ARMKEIL

Microcontroller Tools

Getting started with MDK

Create applications with uVision®
for ARM® Cortex®-M microcontrollers

K3 wvision _ o)
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
15 H @ B9 || (-] Vaslale o s e|Bd-] A
& e ¥% | STM32F74 Flash v K| & @
Project L > | _) HTTPServerc® | Abstracttd T &=
575 Project: HTTP Server 109 MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;: A
© &5 STM32F746 Flash X 110 | meq - - -
B Source i1 MPU BASE ~
) HITP Servece 12 | | T
J HTTP_Server_CGl.c Shicy MPU_CTRL_ENABLE Msk
MPU_CTRL _ENABLE Pos
L1 Webe 125 || MPU CTRL HFNMIENA Msk v|?
0 Web files ™ S— -
5[5 Documentation B Manage Run-Time Environment x
L1 Abstract.bdt
#9 Board Support Software Component Sel. Variant Version Description
=@ cmsis # € Board Support STM32F746G-Discovery |~ |1.00 | STMicroelectronics STM32F746G-Discovery Kit -
@€ CMSIS Driver © @ CMSIS Cortex Mi Software Interface C
@ Device ® € CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver
59 Network © € Compiler ARM Compiler Software Extensions
T Net CM3_Liib (CC | & @ Device Startup, System Setup
L] Net_Config.c (COR | = & File System MDK-Pro 650 File Access on various storage devices
L] Net Config ETHO | & & Graphics MDK-Pro 5300 UserInterface on graphical LCD displays
L1 Net_Config HTTP_ | & & Graphics Display Display Interface including configuration for emWIN
L] Net_Config TCPh | = & Network MDK-Pro 650 | IP Networking using Ethemet or Serial protocols
L] Net_Config UDP.h ¢ CORE [¥| Release ~|650 Networking Core for Cortex-M (Release)
€ Interface Connection Mechanism
o @ Senice Network Services L
© @ Socket Network protocol
© & use MDK-Pro 650 | USB Communication with various device classes =
Validation Qutput Description
= A Keil MDK-Pro::Network:CORE Additional software components required i‘
5 require CMSIS:RTOS Select component from ist
@ ARM:CMSIS:RTOS:Keil RTX CMSIS-RTOS RTX implementation for Cortex-M, SC000, and SC300 .
7l | | et | [seectPacis| | Daai = [e] =],
=l Project | @6 s | Dy Templates < >
ST-Link Debugger L110Ce

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2017 ARM Germany GmbH
All rights reserved.

ARM®, Keil®, uVision®, Cortex®, TrustZone®, CoreSight™ and ULINK™ are
trademarks or registered trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft” and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC" is a registered trademark of International Business Machines Corporation.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the
instruction set of the ARM" Cortex™-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started with MDK: Create Applications with pVision

Preface

Thank you for using the ARM Keil® MDK Microcontroller Development Kit. To
provide you with the best software tools for developing ARM Cortex-M
processor based embedded applications we design our tools to make software
engineering easy and productive. ARM also offers complementary products such
as the ULINK™ debug and trace adapters and a range of evaluation boards.
MDK is expandable with various third party tools, starter kits, and debug
adapters.

Chapter overview

The book starts with the installation of MDK and describes the software
components along with complete workflow from starting a project up to
debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Tools, the software
packs, and describes the product installation along with the use of example
projects.

CMSIS is a software framework for embedded applications that run on Cortex-M
based microcontrollers. It provides consistent software interfaces and hardware
abstraction layers that simplify software reuse.

Software Components enable retargeting of I/O functions for various standard
I/O channels and add board support for a wide range of evaluation boards.

Create Applications guides you towards creating and modifying projects using
CMSIS and device-related software components. A hands-on tutorial shows the
main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real
hardware and explains how to connect to development boards using a wide range
of debug adapters.

Middleware gives further details on the middleware that is available for users of
the MDK-Professional and MDK-Plus editions.

Using Middleware explains how to create applications that use the middleware
available with MDK-Professional and MDK-Plus and contains essential tips and
tricks to get you started quickly.

Preface

Contents
Preface..eninneineecniicninnneneecnnennnenssaensneesseessesssessessseesssssssssssasssaes 3
MDK INtrodUCTION ..cueeericsissnrrecssssareecssssssessssssssesssssssssssssssssssssssssssssssssssssss 7
IMDK TOOIS.....ieiieiieeiieeie ettt ettt et ete e esteesttessresnseesseesseesseesssesssesnsesnseensaens 7
SOFEWATE PACKS ...ttt e 8
MDK EdItIONS. c..ceeutieiiieiite ettt sttt ettt sttt enaee 8
INSTAITATION ..ottt ettt sttt et e st e ssbesnbeenseenseesaens 9
Software and hardware requIrementscceeeverieriercreerieeneenee e e 9
INStall MDKCOTC...ocvviieiiiiieiieiiecirecre ettt et eveeve e teestresevesaveesreereens 9
Install SOftware Packs........c.cccveriieriieniiniieieeieeeeee e 10
MDK-Professional Trial LIiCENSe.........c.cccvevrieriierierienienieeieeriee e see e 11
Verify Installation using Example Projectsccccocvveeiiiviievienieniecie e, 12
Use SOftware Packscc.ecvviiviiiiieiiecie st s 16
AcCess DOCUMENTALIONc.eevieiiieiiesiieeie ettt eee e e e steesseesenesnneenns 20
REQUEST ASSISTANCEveeveeeiieeiieeiieieeieeite ettt et eie et e staesnaesnbesabeebeeseesseesnnes 20
Learning Platformi..........ccccouiiviiiiiiiieieieciece ettt eve e 21
QUICK Start GUIAES.cceeruiiiiieiieieeit ettt ettt st st eeteeteeseeseens 21
CMISTS corriiicicnnniicssnnsscsssssssess 22
CMSIS-CORE ...ttt st st 23
USINg CMSIS-COREcooiiiieieee ettt 23
CMSIS-RTOS2...c ettt ettt ettt ae et e seeneennenees 26
SOFtWAIE CONCEPLSvveeieeiiiieeiieieeriierieestesreeteebeeteesseesseessneenseenseeseensaens 26
USING Kl RTXS ..ottt st 27
Component Viewer for RTX RTOS ..o, 36
CIMSIS-DISP....ceeeee ettt ettt ettt e bt et eeeeneenaeeas 37
CIMSIS-DIIVET ..euvieiieiieciieeie ettt ettt et e e stesbeete e st esseesseesneesssesnseenseensaens 39
CONTIGUIALIONveivieitieeiieceie ettt et et e resbeeb e et e e steestaesaaesareeebeesseessaesnenenas 40
Validation Suites for Drivers and RTOSc.ccooveviiviiiiierieeeeeee e 41
Software COMPONENLSccieeerrrreccscsnnrecssssssresssssssessssssssssssssssssssssssssssssass 42
Compiler:Event RECOTAETcoevieiiienieiieiie et 42
(0703001071 3 53 11 O TSSO PP 43
BOArd SUPPOTT.....eccviiiiiiiieciie ettt te e st eaveeabeeabeebe e ba e baenenas 45
Create APPLICAtIONS.....cueeievvricsverinssnrinssrncsssrcsssncssssncssssncssssssssssssssssessnns 46
Blinky with Keil RTXSoooiiiieieeeee et 46
Blinky with Infinite Loop DeSign........cccceveiiiiiriiieiieriiesie e 54
Device Startup Variations..........ccveceereerveriiesieenieeseeseeseesnessessesseesseessessseessnes 56
Example: STM32CUDEccociiiiiieeiieeieecte ettt 56
Secure/NoNn-secure ProgramMiNgc..ccveerreerreereesreerreesseessessseessesseesseessesssenns 61

Create ARMVE-M SOftWare Projects........cceceeeveereereerieennesresieeneeeseeenenennnes 61

Getting Started with MDK: Create Applications with pVision

Debug APPLICALIONS ...cceeieiveniicsissnerinsssnrncssssnsesssssssssssssssssesssssssssssssssssssans 62
Debugger CONNECLIONcvevvieiieiieiietesie e ettt eseeeseeseaeseaessseenseeseessaessnesnnes 62
USING the DEDUZEEToeiiiiiiiiieciie ettt et e eevaeeereeenes 63
DebUZ TOOIDATccuviieiieiiieiieieeciee ettt ettt re v bt e sraeeareeave e 64
Command WINAOWcoeeiiiirieiireeei ettt 65
Disassembly WindOWcccceeviiriiiieiieeireieeieee e s 65
COMPONENE VIEWETvvivieeeiieerietieieesitesireesreesreesteesteestaessnessseessessseesssesssessns 66
Event RECOTARToouieiiiiiee e 67
BreakpOintSoccuieriiiieieeie ettt ettt ettt s eare e 69
Watch WINAOW ..ot 70
Call Stack and Locals Window...........ccccerieiererieiesieeee e 70
RegIStEr WINAOWooveiiieiiiiieiieiee ettt et 71
MeEMOTY WINAOW.....coouiiieiieiieiierieesiee et ete ettt see e eseesseesseesnaesnseenns 71
Peripheral REGISIEIS......ccviiiiiiiiiriieciie ettt 72
TTTACE . eetieee ettt ettt e e et e e e ettt e e e ettaeeeettaeeeenraeeeentaeeeesraaeeenraaeeanns 73
Trace with Serial Wire OUIPUL......cc.coceerieririiinenierereeee e 74
TTace EXCEPLIONS .uvveiviiiiiiciiicie ettt ettt ere et stee e eaveeabeesbeeseaesenenenas 76
LOZIC ANALYZET ...ocuvieiiiciie ettt ettt ettt s s v e e sbeesbeeta e saenenas 77
Debug (Printf) VIEWETccceeriiiieriiiieeie ettt 78
EVENt COUNTETS. ...coiuiitieiiieiieeieeteetete ettt st 79
Trace With 4-Pin OULPULccovieiieiieieciecreere et 80
Trace with On-Chip Trace Buffer...........ccoceeiiiiiiniiiniiiieeeeeee, 80
M AIEWATE c.cuueeeeneeiiireissneissneessnnesssnecsssnnessssecssssesssssssssssssssssssssssssssnssss 81
NetWork COMPONENL.........cccuiiieeriieriieiieeteete et eeeseeseesreeseeseessaesseessaessnessseenns 83
File System COMPONENL.........c.ccovierrierierieiiiireereereesteesteestaeeveereereesseessaessnesens 85
USB COMPONENL....utiiiirieiiiieiiieeieeesteeeieeestteesreeeteeessseessseeessseessseessesessseessesensns 86
Graphics COMPONECNLceervireiieiieiieriiereestesteeteeteeseesseessaesseesssessseeseesseesseens 87
JOT CONNECHIVILY .uvieiieiieeiieeie et esieesiee st seeete e eteesseesteeseaesntesnsesnseenseeseessnennnes 88
Migrating to Middleware VErsion 7c.cccceeeveevrievieenieeniesie e e eveeeveesieesenesenas 89
FTP Server EXample........ccccveoiiiiiieiieieiecece ettt 90
USING MIAAIEWATE «.ccuueeiiirsvnniicsisnerecsssnrecssans 92
USB Device HID EXample........cccveviieiieiiieiieierieseceeieeieesee e 94
Add Software COMPONENLS........cccvereerreeiireieeiienrerreereereereesseeseesnesseenns 95
Configure MiddIEWAre..........covevvieiiieiiiiiiicie ettt eve e 97
CONTIGUIE DITVETS ...eeviiieieeiieiieieeiiee ettt sre e b e aeesseesnnesnees 99
Implement Application Features............ccceevveveivriieciinnieniieneeeee e 100
Build and Download...........coceeoiiieieiiieeeee e 103
Verify and DebUgccovviiiiiiiiiieecee ettt 103

Preface

NOTE
This user’s guide describes how to create projects for ARM Cortex-M

microcontrollers using the uVision IDE/Debugger.

Refer to the Getting Started with DS-MDK user’s guide for information how to
create applications with the Eclipse-based DS-5 IDE/Debugger for
ARM Cortex-A/Cortex-M devices.

Getting Started with MDK: Create Applications with pVision

MDK Introduction

MDK helps you to create embedded applications for ARM Cortex-M processor-
based devices. MDK is a powerful, yet easy to learn and use development system.
It consists of MDK-Core and software packs, which can be downloaded and
installed based on the requirements of your application.

