phone: +1 (541) 471-6256
E-MAIL: info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2020 Linx Technologies

All Rights Reserved

Doc# DS20289-108CON