MDK-Core ARM C/C++ Compiler DS-MDK
w
8 pVision IDE ARM Compiler 5 DS-5 IDE
; with Pack Management with Qualification Kit with Pack Management
[a]
b3 pVision Debugger ARM Compiler 6 DS-5 Debugger
with Streaming Trace LLVM Technology with Streamline
Device CMSIS Middleware
2
g CMSIS-Core IPv4 Network IPv6 Network mbed TLS
o -
= SSU/TLS Encryption
§ Device HAL CMSIS-DSP USB Device m
& mbed Client
(7] CMSIS Drivers CMSIS-RTOS File System m loT Connector

MDK Tools

The MDK Tools include all the components that you need to create, build, and
debug an embedded application for ARM based microcontroller devices.
MDK-Core consists of the genuine Keil pVision IDE and debugger with leading
support for Cortex-M processor-based microcontroller devices including the new
ARMVSE-M architecture. DS-MDK contains the Eclipse-based DS-5 IDE and
debugger and offers multi-processor support for devices based on 32-bit
Cortex-A processors or hybrid systems with 32-bit Cortex-A and Cortex-M
processors.

MDK includes two ARM C/C++ Compilers with assembler, linker, and highly
optimize run-time libraries tailored for optimum code size and performance:

* ARM Compiler version 5 is the reference C/C++ compiler available with a
TUV certified qualification kit for safety applications, as well as long-term
support and maintenance.

= ARM Compiler version 6 is based on the innovative LLVM technology and
supports the latest C language standards including C++11 and C++14. It
offers the smallest size and highest performance for Cortex-M targets.

MDK Introduction

Software Packs

Software packs contain device support, CMSIS libraries, middleware, board
support, code templates, and example projects. They may be added any time to
MDK-Core or DS-MDK, making new device support and middleware updates
independent from the toolchain. The IDE manages the provided software
components that are available for the application as building blocks.

MDK Editions

The product selector, available at www.keil.com/editions, gives an overview of
the features enabled in each edition:

= MDK-Lite is code size restricted to 32 KByte and intended for product
evaluation, small projects, and the educational market.

= MDK-Essential supports Cortex-M processor-based microcontrollers up to
Cortex-M7 and non-secure programming of Cortex-M23 and M33 targets.

= MDK-Plus adds middleware libraries for IPv4 networking, USB Device, File
System, and Graphics. It supports ARM Cortex-M, selected ARM Cortex-R,
ARM?7, and ARM9 processor based microcontrollers. It also includes
DS-MDK for programming heterogeneous devices.

= MDK-Professional contains all features of MDK-Plus. In addition, it
supports IPv4/IPv6 dual-stack networking, IoT connectivity, and a USB Host
stack. It also offers secure and non-secure programming of Cortex-M23 and
M33 targets as well as multicore debugging of heterogeneous devices
including the Linux kernel and Streamline performance analysis.

License Types

With the exception of MDK-Lite, all MDK editions require activation using a
license code. The following licenses types are available:

Single-user license (node-locked) grants the right to use the product by one
developer on two computers at the same time.

Floating-user license or FlexNet license grants the right to use the product on
several computers by a number of developers at the same time.

For further details, refer to the Licensing User’s Guide
at www.keil.com/support/man/docs/license.

http://www.keil.com/
http://www.keil.com/support/man/docs/license

Getting Started with MDK: Create Applications with pVision

Installation

Software and hardware requirements

MDK has the following minimum hardware and software requirements:

= A PC running a current Microsoft Windows desktop operating system
(32-bit or 64-bit)

= 4 GB RAM and 8 GB hard-disk space

= 1280 x 800 or higher screen resolution; a mouse or other pointing device

Install MDK-Core

Download MDK from www.keil.com/download - Product Downloads and run
the installer.

Follow the instructions to install MDK-Core on your local computer. The
installation also adds the software packs for ARM CMSIS and MDK
Middleware.

MDK version 5 is capable of using MDK version 4 projects after installation of
the legacy support from www.keil.com/mdkS/legacy. This adds support for
ARM7, ARMY, and Cortex-R processor-based devices.

After the MDK-Core installation is complete, the Pack Installer starts
automatically, which allows you to add supplementary software packs. As a
minimum, you need to install a software pack that supports your target
microcontroller device.

http://www.keil.com/download
http://www.keil.com/mdk5/legacy

10 MDK Introduction

Install Software Packs

The Pack Installer manages software packs on the local computer.

@ The Pack Installer runs automatically during the installation, but also can
be run from pVision using the menu item Project — Manage — Pack
Installer. To get access to devices and example projects, install the software
pack related to your target device or evaluation board.

NOTE
To obtain information of published software packs the Pack Installer connects
to www.keil.com/pack.

{8 Pack Installer - C:\Keil_vS\ARM\PACK - O pd
File Packs Window Help
%Y | Device: ARM - ARMCM23
14| Devices Boards »| |4 Packs | Examples |
Search: - X Pack Action Description
Device 7 | summeary = Device Specific 0Packs ARMCM23 selected -
=1 Al Devices 3755 Devices _a][|| F=-Genenc 16 Packs
5 @ ABOV Semiconductor 10 Devices = ARM::CMSIS @ Uptodate | CMSIS (Cortex Microcontroller Software Interface Standard)
= AmbiqMicro 10 Devices 5.0.1-dev3 8§ Remove CMSIS (Cortex Microcontroller Software Interface Standard)
- ¥ Analog Devices 20 Devices 5.0.0 (2016-11-11) 8 Remove CMSIS (Cortex Microcontroller Software Interface Standard)
S % ARM 35 Devices &1 Previous ARM::CMSIS - Previous Pack Versions
5 %2 ARM Cortex MO 2 Devices @ ARM::CMSIS-Driver_Validation Install CMSIS-Driver Validation
9% ARM Cortex MO plus > Devices & ARM::CMSIS-RTOS Validation Install CMSIS-RTOS Validation
5 %2 ARM Cortex M2 > Devices % ARM::mbedClient Install ARM mbed Client for Cortex-M devices
5 %% ARM Cortex Md I Devices 1 & ARM:mbedTLS & _Install ARM mbed Cryptographic and S5L/TLS library for Cortex-M
5 % ARM Cortex M7 5 Devices &1 ARM:minar & Install mbed OS Scheduler for Cortex-M devices
5 %% ARM Cortex M23 7 Devices ® i Up to date | Keil ARM Compiler extensions
@ ARMCMZ3 ARM CorterMZ3._. a1 Keil:Jansson & _Install Jansson is a C library for encoding, decoding and manipulat
@ ARMCMZ3.TZ ARM CorterMZ3._. 41 Keil:MDK-Middleware Up to date | Keil MDK-ARM Professional Middleware for ARM Cortex-M
% ARM Cortex M33 S Devices 1 wiPziwlP & _Install IwlP is a light-weight implementation of the TCP/IP protoce |
% ARM SC000 1 Device & Micrium:RTOS & _Install Micrium software components
w42 ARM SC300 1 Device B Oryx-Embedded:Middleware | 5 _Install Middleware Package (CycloneTCP, CycloneSSL and Cyclont
%2 ARMyE-M Baseline 2 Devices @ RealTimelogic:SharkssL-Lite | €5 Install SharksSL-Lite is a super small and super fast pre-compiled ¢
o % ARMUE-M Mainline 9 Devices @ RealTimelogic:SMQ & _Install Simple Message Queues (SMQ) is an easy to use loT publisk +
. @ Atmel 263 Devices]l [LI_‘
Qutput 2 x
Refresh Pack descriptions
lUpdate available for Keil:LPCS4000_DFP (installed: 2.1.0, available: 2.2.0)
Completed to read Pack descriptions ONLINE

The status bar, located at the bottom of the Pack Installer, shows information
about the Internet connection and the installation progress.

T1P: The device database at www.keil.com/dd2 lists all available devices and
provides download access to the related software packs. If the Pack
Installer cannot access www.keil.com/pack you can manually install
software packs using the menu command File — Import or by double-
clicking *.PACK files.

http://www.keil.com/pack
http://www.keil.com/dd2
http://www.keil.com/pack

Getting Started with MDK: Create Applications with pVision

MDK-Professional Trial License

MDK has a built-in free seven-day trial license for MDK-Professional. This
removes the code size limits and you can explore and test the comprehensive
middleware.

Start uVision with administration rights.

(& In pVision, go to File — License Management... and click Evaluate MDK
Professional

Single-User License l Foating License | Floating License Administrator | FexLM License]

Customer Information Computer 1D
MName: | =l
Company: | Get LIC via Intemet... |

Email: |

Product | License ID Code... | Support Period
MDK-Lite Evaluation Version

New License D Code (LIC). |

L Evaluate MDK Professional I Close Help

(> On the next screen, click Start MDK Professional Evaluation for 7 Days.
After the installation, the screen displays information about the expiration
date and time.

NOTE
Activation of the 7-day MDK Professional trial version enables the option Use
Flex Server in the tab FlexLM License as this license is based on FlexNet.

12 MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a software pack for your
device, you can verify your installation using one of the examples provided in the
software pack. To verify the software pack installation, we recommend using a
Blinky example, which typically flashes LEDs on a target board.

TIP: Review the getting started video on www.keil.com/mdkS/install that
explains how to connect and work with an evaluation kit.

Copy an Example Project

@) In the Pack Installer, select the tab Examples. Use filters in the toolbar to
narrow the list of examples.

8 Pack Installer - CAKeiL vS\ARM\PACK - o X

o] (o] pacs) Esamples]
[Show examples from installed Packs only

i
i 105 By Grvr 3 Dscoves) K ST

6 (STM32F7691-Discovery)
(STM32F7601-£VAL)
STM32F769-Discovery)
STM32F7691-EVAL)

6 (STM32F769-Discovery)

w4 STM32FTAS
w45 STM32FTS6
w5 STM32FT6S
- STM32FT6T

% STMI2FTE 1Device || HITP Server IPviips (STMB2FTEQL-EVAL)
=% ENEEE 8Devices
1 STMBFTGOAG |1 Device
% STMIFTGOA |1 Device
% STMB2FT69BG |1 Device SMTP Client IPva/IPv6 (STMBZFTEQ1-EVAL)
w4 STMIFTEBI |1 Device Tenet Server IPv4/IPv5 (STM3ZF7631-Discovery) € Copy
4 STMDETBIG 1 Device =] |4

e for Keil:LPCS4000_DFP (installed: 2.0, avalable: 22.0)

Completed requested actions (ONLINE

Click Copy and enter the Destination Folder name of your working directory.

Copy Example X

Destination Folder

| C:\Projects ﬂ Browse... |

|¥ Use Pack Folder Structure ¥ Launch pvision

OK | Cancel |

NOTE
You must copy the example projects to a working directory of your choice.

Enable Launch pVision to open the example project directly in the IDE.

http://www.keil.com/mdk5

Getting Started with MDK: Create Applications with pVision 13

Enable Use Pack Folder Structure to copy example projects into a common
folder. This avoids overwriting files from other example projects. Disable Use
Pack Folder Structure to reduce the complexity of the example path.

Click OK to start the copy process.

Use an Example Application with pVision

Now puVision starts and loads the example project where you can:

Build the application, which compiles and links the related source files.

LOAD

¥
@ Run the application on the target hardware using a debugger.

Download the application, typically to on-chip Flash ROM of a device.

The step-by-step instructions show you how to execute these tasks. After copying
the example, pVision starts and looks similar to the picture below.

B C:\Projects\MD ST\STM32F7681_Disc - Vision - O X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=2=N-1 B9 @ m | == | @ Cocupdate JRe e o s E- A
(5 B8 @ (3] 98| swszeves piasn VA AR e @
Project LN - |] Abstractixt w3
=% Project: Blinky The 'Blinky' project is a simple CMSIS RTOS based example for ~
43 STM32F769 Flash ST *STM32F769NI' microcontroller using ST 'STM32F769I-Discovery' Kit.
5 SourceFiles Compliant to Cortex Microcontroller Software Interface Standard (CMSIS v2.0).
L1 Blinky.c Example functionality:
() Thread_LED.c - Clock Settings:
=[5 Documentation - XTAL = 25.00 MHz
5% Board Support - LED is blinking
T Buttons_769]_Discovery.c (Buttons) - blinking is paused while holding down the USER button
] LeD 7691 Discovery.c (LED)
B @ amsis
The Blinky program is available in different tazgets:
¥ Device
STM32F769 REM: configured for on-chip SREM v
i Project | @Fsooks | {} Functions | [y Templates >
Build Output. + 8
ST-Link Debugger LGz

TIP: Most example projects contain an Abstract.txt file with essential
information about the operation and hardware configuration.

14 MDK Introduction

Build the Application

Build the application using the toolbar button Rebuild.

The Build Output window shows information about the build process. An error-
free build shows information about the program size.

Build Output O x |

**#* Using Compiler 'V5.06 update 4 (build 422)', folder: 'C:\Keil v5\ARM\ARMCC\Bin'
Rebuild target 'STM32F76%9 Flash'

compiling Thread LED.c...

compiling LED 7631 DiSCOVELY.C...

compiling Blinky.c...

compiling Buttons_763I_Discovery.c...

compiling RTX Conf CH.c...

compiling stm32f7xx_hal cortex.c...

compiling stm32f7xx hal.c...

compiling stm32f7xx hal gpio.c...

compiling stm32f7xx_hal pwr ex.cC...

compiling stm32f7xx hal pwr.c...

assembling startup sStm32f£763xx.s...

compliling stm32f7xx_hal rcc.c...

compiling system sStm32f7xx.c...

compiling stm32f7xx_hal rocc ex.c...

linking...

Program Size: Code=10288 RO-data=696 RW-data=68 ZI-data=4756
™ .\Flash\Blinky.axf"™ - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:09

Download the Application

Connect the target hardware to your computer
using a debug adapter that typically connects
via USB. Several evaluation boards provide
an on-board debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are
pre-configured for evaluation kits; thus, you do not need to modify these settings.

#% Click Options for Target on the toolbar and select the Debug tab. Verify
that the correct debug adapter of the evaluation board you are using is
selected and enabled. For example, CMSIS-DAP Debugger is a debug
adapter that is part of several starter kits.

K Options for Target 'STM32F746 Flash' X

Device] Target] Output] Listing] User] C."C-l—!-l Asm] Linker Litilities]
" Use Simulator with restrictions Settings * Use: || Settings |

[Limit Speed to Real-Time

v Load Application at Startup v Run to main() [v Load Application at Startup v Run to main()

Getting Started with MDK: Create Applications with pVision 15

(¥ Enable Load Application at Startup for loading the application into the
pVision debugger whenever a debugging session is started.

Enable Run to main() for executing the instructions up to the first
executable statement of the main() function. The instructions are executed
upon each reset.

T1P: Click the button Settings to verify communication settings and diagnose
problems with your target hardware. For further details, click the button
Help in the dialogs. If you have any problems, refer to the user guide of the
starter kit.

Liip
¥

3 Click Download on the toolbar to load the application to your target
hardware.

Build Output x|

Load "C:\\Workspaces\\MDX\\STM32\\MDE\\Boards\\ST\\STM32F746G_Discovery\\Blinky\\Flasn\\Blinky.axt"
Erase Done.

Programming Done.

Verify OK.

Application running ...

Flash Load finished at 14:38:29

The Build Output window shows information about the download progress.

Run the Application
@} Click Start/Stop Debug Session on the toolbar to start debugging the
application on hardware.

Click Run on the debug toolbar to start executing the application. LEDs
should flash on the target hardware.

16 MDK Introduction

Use Software Packs

Software packs contain information about microcontroller devices and software
components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only
the options that are relevant for the selected device.

kA Start uVision and use the menu Project - New pVision Project. After you
have selected a project directory and specified the project name, select a
target device.

Select Device for Target ‘Target 1'... *

Device l

| Software Packs j

Vendor: STMicroelectronics
Device: STM32F746BETx

Toolset: ARM
Search: |
Description:
=% STMicroelectronics j The STM32F7 family incorporates high-speed embedded memories and
5 %% STM32FT Series an extensive range of enhanced |/0s and perpherals connected to

two APB buses, three AHE buses and a 32-bit mutti-AHB bus matrix.
“t§ STM32F745

=T STM32F746
B-*§ STM32F746BE

- 64-Kbyte of CCM (core coupled memory) data RAM
- LCD parallel interface, 8080/6800 modes
- Timer with quadrature {incremental) encoder input

- 5 V4olerant 1/0s
- Parallel camera interface
“% STM32F746BG - True random number generator
- RTC: subsecond accuracy, hardware calendar
% STM32F746IE - 96bit unigue D
¥ STM32FT46IG
4 R

oK | cacel | Help

T1P: Only devices that are part of the installed software packs are shown. If you
are missing a device, use the Pack Installer to add the related software
pack. The search box helps you to narrow down the list of devices.

Getting Started with MDK: Create Applications with pVision

€ After selecting the device, the Manage Run-Time Environment window
shows the related software components for this device.

ﬂ Manage Run-Time Envirenment X
Software Component Sel, Variant Version Description
= ’ CMSIS Cortex Microcontroller Software Interface Components j
¥ CORE [+ 420 CMSIS-CORE for Cortex-M, SC000,_and SC300
¥ Dsp r 146 CMSIS-DSP Library for Cortex-M, SCO00, and SC300
€ RTOS (AP]) 1.0 CMBSI5-RTOS API for Cortex- M. SC000. and SC300
= ’ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
‘ Ethernet (API) 2m Ethernet MAC and PHY Driver API for Cortex-M
’ Ethernet MAC (API) 201 Ethernet MAC Driver AP for Cortex-M
' Ethemnet PHY (API) 2.00 Ethernet PHY Driver AP| for Cortex-M
’ Flash (AP]) 2,00 Flash Driver APl for Cortex-M
-4 12C (API) 202 |I2C Driver API for Cortex-M
Lrle v 1.1 12C Driver for STM32F7 Series
@ MCI (API) 202 | MCI Driver API for Cortex-M
4 NAMD (AP]) 20 NAND Flash Driver API for Cortex-M
’ SAl (AP 1.00 SA| Driver AP| for Cortex-M
& Pl (AP]) 201 SPI Driver API for Cortex-M
€ USART (API) 20 USART Driver API for Cortex-M
& USB Device (API) 201 USB Device Driver AP| for Cortex-h B
‘ USE Host (AP 2m USB Host Driver API for Cortex-M
£-3 Compiler ARM Compiler Software Extensions
= ’ Device Startup, System Setup
¥ Startup v 1.0.1 System Startup for STMicroelectronics STM32F7 Series
& STM32Cube Framework (API) STM32Cube Framework
Validation Qutput Description
=4 Keil::CMSIS Driver:12C Additional software components required o
[=)-require Device:5STM32Cube HAL:DMA Select component from list
¥ Keil:Device:5TM32Cube HAL:DMA DMA controller (DMA) HAL driver
=) require Device:5TM32Cube HAL:Commen Select component from list
@ Keil:Device:5STM32Cube HAL:Cornmen Common HAL driver
[=1-require Device:5TM32Cube HAL:RCC Select component from list
¥ Keil:Device:5STM32Cube HALRCC Reset and clock control (RCC) HAL driver j
Resaolve Select Packs Details Cancel Help

T1P: The links in the column Description provide access to the documentation of
each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to
components. For example, :: CMSIS:CORE refers to the component CMSIS-
CORE selected in the dialog above.

18 MDK Introduction

Software Component Overview

The following table shows the software components for a typical installation.
Depending on your selected device, some of these software components might
not be visible in the Manage Run-Time Environment window. In case you have
installed additional software packs, more software components will be available.

Board Support Interfaces to the peripherals of evaluation boards. 45

CMsIS CMSIS interface components, such as CORE, DSP, 22
and CMSIS-RTOS.

CMSIS Driver Unified device drivers for middleware and user 39
applications.

Compiler ARM Compiler specific software components to retarget 42

I/O operations for example for printf style debugging.
Event recorder for debugging software components and
user application code.

Device System startup and low-level device drivers. 47

File System Middleware component for file access on various 85
storage device types.

Graphics Middleware component for creating graphical user 87
interfaces.

Network Middleware component for TCP/IP networking using 83
Ethernet or serial protocols.

uUsB Middleware component for USB Host and USB Device 86

supporting standard USB Device classes.

Product Lifecycle Management with Software Packs

MDK allows you to install multiple versions of a software pack. This enables
product lifecycle management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

Concept: Definition of major project requirements and exploration with a
functional prototype.

Design: Prototype testing and implementation of the product based on the final
technical features and requirements.

Release: The product is manufactured and brought to market.

Service: Maintenance of the products including support for customers; finally
phase-out or end-of-life.

Getting Started with MDK: Create Applications with pVision 19

In the concept and design phase, you normally want to use the latest software
packs to be able to incorporate new features and bug fixes quickly. Before
product release, you will freeze the software components to a known tested state.
In the product service phase, use the fixed versions of the software components to
support customers in the field.

44 The dialog Select Software Packs helps you to manage the versions of each
software pack in your project:

KA Select Software Packs for Target 'SAMV7 Flash DAP' X

I Use latest versions of all installed Software Packs

Pack Selection Version Description
El-ARM:CMSIS fixed ~ 430 CMSIS (Cortex Microcontroller Software Interface Standard)
4.4.0 r
43.0 I
Infineon:XMC1000_DFP | excluded |~ Infineon XMC1000 Series Device Support
Infineon:XMC4A000_DFP | excluded |~ Infineon XMC4000 Series Device Support, Drivers and Examples
Keil: ARM_Compiler fixed ~ | 1.00 Keil ARM Compiler extensions

- Keil:MDK-Middleware latest ~ | 6.6.0-RCT | Keil MDK-ARM Professional Middleware for ARM Cortex-M based devices
5.6.0-RC1 o

6 r
E-Keil: SAM-ESVT_SFP fixed ~ | 2,20 Atmel SAM VT, V70, E70, 570 Software Foundation (HAL, Driver, BSP)
2.3.0-RC1 r
2.20 I#
Keil:SAM-V_DFP fixed w220 Atmel SAMVT Series Device Support
Keil::STM32F 7 _DFP excluded |~ STMicroelectronics STM32F7 Series Device Support, Drivers and Examples

oK | Cancel | Help

When the project is completed, disable the option Use latest version of all
installed Software Packs and specify the software packs with the settings under
Selection:

latest: use the latest version of a software pack. Software components are updated
when a newer software pack version is installed.

fixed: specify an installed version of the software pack. Software components in
the project target will use these versions.

excluded: no software components from this software pack are used.

The colors indicate the usage of software components in the current project
target:
Some software components from this pack are used.
Some software components from this pack are used, but the pack is
excluded.
No software component from this pack is used.

20 MDK Introduction

Software Version Control Systems (SVCS)

uVision carries template files for GIT, SVN, CVS, and others to support
Software Version Control Systems (SVCS).

Application note 279 “Using Git for Project Management with uVision”
(www.keil.com/appnotes/docs/apnt 279.asp) describes how to establish a
robust workflow for version control of projects using software packs.

Access Documentation

MDK provides online manuals and context-sensitive help. The pVision Help
menu opens the main help system that includes the uVision User’s Guide, getting
started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation
and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS
functions, compiler directives, or library routines. Use F1 in the command line of
the Output window for help on debug commands, and some error and warning
messages.

The Books window may include device reference guides, data sheets, or board
manuals. You can even add your own documentation and enable it in the Books
window using the menu Project — Manage — Components, Environment,
Books — Books.

The Manage Run-Time Environment dialog offers access to documentation via
links in the Description column.

In the Project window, you can right-click a software component group and open
the documentation of the corresponding element.

You can access the pVision User’s Guide on-line
at www.keil.com/support/man/docs/uv4.

Request Assistance

If you have suggestions or you have discovered an issue with the software, please
report them to us. Support and information channels are accessible
at www.keil.com/support.

When reporting an issue, include your license code (if you have one) and product
version, available from the pVision menu Help — About.

http://www.keil.com/appnotes/docs/apnt_279.asp
http://www.keil.com/support/man/docs/uv4
http://www.keil.com/support

Getting Started with MDK: Create Applications with pVision 21

Learning Platform

Our www.keil.com/learn website helps you to learn more about the
programming of ARM Cortex-based microcontrollers. It contains tutorials,
videos, further documentation, as well as useful links to other websites.

[7] Cortex-M Learning Platt >+ = O X

& = 0O ‘ www? keil.com/mdkS5/leam IR *d | = Z

ARMKEIL

Microcontroller Tools

A Products Download Events Support Q, Search Keil.com

Home / MDK / Leaming Platform for Cortex-M Microcontroller Users

Learning Platform for Cortex-M Microcontroller Users \/‘ The CMSIS workshop provides
step-by-step instructions to
V4

This is a collection of resources that Nelp you to create application software for ARM® Conex®-M create and debug embedded
microcontrollers. It covers various topics from getting started to debugging your application and applications
contains links to videos, example projects, application notes, and documentation.

The ARM Cortex-M7 support

+ New ARMvS-M: ARM Cortex-M23 and ARM Cortex-M33 b page offers webinar recordings,
quick start guides and technical
Using TrustZone on Cortex-M23 and Cortex-M33 (Cortex-MT| reference material.

ARM recently announced the first two processors using
Using TrustZone for ARMv8-M Application notes provide in-
i I (he ARMvE-M architecture, ARM Cortex-M23 and Cortex- AN[—] PP P

ARM Cortex-M33 depth information about

M33. ARM TrustZone for ARMvE-M adds security
- :l development tools and various
features to these cores that allow applications and
micrecontroller applications and

services to operate securely while safeguarding the

. . help to solve complex problems.
secure resources from being misused, cormupted or
inspected by intruders. This webinar recording will explain
how to pregram secure and non-secure domains on a processor with TrustZone.

Topic Description

= Olide daclof the " ging TrusiZone on Corlex-M23 and Cortex-M33"
htp tube bed/0LpCEWSTAOs rel toplay=1

The knowledge base contains
articles created by members of
our support team, answering
Trequently asked questions.

Quick Start Guides

Quick start guides help you to bring up your target hardware quickly. They
describe the required steps to get a development board up and running with MDK
and list required software packs as well as driver requirements for integrated
debug adapters.

NOTE
www.keil.com/mdk5/qsg explains how to download the quick start guides

http://www.keil.com/learn
http://www.keil.com/mdk5/qsg

22 CMSIS

CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) provides a
ground-up software framework for embedded applications that run on Cortex-M
based microcontrollers. CMSIS enables consistent and simple software interfaces
to the processor and the peripherals, simplifying software reuse, reducing the
learning curve for microcontroller developers.

CMSIS is available under an Apache 2.0 license and is publicly developed on
GitHub: https://github.com/ARM-software/CMSIS 5.

NOTE
This chapter is a reference section. The chapter Create Applications on page 46
shows you how to use CMSIS for creating application code.

CMSIS provides a common approach to interface peripherals, real-time operating
systems, and middleware components. The CMSIS application software
components are:

= CMSIS-CORE: Defines the API for the Cortex-M processor core and
peripherals and includes a consistent system startup code. The software
components ::CMSIS:CORE and ::Device:Startup are all you need to
create and run applications on the native processor that uses exceptions,
interrupts, and device peripherals.

= CMSIS-RTOS2: Provides a standardized real-time operating system API and
enables software templates, middleware, libraries, and other components that
can work across supported RTOS systems. This manual explains the usage of
the Keil RTXS implementation.

= CMSIS-DSP: Is a library collection for digital signal processing (DSP) with
over 60 Functions for various data types: fix-point (fractional q7, q15, q31)
and single precision floating-point (32-bit).

= CMSIS-Driver: Is a software API that describes peripheral driver interfaces
for middleware stacks and user applications. The CMSIS-Driver API is
designed to be generic and independent of a specific RTOS making it
reusable across a wide range of supported microcontroller devices.

https://github.com/ARM-software/CMSIS_5

Getting Started with MDK: Create Applications with pVision

23

CMSIS-CORE

This section explains the usage of CMSIS-CORE in applications that run natively
on a Cortex-M processor. This type of operation is known as bare-metal, because
it does not use a real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component
::CMSIS:CORE, which should be used together with the software component
::Device:Startup. These components provide the following central files:

The startup <device>.s file with
reset handler and exception vectors.

startup_<device>.c [] CMSIS-CORE device files

q CMSIS-CORE header fil
CMSIS device startup D cadertles

The system_<device>.c configuration [) User program
file for basic device setup (clock and
memory bus), system_<device>.c partition_<device>.h
. CMSIS system & clock Secure attributes &
The <device>.h heaqer file for user configuration interrupt assignment
code access to the microcontroller
device.This file is included in C
<user>.c/ct+ <device>.h
source files and defines: | |
User application CMSIS
- Perlpheral access with main() { ... } device peripheral access

standardized register layout.

= Access to interrupts and exceptions, and the Nested Interrupt Vector
Controller (NVIC).

» Intrinsic functions to generate special instructions, for example to activate
sleep mode.

= Systick timer (SYSTICK) functions to configure and start a periodic timer
interrupt.

= Debug access for printf-style I/O and ITM communication via on-chip
CoreSight.

The partition_<device>.h header file contains the initial setup of the TrustZone
hardware in an ARMv8-M system (refer to chapter Secure/non-secure
programming).

NOTE
In actual file names, <device> is the name of the microcontroller device.

24

CMSIS

Adding Software Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added
to a project using the uVision dialog Manage Run-Time Environment. Just
select the software components as shown below:

() Manage Run-Time Environment *
Software Component Sel. Variant Version Description
@ Board Support 5TM32F746G-Discovery ~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit =
= @ Cortex Microcontroller Software Interface Components
¥ CORE I 420 CMSI5-CORE for Cortex-M, 5C000, and SC300
¥ Dsp r 146 CMSIS-DSP Library for Cortex-M, 5C000, and 5C300
€ RTOS (API) 1.0 CMSI5-RTOS API for Cortex-M, SC000, and 5C300
@ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
@ Compiler ARM Cormpiler Software Extensions
= @ Device Startup, System Setup
¥ Startup v 101 System Startup for STMicroelectronics STM32F7 Series .
@ STM32Cube Framework (API) STM32Cube Framework
@ STM32Cube HAL STM32F fxx Hardware Abstraction Layer (HAL) Drivers
@ File System MDK-Pro 6.6.0 File Access on various storage devices
@ Graphics MDK-Pro 5.30.0 | User Interface on graphical LCD displays j
Validation Output Description
Resolve Select Packs Details Cancel Help

The pVision environment adds the related files.

Source Code Example

The following source code lines show the usage of the CMSIS-CORE layer.

Example of using the CMSIS-CORE layer

#include "stm32f4xx.h" //
uint32_t volatile msTicks; //
uint32_t volatile frequency; //
void SysTick Handler (void) ({ //

msTicks++; //
}

void WaitForTick (void) {
uint32 t curTicks;

curTicks = msTicks; //
while (msTicks == curTicks) { //
_WFE (); //
}
}
void TIM1 UP_IRQHandler (void) { //

; // Add user code here
}

File name depends on device used

Counter for millisecond Interval
Frequency for timer

SysTick Interrupt Handler
Increment Counter

Save Current SysTick Value
Wait for next SysTick Interrupt
Power-Down until next Event

Timer Interrupt Handler

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563

Getting Started with MDK: Create Applications with pVision

25

void timerl init(int frequency) { // Set up Timer (device specific)
NVIC SetPriority (TIM1 UP IRQn, 1); // Set Timer priority
NVIC EnableIRQ (TIM1 UP_ IRQn) ; // Enable Timer Interrupt

}

// Configure & Initialize the MCU
void Device Initialization (void) {
if (SysTick Config (SystemCoreClock / 1000)) { // SysTick 1lms
: // Handle Error

}
timerl init (frequency); // Setup device-specific timer
}

// The processor clock is initialized by CMSIS startup + system file
int main (void) { // User application starts here
Device Initialization () // Configure & Initialize MCU

while (1) { // Endless Loop (the Super-Loop)
__disable irq () // Disable all interrupts
// Get_InputValues ();
__enable irqg ()’ // Enable all interrupts
// Process Values ();
WaitForTick (); // Synchronize to SysTick Timer
}
}

For more information, right-click the group CMSIS in the Project window, and
choose Open Documentation, or refer to the CMSIS-CORE
documentation www.keil.com/cmsis/core.

[3] overview x4+ — (m] x
< O ‘ keil.com M % | = Z O
' "GMSIS CMSIS CORE Version 5.0.0
COMPLIANT
e CMSIS-CORE support for Cortex-M processor-based devices

General Core Driver | DsSP | RTOSvi | RTOSv2 | Pack | SvD | DAP |

Main Page Usage and Description | Reference | Q- Search
CMSIS-CORE o A

» Overview VELVIOW

Revision History of CMSIS-CORE

Using CMSIS in Embedded Applications | CMSIS-CORE implements the basic run-time system for a Cortex-M device and gives the user access to the
Using TrustZone for ARMVE-M processor core and the device peripherals. In detail it defines:

CMSIS-Core Device Templates + Hardware Abstraction Layer (HAL) for Cortex-M processor registers with standardized definitions for
MISRA-C Deviations the SysTick, NVIC, System Control Block registers, MPU registers, FPU registers, and core access
functions.

Register Mapping

System exception names to interface to system exceptions without having compatibility issues.
Methods to organize header files that makes it easy to learn new Cortex-M microcontroller products
Data Structures and improve software portability. This includes naming conventions for device-specific interrupts.
Methods for system initialization to be used by each MCU vendor. For example, the standardized
SystemlInit() function is essential for configuring the clock system of the device.

Intrinsic functions used to generate CPU instructions that are not supported by standard C functions.
= A variable to determine the system clock frequency which simplifies the setup the SysTick timer.

Reference

Data Fields

Generated on Fri Nov 11 2016 12:41:20 for CMSIS-CORE by ARM Ltd. All rights reserved.

http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga5bb7f43ad92937c039dee3d36c3c2798
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga530ad9fda2ed1c8b70e439ecfe80591f
http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27
http://www.keil.com/cmsis/core

26 CMSIS

CMSIS-RTOS2

This section introduces the CMSIS-RTOS2 API and the Keil RTXS real-time
operating system, describes their features and advantages, and explains
configuration settings of Keil RTXS5.

NOTE

MDK is compatible with many third-party RTOS solutions. However,
CMSIS-RTOS Keil RTX5 is well integrated into MDK, is feature-rich and tailored
towards the requirements of deeply embedded systems.

Software Concepts

There are two basic design concepts for embedded applications:

Infinite Loop Design: involves running the program as an endless loop. Program
functions (threads) are called from within the loop, while interrupt service
routines (ISRs) perform time-critical jobs including some data processing.

RTOS Design: involves running several threads with a real-time operating
system (RTOS). The RTOS provides inter-thread communication and time
management functions. A pre-emptive RTOS reduces the complexity of interrupt
functions, because high-priority threads can perform time-critical data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for
simple embedded applications. Time-critical functions, typically triggered by
hardware interrupts, execute in an ISR that also performs any required data
processing. The main loop contains only basic operations that are not time-critical
and run in the background.

Getting Started with MDK: Create Applications with pVision 27

Advantages of an RTOS Kernel

RTOS kernels, like the Keil RTXS, are based on the idea of parallel execution
threads (tasks). As in the real world, your application will have to fulfill multiple
different tasks. An RTOS-based application recreates this model in your software
with various benefits:

Thread priority and run-time scheduling is handled by the RTOS kernel, using a
proven code base.

The RTOS provides a well-defined interface for communication between threads.

A pre-emptive multi-tasking concept simplifies the progressive enhancement of
an application even across a larger development team. New functionality can be
added without risking the response time of more critical threads.

Infinite loop software concepts often poll for occurred interrupts. In contrast,
RTOS kernels themselves are interrupt driven and can largely eliminate polling.
This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is
mandatory for systems with hard real-time requirements. Communication
facilities can be used for IRQ-to-task communication and allow top-half/bottom-
half handling of your interrupts.

Using Keil RTX5

The Keil RTX 5 implements the CMSIS-RTOS API v2 as a native RTOS
interface for Cortex-M processor-based devices.

Once the execution reaches main(), there is a recommended order to initialize the
hardware and start the kernel. The main() of your application should implement at
least the following in the given order:

» [Initialization and configuration of hardware including peripheral, memory,
pin, clock and interrupt system.

= Update SystemCoreClock using the respective CMSIS-CORE function.
= [Initialize CMSIS-RTOS kernel using osKernellnitialize.

* Optionally, create a new thread app_main, which is used as a main thread
using osThreadNew. Alternatively, threads can be created in main directly.

= Start RTOS scheduler using osKernelStart. osKernelStart does not return in
case of successful execution. Any application code after osKernelStart will
not be executed unless osKernelStart fails.

28

CMSIS

The software component ::CMSIS:RTOS2 (API):Keil RTXS5 must be used
together with the components ::CMSIS:CORE and ::Device:Startup. Selecting
these components provides the following central Keil RTXS files:

The file RTX <core>.lib is the
library with RTOS functions
while rtx_lib.c contains the
RTXS5 library configuration.

The configuration files

RTX Config.c/.h define thread
options, timer configurations, and
RTX kernel settings.

The header file cmsis 0s2.h
exposes the RTX functionality to
the user application.

Once these files are part of the
project, developers can start
using the CMSIS-RTOS RTX
functions. The code example
shows the use of CMSIS-RTOS
RTX functions.

startup_<device>.c

CMSIS device startup

system_<device>.c

CMSIS system & clock
configuration

D CMSIS:CORE component

D Device:Startup component

CMSIS:RTOS2 (API):Keil
RTX5 component

RTX_<core>.lib

CMSIS compliant
RTOS-RTX library

rtx_lib.c

Keil RTX5 library
configuration file

RTX_Config.c/h
Keil RTX5 configuration

cmsis_os2.h
CMSIS-RTOS RTX

files interface
<user>.c/ct+ <device>.h
CMSIS

User application
main() { ... }

device peripheral access

NOTE

In the actual file names, <device> is the name of the microcontroller device;
<device core> represents the device processor family.

#include "cmsis_os2.h"

void app main (void *argument) {

// CMSIS RTOS header file

tid phaseA = osThreadNew (phaseA, NULL, NULL) ;

osDelay (osWaitForever) ;
while (1) ;
}

int main (void) ({
// System Initialization
SystemCoreClockUpdate () ;
osKernellInitialize();

osThreadNew (app_main, NULL, NULL) ;

// Initialize CMSIS-RTOS

if (osKernelGetState() == osKernelReady) {
// Start thread execution

osKernelStart() ;

}
while (1) ;
}

// Create application main thread

http://www.keil.com/pack/doc/cmsis/RTOS/html/cmsis__os_8h.html

Getting Started with MDK: Create Applications with pVision 29

Header File cmsis_os2.h

The file cmsis_os2.h is a standard header file that interfaces to every
CMSIS-RTOS API v2 compliant RTOS. Each implementation is provided the
same cmsis_os2.h that defines the interface to the CMSIS-RTOS?2.

Using the cmsis_0s2.h along with dynamic object allocation allows to create
source code or libraries that require no modifications when using on a different
CMSIS-RTOS v2 implementation.

All definitions in the header file are prefixed with os to give a unique name space
for the CMSIS-RTOS functions. All definitions and functions that belong to a
module are grouped and have a common prefix, for example, osThread for
threads.

Refer to section Reference: CMSIS-RTOS2 API of the online documentation
available at www.keil.com/pack/doc/CMSIS/RTOS2/html/index.html, for
more information.

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/index.html

30 CMSIS

Keil RTX5 Configuration

The file RTX Config.h contains configuration parameters for Keil RTX5. A copy
of this file is part of every project using the RTX component.

_] RTX Config.h v X
Epand Al | Colapse Al | Hep | ¥ ShowGid
Option Value
[=-5ystern Configuration
Global Dynamic Memory size [bytes] 4096
Kernel Tick Frequency [Hz] 1000
[=-Round-Robin Thread switching [v
Round-Reobin Timeout 5
Event Recording
ISR FIFO Queue 16 entries
(=~ Thread Configuration
E--Object specific Memory allocation [
MNumber of user Threads 1

Murnber of user Threads with default Stack size 0

Total Stack size [bytes] for user Threads with user-provided Stack size |0

Default Thread Stack size [bytes] 200
Idle Thread Stack size [bytes] 200
Stack overrun checking [v
Stack usage watermark I
Processor mode for Thread execution Privileged mode

e

Timer Configuration

e

Event Flags Configuration

e

Mutex Configuration

e

Semaphore Configuration

&

Memory Pool Configuration

]

Message Queue Configuration

TextEditor j, Configuration Wizard

You can set parameters for the thread stack, configure the Tick Timer, set Round-
Robin time slice, and define user timer behaviour for threads.

For more information about configuration options, open the RTX documentation
from the Manage Run-Time Environment window. The section Configure
RTX v5 describes all available settings. The following highlights the most
important settings that need adaptation in your application.

Getting Started with MDK: Create Applications with pVision

31

System Configuration

-)--Systern Configuration

+--Event Recording
I5R FIFO Queue

Global Dynamic Memory size [bytes] 4096
Kernel Tick Frequency [Hz] 1000
---Round-Robin Thread switching v
Round-Rebin Timeout 5

16 entries

In this section, you can define the size of global dynamic memory used for all
RTOS objects. Also, you can change the kernel tick frequency (if required),
disable the round-robin thread switching and control the event recording if you
are using the source code (refer to Compiler:Event Recorder on page 42).

Thread Configuration

=) Thread Configuration

=)--Object specific Memory allocation I
Mumber of user Threads 1
MNumber of user Threads with default Stack size 0
Total Stack size [bytes] for user Threads with user-provided Stack size |0
Default Thread Stack size [bytes] 200
Idle Thread Stack size [bytes] 200
Stack overrun checking [v
Stack usage watermark I
Processor mode for Thread execution Privileged mode

The Keil RTXS5 kernel uses a separate stack space for each thread and provides
two methods for defining the stack requirements:

= Static allocation: when osThreadAttr_t::stack_mem and
osThreadAttr t::stack size specify a memory area which is used for the
thread stack.

» Dynamic allocation: when osThreadAttr_t is NULL or
osThreadAttr_t::stack_ mem is NULL, the system allocates the stack
memory from:

o

Global memory pool when “Object specific Memory allocation”
is disabled or osThreadAttr_t::stack size is not 0.

Object-specific memory pools when “Object specific Memory
allocation” is enabled and osThreadAttr_t::stack size is O (or
osThreadAttr_t is NULL).

Number user Threads specifies maximum number of user threads that can be
active at the same time. This applies to user threads with system provided
memory for control blocks.

32 CMSIS

Number user Threads with default Stack size specifies maximum number of
user threads with default stack size. This applies to user threads with zero stack
size specified.

Total Stack size [bytes] for user Threads with user-provided Stack size
specifies the combined stack size for user threads with user-provided stack size. It
applies to user threads with user-provided stack size and system provided
memory for stack.

Default Thread stack size [bytes] specifies the stack size (in words) for threads
with zero stack size specified.

Idle Thread stack size [bytes] is the stack requirement for the idle thread.

Stack overrun checking is done at each thread switch. Enabling this option
slightly increases the execution time of a thread switch.

Stack usage watermark initializes the thread stack with a watermark pattern at
the time of the thread creation. This enables monitoring of the stack usage for
each thread (not only at the time of a thread switch) and helps to find stack
overflow problems within a thread. Enabling this option increases significantly
the execution time of thread creation.

NOTE
Consider these settings carefully. If you do not allocate enough memory or you
do not specify enough threads, your application will not work.

Other Configuration Options

Other configuration options are related to specific RTOS objects, such as timers,
event flags, mutexes, semaphores, memory pools, and message queues. Please
consult the documentation for detailed information about the available settings.

Getting Started with MDK: Create Applications with pVision 33

CMSIS-RTOS User Code Templates

MDK provides user code templates you can use to create C source code for the
application.

(% In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, select any template and click Add.

Add Mew Item to Group "Source Group 1' >
Add template file(s) to th ject,
@ CFile () mplate file(s) e proje
+ Component Name
@ G+ File opp) =% CMsis
\ﬂ psm File (5) RTOS2:Keil RTX5 CMSIS-RTOS2 'main’ function
RTOS2:Keil RTX5 CMSIS-RTOS2 Events
\ﬂ Header File (h) RTO52:Keil RTX3 CMS5IS-RTOS2 Memory Pool
—® RTOS2:Keil RTX3 CMSIS-RTOS2 Message Queue
\é Tet File (b4) RTOS2Keil RTXS | CMSIS-RTOS2 Mutex
; RTO52:Keil RTX3 CM5IS-RTOS2 Semaphaore
=l Image File ()
B RTOS52:Keil RTX5 CMSIS-RTOS2 Thread
7‘*@ User Code Template RTOS2:Keil RTX5 CMSIS-RTOS2 Timer
Type: I User Code Template
MName: I main. ¢
Location: I C:\Projects'Blinky_RTOS |
Add Close Help |

Keil RTX5 API Functions

The table below lists the various API function categories that are available with
the Keil RTXS.

API Category Description

Kernel Information and Control Provide system information and start the RTOS Kernel.
Thread Management Define, create, and control thread functions.

Thread Flags Synchronize threads using flags.

Event Flags Create events using flags.

Generic Wait Functions Wait for a time period or unspecified events.

Timer Management Create and control timer and callback functions.

Mutexes Synchronize thread execution with a Mutex.

Semaphores Control simultaneous access to shared resources.
Memory Pool Manage thread-safe fixed-size blocks of dynamic memory.
Message Queue Control, send, receive, or wait for messages.

34 CMSIS

Thread Management

The thread management functions allow you to define, create, and control your
own thread functions in the system.

Active Threads

event occurs

WAITING

INACTIVE

CMSIS-RTOS RTXS5 assumes that threads are scheduled as shown in the figure
above. Thread states change as described below:

A thread is created using the function osThreadNew(). This puts the thread into
the READY or RUNNING state (depending on the thread priority).

CMSIS-RTOS is pre-emptive. The active thread with the highest priority
becomes the RUNNING thread provided it is not waiting for any event. The
initial priority of a thread is defined during the creation of the thread but may be
changed during execution using the function osThreadSetPriority().

The RUNNING thread transfers into the WAITING state when it is waiting for
an event.

Active threads can be terminated any time using the function
osThreadTerminate(). Threads can also terminate by exit from the usual forever
loop and just a return from the thread function. Threads that are terminated are in
the INACTIVE state and typically do not consume any dynamic memory
resources.

Getting Started with MDK: Create Applications with pVision

Single Thread Program

A standard C program starts execution with the function main(). For an embedded
application, this function is usually an endless loop and can be thought of as a
single thread that is executed continuously.

Preemptive Thread Switching

Threads with the same priority need a round robin timeout or an explicit call of
the osDelay() function to execute other threads. In the following example, if job2
has a higher priority than job1, execution of job2 starts instantly. job2 preempts
execution of job1 (this is a very fast task switch requiring a few ms only).

Simple RTX Program using Round-Robin Task Switching

#include "RTE Components.h"
#include CMSIS device_ header
#include "cmsis_os2.h"

int counterl;
int counter2;

void jobl (void *argument) {
while (1) { // Loop forever
counterl++; // Increment counterl
}
}

void job2 (void *argument) {
while (1) { // Loop forever
counter2++; // Increment counter2
}
}

void app main (void *argument) {

osThreadNew (jobl, NULL, NULL) ; // Create a new thread
osThreadNew (job2, NULL, NULL) ; // Create a new thread
for (;;) {}

}
int main (void) {

// System Initialization
SystemCoreClockUpdate () ;

osKernellInitialize() ; // Initialize CMSIS-RTOS
osThreadNew (app_main, NULL, NULL); // Create application main thread
osKernelStart() ; // Start thread execution

for (;;) {}

36 CMSIS
Component Viewer for RTX RTOS
Keil RTX5 comes with an SCVD file for the Component Viewer for RTOS
aware debugging. In the debugger, open View — Watch Windows — RTX
RTOS. This window shows system state information and the running threads.
The System property shows e i
general information about the | pgpeny Value
RTOS configuration in the = System

application.

The Threads property shows
details about thread execution
of the application. For each
thread , it shows information
about priority, execution state
and stack usage.

If the option Stack usage
watermark is enabled for
Thread Configuration in the
file RTX Config.h, the field
Stack shows the stack load.
This allows you to:

= Identify stack overflows
during thread execution
or

= Optimize and reduce the
stack space used for
threads.

@ Kernel State
Kernel Tick Frequency
Round Robin Tick
Round Robin Timeout
Global Dynaric Memaory
Stack Overrun Check
Stack Usage Watermark
Default Thread Stack Size
W ISR FIFO Queue
=~ Threads
id: (210001284, osRiddleThread
id: 0:10000010, app_main
[=1-id: 010000130, blink_LED
¥ State
¥ Priority
¥ Attributes
¥ Waiting
[=-Stack
¥ Used
¥ Top
¥ Limit
¥ Size
¥ Flags

L S S R R S

osKernelRunning

1000

0

5

Base: 0:A10000000, Size: 4096
Enabled

Disabled

200

Size: 16, Used: 0

osThreadReady, osPriorityldle
osThreadRunning, osPriorityNormal
osThreadBlocked, osPricrityMNormal
osThreadBlocked

osPriorityNormal
osThreadDetached

Used: 32% [64]
64

010000248
0:10000180
200
000000000

NOTE

The uVision debugger also provides also a view with detailed runtime
information. Refer to Event Recorder on page 67 for more information.

Getting Started with MDK: Create Applications with pVision

CMSIS-DSP

The CMSIS-DSP library is a suite of common digital signal processing (DSP)
functions. The library is available in several variants optimized for different
ARM Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the Manage Run-
Time Environment dialog, the appropriate library for the selected device is
automatically included into the project.

kA Manage Run-Time Environment
Software Component Sel. Variant Version Description
=4 Board Support STM32F746G-Discovery ~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit
= @ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE [+ 420 CMSIS-CORE for Cortex-M, SC000, and SC300
*EH 146 | CMSIS-DSP Library for Cortex-M, SCO0D, and SC300
=4 RTOS (API) 1.0 CMSIS-RTOS API for Cortex-M, SCO0D, and SC300

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions
#include "arm math.h" // BRM: :CMSIS:DSP

const float32 t buf A[9] = { // Matrix A buffer and values
1.0, 32.0, 4.0,
1.0, 32.0, 64.0,

1.0, 16.0, 4.0,

};

float32_t buf AT[9]; // Buffer for A Transpose (AT)
float32_t buf ATmA[9] ; // Buffer for (AT * A)

arm matrix instance £32 A; // Matrix A

arm matrix instance £32 AT; // Matrix AT (A transpose)

arm matrix instance £32 ATmA; // Matrix ATmA(AT multiplied by A)
uint32_t rows = 3; // Matrix rows

uint32_t cols = 3; // Matrix columns

int main(void) ({
// Initialize all matrixes with rows, columns, and data array
arm mat _init £32 (&A, rows, cols, (float32 t *)buf A); // Matrix A

arm mat init £32 (&AT, rows, cols, buf AT); // Matrix AT
arm mat init £32 (&ATmA, rows, cols, buf ATmA); // Matrix ATmA
arm mat trans £32 (&A, &AT); // Calculate A Transpose (AT)

arm mat mult £32 (&AT, &A, &ATmA); // Multiply AT with A

while (1)

38 CMSIS

For more information, refer to the CMSIS-DSP documentation
on www.keil.com/cmsis/dsp.

ﬁ Reference x4+

< = O ‘ keil.com/

CMSIS CMSIS'DSP Version 1.4.9

1tml/mod

¥ |

COMPLIANT
e CMSIS DSP Software Library
General | Core | Driver | DSP RTOSvli | RTOSv2 | Pack | SVD | DAP |
MainPage | Usage and Description)
¥ CMSIS-DSP -
CMSIS DSP Software Library Reference
Change Log

Deprecated List Here is a list of all modules:

» Data Structures » Basic Math Functions
» Data Fields P Fast Math Functions
¥ Complex Math Functions
» Filtering Functions
¥ Matrix Functions
¥ Transform Functions
¥ Controller Functions
¥ Statistics Functions
» Support Functions
» Interpolation Functions
» Examples

Generated on Fri Nov 11 2016 12:41:33 for CMSIS-DSP by ARM Ltd. All nights reserved.

http://www.keil.com/cmsis/dsp

Getting Started with MDK: Create Applications with pVision

CMSIS-Driver

Device-specific CMSIS-Drivers provide the interface between the middleware
and the microcontroller peripherals. These drivers are not limited to the MDK
middleware and are useful for various other middleware stacks to utilize those
peripherals.

The device-specific drivers are usually part of the software pack that supports the
microcontroller device and comply with the CMSIS-Driver standard. The device
database on www.keil.com/dd?2 lists drivers included in the software pack for the
device.

Software Packs

Microcontroller Device Middleware

Control
Startup/System Structs

USBE USB Controller USB Device Driver USB Device

sl SAl Controller SAI Driver
EthernetE Ethernet PHY Ethernet PHY
| TCPIII?
Ethernet MAC Ethernet MAC Networking
RXTX S USART USART Driver
sp|oE SPI Controller SPI Driver Graphics
E CAN Controller CAN Driver
SPII E SPI Controller Flash Driver
SDIOOE SDIO MCI Driver File System
IIOE Memory Controller NAND Driver

USBE USB Controller USB Host Driver USB Host

RTE Device.h
Configuration File

Middleware components usually have various configuration files that connect to
these drivers. For most devices, the RTE Device.h file configures the drivers to
the actual pin connection of the microcontroller device.

The middleware/application code connects to a driver instance via a control
struct. The name of this control struct reflects the peripheral interface of the
device. Drivers for most of the communication peripherals are part of the
software packs that provide device support.

http://www.keil.com/dd2

40 CMSIS

Use traditional C source code to implement missing drivers according the
CMSIS-Driver standard.

Refer to www.keil.com/cmsis/driver for detailed information about the API
interface of these CMSIS drivers.

Configuration

There are multiple ways to configure a CMSIS-Driver. The classical method is
using the RTE Device.h file that comes with the device support.

Other devices may be configured using third party graphical configuration tools
that allow the user to configure the device pin locations and the corresponding
drivers. Usually, these configuration tools automatically create the required C
code for import into the pVision project.

Using RTE_Device.h

For most devices, the RTE Device.h file configures the drivers to the actual pin
connection of the microcontroller device:

_] RTE_Device.h v x
Egand Al | Colapse Al | Hep | I ShowGnd
Option Value
[=)--USB0 Controller [Driver_USBDO and Driver_USBHO] ¥ -
E-Pin Configuration
USBO_PPWR (Host) P6_3 v
USBO_PWR_FAULT (Host)
USBO_INDO
USBO_IND1

Device [Driver_USBDO]
USE1 Controller [Driver_USBD1 and Driver_USEBH1]
EMET (Ethernet Interface) [Driver_ETH_MACD] r J
USBO_PPWR (Host)
VBUS drive signal (towards external charge pump or power management
unit).

Text Editor_, Configuration Wizard

Using the Configuration Wizard view, you can configure the driver interfaces in
a graphical mode without the need to edit manually the #defines in this header
file.

http://www.keil.com/cmsis/driver

Getting Started with MDK: Create Applications with pVision 41

Using STM32CubeMX

MDK supports CMSIS-Driver configuration using STM32CubeMX. This
graphical software configuration tool allows you to generate C initialization code
using graphical wizards for STMicroelectronics devices.

Simply select the required CMSIS-Driver in the Manage Run-Time Environment
window and choose Device:STM32Cube Framework (API):STM32CubeMX.
This will open STM32CubeMX for device and driver configuration. Once
finished, generate the configuration code and import it into pVision.

For more information, visit the online documentation
at www.keil.com/pack/doc/STM32Cube/General/html/index.html.

Validation Suites for Drivers and RTOS

Software packs to validate user-written CMSIS-Drivers or a new implementation
of a CMSIS-RTOS are available from www.keil.com/pack. They contain the
source code and documentation of the validation suites along with required
configuration files, and examples that show the usage on various target platforms.

The CMSIS-Driver validation suite performs the following tests:
= Generic validation of API function calls
* Validation of configuration parameters
= Validation of communication with loopback tests
= Validation of communication parameters such as baudrate
= Validation of event functions

The test results can be printed to a console, output via ITM printf, or output to a
memory buffer. Refer to the section Driver Validation in the CMSIS-Driver
documentation available at www.keil.com/cmsis/driver.

The CMSIS-RTOS validation suite performs generic validation of various RTOS
features. The test cases verify the functional behavior, test invalid parameters and
call management functions from ISR.

The validation output can be printed to a console, output via ITM printf, or output
to a memory buffer. Refer to the section Driver Validation in the CMSIS-Driver
documentation available at www.keil.com/cmsis/rtos.

http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.keil.com/pack
http://www.keil.com/cmsis/driver
http://www.keil.com/cmsis/rtos

42 Software Components

Software Components

Compiler:Event Recorder

Modern microcontroller applications often contain middleware components,
which are normally a "black box" to the application programmer. Even when
comprehensive documentation and source code is provided, analyzing of
potential issues is challenging.

The software component Compiler:Event Recorder uses event annotations in
the application code or software component libraries to provide event timing and
data information while the program is executing. This event information is stored
in an event buffer on the target system that is continuously read by the debug unit
and displayed in the event recorder window of the pVision debugger.

AR .
Enable Recorder: W‘ R d V| Mark [+] A1 Operations [+]| stopped
Application Code Event Time(sec) Component Event Propety Value

PP 0 T it Event Restrt Count=0:00000001 =
000032610 RTX Kernel
0o006t1 RTCKerel
000032612 RTXMermPool o odk_count=d, lock se=S12, sr=0A00000
000032613 | RTXMemory | MemoryAlloc ‘mem=0x10000000, size=48, type=1, block=0x10000010
000032614 RTXMemory Memonlos mer=0.1000000 size-2056,type=0,bock-0d0000..

Event Annotations

!

000032615 RTXMemory | MemoryBlocklnit mp_info=0x1000001C, block_count=4, block_size=512.
000032616 | RTX Membool MemonPoolCreaied | mp.d=0,10000010
Event Recorder Debug 00017 |RIXEvFlags EventFlagshew at=0:00000000
Unit (=P 5 oosis RiXMemoy Memensloc mem=0.10000003,size=24 ype=1, block=010000848
10 000032615 RTXEvFogs EventFlagsCrested
11 000032620 RTX Thread ThreadNew
12 000032621 |RTX Trveod | Thucadiew =
13 000032622 RTXMemory MemoryAlloc types= >ck=0x10000860
14 (000032623 | RTXMemory Memoryalls . typec0, block=0x10005..
Event Buffer 15 00003624 RTXThread | ThieadCreated thread_i6=0:10000860
16 (000032625 | RTX MemPool | MemonPoolilec mp_id-040000010, tmeout=0
17 1000032625 | RTX Memory ol
Memory 18000032627 RTX MemPool e, ,
19 (000032628 | RTXMemPool | MemonPooliloc | mp.id=00000010,tmeout=0 5

During program execution, the uVision debugger reads the content of the event
buffer using a debug adapter that is connected via JTAG or SWD to the
CoreSight Debug Access Port (DAP). The event recorder requires no trace
hardware and can therefore be used on any Cortex-M processor based device.

To display the data stored in the event buffer in a human readable way, you need
to create a Software Component Viewer Description (SCVD) file. Refer
to: www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

The section Event Recorder on page 67 shows how to use the event recorder in a
debug session.

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

Getting Started with MDK: Create Applications with pVision

43

Compiler:1/O

The software component Compiler:1/O allows you to retarget I/O functions of
the standard C run-time library. Application code frequently uses standard I/O
library functions, such as printf{(), scanf(), or fgetc() to perform input/output
operations.

The structure of these functions in the standard ARM Compiler C run-time
library is:

High-Level Functions [
printf, scanf, etc. ‘

¥
Hardware independent

Low-Level Functions ‘
fputc, fgetc, etc.

System /O Functions

Hardware
dependent

_sys_write, _sys_read, etc.

The high-level and low-level functions are not target-dependent and use the
system I/O functions to interface with hardware.

The MicroLib of the ARM Compiler C run-time library interfaces with the
hardware via low-level functions. The MicroLib implements a reduced set of
high-level functions and therefore does not implement system I/O functions.

The software component Compiler:1/O retargets the I/O functions for the various
standard I/O channels: File, STDERR, STDIN, STDOUT, and TTY:

Manage Run-Time Environment bt
Software Component Sel. Variant Version Description
‘ Board Support MCB1800 1.00 Keil Development Board MCB1800
& CMsIs Cortex Microcontroller Software Interface Components
€ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
SR 2 Compiler ARM Compiler | 1.2.0 Compiler Extensions for ARM Compiler ARMCC and ARMClang
W Event Recorder I_ DAP 1.1.0 Event Recording using Debug Access Port (DAP)
= ’ /0 Retarget Input/Qutput
File [~ | File System 1.2.0 Use retargeting together with the File System component
W STDERR [~ | Breakpoint |~ |1.2.0 Stop program execution at a breakpoint when using STDERR.
W STDIN I_ ITM ~|1.2.0 Retrieve STDIN from a debug output window using ITM
@ sToOUT [|EWR ~|1.20 Redirect STDOUT to a debug output window using Event Recorder
W TTY [| User v|1.20 Redirect TTY to a user defined output target
Validation Output Description
Resolve Select Packs Details oK I Cancel Help |

44

Software Components

1/0 Channel

Description

File
STDERR
STDIN
STDOUT
TTY

Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)
Standard error stream of the application to output diagnostic messages.
Standard input stream going into the application (scanf etc.).

Standard output stream of the application (printf etc.).

Teletypewriter which is the last resort for an error output.

The variant selection allows you to change the hardware interface of the /O

channel.
Variant Description
File System Use the File System component as the interface for File related operations
EVR Use the event recorder to display printf debug messages
Breakpoint When the I/O channel is used, the application stops with BKPT instruction.
IT™ Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.
User Retarget I/0O functions to a user defined routines (such as USART, keyboard).
. Debug [printf) Viewer
The software component Compiler adds the file oD weloc — 0xiol
retarget io.c that will be configured acording to the AD value = 0x101
. - ., . LD value = 0x101
variant settings. For the User variant, user code 5D value = ox101
: : 1 = 0x101
templates are aYallat?le that help you to 1mplemept hp Lotue Z ot
your own functionality. Refer to the documentation AD value = 0x101
. . BD value = 0x101
for more information. D value — 0x101
. . BD value = 0x101
ITM in the Cortex-M3/M4/M7 supports printf style iD value = 0x101
debugging. If you choose the variant ITM, the /O
library functions perform I/O operations via the g
Debug (printf) Viewer window. FACall Stack = Locals | 53 Debug (printf) Vi...

As ITM is not available in Cortex-M0/M0+ devices, you can use the event
recorder to display printf debug messages. Use the EVR variant of the STDOUT
I/O channel for this purpose (works with all Cortex-M based devices).

Getting Started with MDK: Create Applications with pVision

45

Board Support

There are a couple of interfaces that are frequently used on development boards,
such as LEDs, push buttons, joysticks, A/D and D/A converters, LCDs, and
touchscreens as well as external sensors such as thermometers, accelerometers,
magnetometers, and gyroscopes.

The Board Support Interface API provides standardized access to these
interfaces. This enables software developers to concentrate on their application
code instead of checking device manuals for register settings to toggle a
particular GPIO.

Many Device Family Packs (DFPs) have board support included. You can choose
board support from the Manage Run-Time Environment window:

Software Component Sel. Variant Version Description
=4 Board Support STM32F746G-Discovery |z| 100 STMicroelectronics STM32F746G-Discovery Kit
= @ Buttons (APT) 1.00 Buttons Interface
¥ Buttons [+ 100 Buttons Interface for STMicroelectronics STM32F746G-Discovery Kit
@ Dirivers Kinetis BSP Dirivers
@ Graphic LCD (APT) 1.00 Graphic LCD Interface
=4 LED (AP]) 1.00 LED Interface
¥ LED [+ 100 LED Interface for STMicroelectronics STM32F746G-Discovery Kit
@ Touchscreen (APT) 1.00 Touchscreen Interface
@ emWin LCD (APT) 11 emWin LCD Interface

Be sure to select the correct Variant to enable the correct pin configurations for
your particular development board.

You can add board support to your custom board by creating the required support
files for your board’s software pack. Refer to the API documentation available
at: www.keil.com/pack/doc/mw/Board/html/index.html

http://www.keil.com/pack/doc/mw/Board/html/index.html

46 Create Applications

Create Applications

This chapter guides you through the steps required to create and modify projects
using CMSIS described in the previous chapter.

NOTE
The example code in this section works for the MCB1800 evaluation board
(populated with LPC1857). Adapt the code for other starter kits or boards.

The tutorial creates the project Blinky in these two basic design concepts:
= RTOS design using Keil RTXS.
* Infinite loop design for bare-metal systems without RTOS Kernel.

Blinky with Keil RTX5

The section explains the creation of the project using the following steps:

= Setup the Project: create a project file and select the microcontroller device
along with the relevant CMSIS components.

= Configure the Device Clock Frequency: configure the system clock.
= (Create the Source Code Files: add and create the application files.

= Build the Application Image: compile and link the application for
downloading it to an on-chip Flash memory of a microcontroller device.

= Using the Debugger on page 63 guides you through the steps to connect
your evaluation board to the PC and to download the application to the
target.

For the project Blinky, you will create the following application files:

main.c This file contains the main() function that initializes the RTOS
kernel, the peripherals, and starts thread execution.

LED.c The file contains functions to initialize and control the GPIO port
and the thread function blink LED(). The LED Initialize() function
initializes the GPIO port pin. The functions LED On() and
LED_Off() control the port pin that interfaces to the LED.

LED.h The header file contains the function prototypes for the functions in
LED.c and is included into the file main.c.

Getting Started with MDK: Create Applications with pVision

Setup the Project
From the pVision menu bar, choose Project — New pVision Project.

r% Select an empty folder and enter the project name, for example, Blinky.
Click Save, which creates an empty project file with the specified name

(Blinky.uvprojx).
Next, the dialog Select Device for Target opens.

r% Select the LPC1857 and click OK.

The device selection defines essential tool settings such as compiler controls, the
memory layout for the linker, and the Flash programming algorithms.

The Manage Run-Time Environment dialog opens and shows the software
components that are installed and available for the selected device.

r% Expand ::CMSIS:RTOS2(API) and enable :Keil RTXS (Library).
Expand ::Device and enable :GPIO and :SCU.

kA Manage Run-Time Environment *
Software Component Sel. Variant Version Description
4 Board Support MCB1300 1.00 Keil Development Board MCB1800
= ’ CMSIS Cortex Microcontroller Software Interface Components
@ CORE I 5.00 CMSIS-CORE for Cortex-M, SCO0D, SC300, ARMvE-M
¥ Dsp I 146 CMSIS-DSP Library for Cortex-M, SC000, and SC300
‘ RTOS (API) 1.0 CMSIS-RTOS API for Cortex-M, SCO00, and SC300
-4 RTOS2 (AP) 21 CMSIS-RTOS APl for Cortex-M, SCO00, and SC300
“ Keil RTX3 [+ Library ~|510 | CMSIS-RTOS2 RTX5 for Cortex-M, SC000, €300 and ARMvE-M (Library)
€ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
‘ Compiler ARM Compiler | 1.2.0 Compiler Extensions for ARM Compiler ARMCC and ARMClang
=) ‘ Device Startup, System Setup
¥ GPDMA r 13 GPDMA driver used by RTE Drivers for LPC1800 Series
¥ GPIO v 1.0 GPIO driver used by RTE Drivers for LPC1800 Series
@ [v 1.1 SCU driver used by RTE Drivers for LPC1800 Series
@ Startup I 1.00 | System Startup for NXP LPC1800 Series
@ File System MDK-Pre ~|6.9.0 File Access on various storage devices
‘ Graphics MDK-Pra ~|5.366 |UserInterface on graphical LCD displays
‘ Network MDK-Pro ~|7.3.0 |Pva/IPve Networking using Ethernet or Serial protocols
& UsB MDK-Pro ~|6.9.0 USE Communication with various device classes
Validation Output Description
=& ARM:CMSIS:IRTOS2:Keil RTXS Additional seftware components required -
(- require Device:Startup Select companent from list
@ Keil:Device:Startup System Startup for NXP LPC1800 Series
= -require CMSIS:CORE Select compenent from list
¥ ARM:CMSIS:CORE CMBSIS-CORE for Cortex-M, SCO00, SC300, ARMvE-M
=% Keil:Device:GPIO Additional software compenents required
(=) -require CMSIS:CORE Select compaonent from list
¥ ARM:CMSIS:CORE CMSIS-CORE for Cortex-M, SC00D, SC300, ARMvE-M
=% Keil:Device:SCU Additional software compenents required
[=-require CMSIS:CORE Select component from list j

Resolve | | Select Packs | | Detals Cancel Help

48

Create Applications

The Validation Output field shows dependencies to other software components.
In this case, the components ARM::CMSIS:CORE and ::Device:Startup are

required.

T1P: A click on a message highlights the related software component.

r% Click Resolve.

This resolves all dependencies and enables other required software components

(here ARM::CMSIS:Core and ::Device:Startup).

= Click OK.

The selected software components are included into
the project together with the startup file, the RTX
sources and configuration files, as well as the CMSIS
system files. The Project window displays the
selected software components along with the related
files. Double-click on a file to open it in the editor.

Project

=1 Project: Blinky
=50 Target1

|

= [d Source Group 1
=24 cmsis
BT RTX_CM3.lib (RTOS2:Keil RTXS)
o [9 ric lib.c (RTOS2:Keil RTXS)
@] RTX_Cenfig.c (RTOS2:Keil RTX3)
] RTX_Config.h (RTOS2:Keil RTXS)
= @ Device
= 5] GPIO_LPCIZ0ce (GPIO)
o [T scuU LPCIBoce (5CU)
_1 RTE_Device.h (Startup)
_1 startup_LPC18xcs (Startup)
3] system LPC18wcc (Startup)

E]Proje:t|@3::: {} Functions | (), Templates

Getting Started with MDK: Create Applications with pVision

49

Configure the Device Clock Frequency

The system or core clock is defined in the system <device>.c file. The core clock
is also the input clock for the RTOS Kernel Timer and, therefore, the RTX
configuration file needs to match this setting.

NOTE
Some devices perform the system setup as part of the main function and/or use a
software framework that is configured with external utilities.

Refer to Device Startup Variations on page 56 for more information.

The clock configuration for an application depends on various factors such as the
clock source (XTAL or on-chip oscillator), and the requirements for memory and
peripherals. Silicon vendors provide the device-specific file system <device>.c
and therefore it is required to read the related documentation.

TIP: Open the reference manual from the Books window for detailed
information about the microcontroller clock system.

The MCB1800 development kit runs with an external 12 MHz XTAL. The PLL
generates a core clock frequency of 180 MHz. As this is the default, no
modifications are necessary. However, you can change the settings for your
custom development board in the file system LPC18xx.c.

r% To edit the file system LPCI18xx.c, expand the group Device in the Project
window, double-click on the file name, and modify the code as shown
below.

Set PLL Parameters in system_LPC18xx.c

/* PLL1 output clock: 180MHz, Fcco: 180MHz,

N=1, M= 15, P = x */

#define PLL1 NSEL 0 /* Range [0 - 3]: Pre-divider ratio N */
#define PLL1 MSEL 14 /* Range [0 - 255]: Feedback-div ratio M */
#define PLL1_ PSEL 0 /* Range [0 - 3]: Post-divider ratio P */
#define PLL1 BYPASS 0 /* 0: Use PLL, 1: PLL is bypassed */
#define PLL1 DIRECT 1 /* 0: Use PSEL, 1: Don't use PSEL */
#define PLL1 FBSEL 0 /* 0: FCCO is used as PLL feedback */
/* 1: FCLKOUT is used as PLL feedback */

Keil RTX5 automatically detects the clock setting so that a manual adaption is
not required.

50

Create Applications

Create the Source Code Files

Add your application code using pre-configured User Code Templates
containing routines that resemble the functionality of the software component.

t% In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group.

Add Mew Item to Group "Source Group 1'

@ C File (.c)
@ C++ File (cpp)
\ﬂ Asm File (s)

Component

=4 CMsIS

Add template file(s) to the project.

MName

RTO52:Keil RTX5 CMSIS-RTOS2 'main’ function

RTOS2:Keil RTX5 CMSIS-RTOS2 Events
\ﬂ Header File (h) RTO52:Keil RTX3 CMS5IS-RTOS2 Memory Pool
—®) RTOS2:Keil RTX3 CMSIS-RTOS2 Message Queue
\é Tet File (b4) RTOS2Keil RTXS | CMSIS-RTOS2 Mutex
; ; RTO52:Keil RTX3 CM5IS-RTOS2 Semaphaore
=l Image File ()
B RTOS52:Keil RTX5 CMSIS-RTOS2 Thread
7‘*@ User Code Template RTOS2:Keil RTX5 CMSIS-RTOS2 Timer
Type: | User Code Template
MName: | min. c
Location: | C:\Projects'Blinky_RTOS
Add Close |

El
Help

r% Click on User Code Template to list available code templates for the
software components included in the project. Select CMSIS-RTOS2 ‘main’

function and click Add.

This adds the file main.c to the project group Source Group 1. Now you can add
application specific code to this file.

Getting Started with MDK: Create Applications with pVision

51

r% Add the code below to create a function blink LED() that blinks LEDs on

the evaluation kit.

Code for main.c

* CMSIS-RTOS 'main' function template

#include
#include
#include
#include

"RTE Components.h"
CMSIS device header
"cmsis os2.h"
"LED.h"

#ifdef RTE Compiler EventRecorder
#include "EventRecorder.h"
#endif

void app main (void *argument) {

Init_BlinkyThread ()’
for (;;) {}
}

int main (void) {
// System Initialization

SystemCoreClockUpdate () ;
#ifdef RTE Compiler EventRecorder

// Initialize and start Event Recorder

// Start Blinky thread

//EventRecorderInitialize (EventRecordError, 1U);

#endif
/...
LED Initialize ()

osKernellInitialize();
osThreadNew (app_main, NULL, NULL);

// Initialize LEDs

// Initialize CMSIS-RTOS
// Create application main thread

osKernelStart() ; // Start thread execution
for (;;) {}

}

NOTE

The file RTE_Components.h includes a define/macro specifying the name of the
device header file such that you can specify the device include in a device
agnostic way using #include CMSIS device header.

52 Create Applications

% Create an empty C-file named LED.c using the dialog Add New Item to
Group and add the code to initialize and access the GPIO port pins that
control the LEDs.

Code for LED.c

#include "SCU LPC18xx.h"
#include " GPIO_LPCl 8xx.h"
#include "cmsis_os2.h" // ARM: :CMSIS:RTOS:Keil RTX5

osThreadld t tid blink LED; // Thread id of thread blink LED
void blink LED (void *argument); // Prototype function

void LED Initialize (void) {
GPIO_PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4|SCU_PIN CFG_PULLDOWN EN)) ;
GPIO SetDir (6, 24, GPIO DIR OUTPUT);
GPIO_PinWrite (6, 24, 0);

}

void LED On (wvoid) ({
GPIO_PinWrite (6, 24, 1); // LED on: set port
}

void LED Off (void) {
GPIO_PinWrite (6, 24, 0); // LED off: clear port
}

// Blink LED function
void blink LED(void *argument) {

for (;;) {
LED On ()’ // Switch LED on
osDelay (500) ; // Delay 500 ms
LED Off (); // Switch off
osDelay (500) ; // Delay 500 ms

}
}

void Init BlinkyThread (void) {
tid blink LED = osThreadNew (blink LED, NULL, NULL); // Create thread
}

NOTE
You can also use the functions as provided by the Board Support component
described on page 45Error! Bookmark not defined..

Getting Started with MDK: Create Applications with pVision 53

% Create an empty header file named LED.# using the dialog Add New Item
to Group and define the function prototypes of LED.c.

Code for LED.h
/B omcoe e csom eSS CE oSS S C SO TSSOSO E S OIS OTDEESE S CSOToS
* File LED.h
P ——,—,——— e */
void LED Initialize (void); // Initialize GPIO
void LED On (void); // Switch Pin on
void LED Off (void); // Switch Pin off
void blink LED (void const *argument); // Blink LEDs in a thread
void Init BlinkyThread (void); // Initialize thread

Build the Application Image

Build the application, which compiles and links all related source files.

Build Output shows information about the build process. An error-free
build displays program size information, zero errors, and zero warnings.

Build Qutput a @

*%% Using Compiler 'V5.06 update 4 (build 422)', folder: 'C:\Keil wS\ARM\ARMCC\Bin'
Rebuild target 'Target 1'

compiling LED.c...

compiling rtx_lib.c...

compiling main.c...

compiling RIX Config.c...

assembling startup LPCLEXX.S...

compiling GPIO LPCI1BxxX.c...

compiling SCU LPCl8xx.c...

compiling system LPC18xxX.c...

linking...

Program Size: Code=8664 RO-data=1036 RW-data=5504 ZI-data=1632

After Build - User command $1: C:\Keil v5\/ARM/BIN/ELfDwT.exe .\Objects\Blinky.axf BASEADDRESS (0x1A000000)
ELFDWT - Signature Creator V1.2.0.0

COPYRIGHT Copyright (C) 2014-2016, AEM Ldt. and ARM Germany GmbH

#% Updated Signature over Range[32] (0x1A000000 - Ox1A000018): @0x1R00001C = O0x53FFCD46
% Processing completed, no Errors.

".\Cbjects\Blinky.axf" - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:02

/|

The section Using the Debugger on page 63 guides you through the steps to
connect your evaluation board to the workstation and to download the application
to the target hardware.

T1P: You can verify the correct clock and RTOS configuration settings of the
target hardware by checking the one-second interval of the LED.

54 Create Applications

Blinky with Infinite Loop Design

Based on the previous example, we create a Blinky application with the infinite
loop design and without using CMSIS-RTOS functions. The project contains the
user code files:

main.c This file contains the main() function, the function Systick Init() to
initialize the System Tick Timer and its handler function
SysTick Handler(). The function Delay() waits for a certain time.

LED.c The file contains functions to initialize the GPIO port pin and to set
the port pin on or off. The function LED Initialize() initializes the
GPIO port pin. The functions LED On() and LED _Off{) enable or
disable the port pin.

LED.h The header file contains the function prototypes created in LED.c
and must be included into the file main.c.

Open the Manage Run-Time Environment and deselect the software
component ::CMSIS:RTOS (API):Keil RTX.

r% Open the file main.c and add the code to initialize the System Tick Timer,
write the System Tick Timer Interrupt Handler, and the delay function.

/) Somscmmososco oo oo eSS C eSS S eSS E O S CC S SO CE S DSOS S OSSO CT DSOS COSOS
* file main.c
P ——,—,——— e */
#include "LPC18xx.h" // Device header
#include "LED.h" // Initialize and set GPIO Port
int32 t volatile msTicks = 0; // Interval counter in ms

// Set the SysTick interrupt interval to 1ms
void SysTick_Init (void) {
if (SysTick Config (SystemCoreClock / 1000)) {
// handle error
}
}

// SysTick Interrupt Handler function called automatically
void SysTick_Handler (void) ({
msTicks++; // Increment counter

}

// Wait until msTick reaches 0

void Delay (wvoid) {
while (msTicks < 499); // Wait 500ms
msTicks = 0; // Reset counter

}

Getting Started with MDK: Create Applications with pVision 55

int main (void) ({
// initialize peripherals here

LED Initialize (); // Initialize LEDs
SystemCoreClockUpdate () ; // Update SystemCoreClock to 180 MHz
SysTick Init (); // Initialize SysTick Timer
while (1) {

LED On (); // Switch on

Delay () // Delay

LED Off (); // Switch off

Delay (); // Delay
}

}

r% Open the file LED.c and remove unnecessary functions. The code should

look like this.
/* __
* File LED.c
K */

#include "SCU LPC18xx.h"
#include "GPIO LPC18xx.h"

void LED Initialize (void) {
GPIO PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4 | SCU_PIN CFG_PULLDOWN_EN)) ;

GPIO SetDir (6, 24, GPIO DIR OUTPUT) ;
GPIO_ PinWrite (6, 24, 0);
}
void LED On (void) ({
GPIO PinWrite (6, 24, 1); // LED on: set port
}
void LED Off (void) ({
GPIO PinWrite (6, 24, 0); // LED off: clear port
}
% Open the file LED.h and modify the code.
Vs
* file: LED.h
o o 5 o o 0 5 e 0 0 5 e 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 5 0 0 0 5 0 0 0 0 0 0 5 0 0 0 5 0 0) 0 0) 0 0 e e e e */
void LED_ Initialize (void); // Initialize LED Port Pins
void LED On (void) ; // Set LED on

void LED Off (void); // Set LED off

56 Create Applications

Build the Application Image

The section Using the Debugger on page 63 guides you through the steps to
connect your evaluation board to the PC and to download the application to the
target hardware.

TIP: You can verify the correct clock configuration of the target hardware by
checking the one-second interval of the LED.

Device Startup Variations

Some devices perform a significant part of the system setup as part of the device
hardware abstraction layer (HAL) and therefore the device initialization is done
from within the main function. Such devices frequently use a software
framework that is configured with external utilities.

The ::Device software component may contain therefore additional components
that are required to startup the device. Refer to the online help system for further
information. In the following section, device startup variations are exemplified.

Example: STM32Cube

Many STM32 devices are using the STM32Cube Framework that can be
configured with a classical method using the RTE Device.h configuration file or
by using STM32CubeMX.

The classic STM32Cube Framework component provides a specific user code
template that implements the system setup. Using STM32CubeMX, the main.c
file and other source files required for startup are copied into the project below
the STM32CubeMX:Common Sources group.

Getting Started with MDK: Create Applications with pVision

57

Setup the Project using the Classic Framework

This example creates a project for the STM32F746G-Discovery kit using the
classical method. In the Manage Run-Time Environment window, select the

following:

r% Expand ::Device:STM32Cube Framework (API) and enable :Classic.

Expand ::Device and enable :Startup.

Resolve Select Packs Details

7] Manage Run-Time Environment X
Software Compeonent Sel. Variant Version Description
& Board Support STM32F746G-Discovery |~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit =
‘ CMSIS Cortex Microcontroller Software Interface Components
’ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
@ Compiler ARM Compiler Seftware Extensions
= ‘ Device Startup, System Setup
¥ Startup I¥ 1.0 System Startup for STMicroelectronics STM32F7 Series
=R STM32Cube Framework (API) | STM32Cube Framework
¥ Classic [1.00 Configuration via RTE Device.h
¥ STM32CubeMX r 100 Configuration via STM32CubeMX
. STM32Cube HAL STM32FTiec Hardware Abstraction Layer (HAL) Drivers
‘ File System MDK-Pro 650 Eile Access on various storage devices
‘ Graphics MDK-Pro 5300 | UserInterface on graphical LCD displays
@ Graphics Display Display Interface including configuration for emWIN
‘ Network MDK-Pro 650 |P Networking using Ethernet or Serial protocols g
‘ use MDK-Pro 6.5.0 USB Communication with various device classes J
Validation Output Description

Help

r% Click Resolve to enable other required software components and then OK.

r% In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

Add New ltem to Group Source Files' x
Add template fle(s) to the project.
@ . mplate fle(s) to the proje
" Component Name
Ia Ce+ File {.cpp) @ omsis
lﬂ Ao Fle) E4 Device
BTl ‘main’ module for STM32Cube
\ﬂ Header Fi (1) STMZ2Cube Framework Classic Exception Handlers and Peripheral [RQ
= STM32Cube FrameworkiClassic MCU Specific HAL Initialization / De-Initi..
é Text Fie (bd) Startup Flash One-Time programmable Bytes
‘g. mage Fie (7 Startup Flash Option Bytes
@ User Code Template
Type: User Code Template
e [Fanfman<
Location: ‘ C:\Workspaces WMDK\STM32YMDK Boards\ST\STM32F 746G _Discovery Blinky .
Close Help

r% Click on User Code Template to list available code templates for the
software components included in the project. Select ‘main’ module for
STM32Cube and click Add.

58

Create Applications

The main.c file contains the function SystemClock Config(). Here, you need to
make the settings for the clock setup:

Code for main.c

static void SystemClock Config (void) {
RCC_ClkInitTypeDef RCC ClkInitStruct;
RCC_OscInitTypeDef RCC OscInitStruct;

/* Enable HSE Oscillator and activate

RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.

HSEState = RCC_HSE ON;
HSIState = RCC_HSI OFF;

PLL
PLL

PLL

PLLM
PLLN
PLLP

.PLLState = RCC_PLL_ON;

.PLLSource = RCC_PLLSOURCE_HSE;
PLL.
PLL.
PLL.
.PLLQ

25;

432;
RCC_PLLP_DIV2;
9;

HAL RCC_OscConfig (&RCC_OscInitStruct);

/* Activate the OverDrive to reach the 216 MHz Frequency */

HAL PWREx EnableOverDrive() ;

PLL with HSE as source */
OscillatorType = RCC_OSCILLATORTYPE HSE;

/* Select PLL as system clock source and configure the HCLK, PCLKl and
PCLK2 clocks dividers */

RCC_ClkInitStruct.ClockType

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE PLLCLK;

(RCC_CLOCKTYPE SYSCLK | RCC_CLOCKTYPE HCLK |
RCC_CLOCKTYPE_PCLKl | RCC_CLOCKTYPE_PCLK2) ;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK DIV1;
RCC_ClkInitStruct.APBICLKDivider = RCC_HCLK DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK DIV2;

HAL RCC_ClockConfig (&RCC_ClkInitStruct, FLASH LATENCY 7);

}

Now, you can start to write your application code using this template.

Getting Started with MDK: Create Applications with pVision

Setup the Project using STM32CubeMX

This example creates the same project as before using STM32CubeMX. In the
Manage Run-Time Environment window, select the following:

r% Expand ::Device:STM32Cube Framework (API) and enable
:STM32CubeMX. Expand ::Device and enable :Startup.

kA Manage Run-Time Environment X
Software Component Sel. Variant Version Description
€ Boad Support STM32756G-E ~ | 1.1.0 STMicroelectronics STM32756G-EVAL Board
‘ CMSIS Cortex Microcontroller Software Interface Components
’ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
& Compiler ARM Compiler | 1.2.0 Compiler Extensions for ARM Compiler ARMCC and ARMClang
=l ‘ Device Startup, Systemn Setup
¥ Startup [v 1.1.2 System Startup for STMicroelectronics STM32F7 Series
-4 STM32Cube Framework (API) 1.0.0 STM32Cube Framework
@ Classic [112 Configuration via RTE Device.h
¢ BIEETE |~ 1.00 | Configuration via STM32CubeMx
’ STM32Cube HAL STM32F hee Hardware Abstraction Layer (HAL) Drivers
@ File System MDK-Pro ~ | 6.9.0 File Access on various storage devices
‘ Graphics MDK-Pro w5366 | UserInterface on graphical LCD displays
£ Graphics Display Display Interface including configuration for emWIN
‘ Metwork MDK-Pro ~|73.0 IPvd/IPv6 Metworking using Ethernet or Serial protocols
‘ UsB MDK-Pro v | 6.9.0 USB Communication with various device classes
Validation Output Description
Resolve Select Packs Details Cancel Help

% Click Resolve to enable other required software components and then OK.
A new window will ask you to start STM32CubeMX.

MDK: Selected Scftware Component Requires Code Generation by 'STM32CubeMX! *

Component:
Keil::Device:STM32Cube Framework: STM32CubeMy

Generator Program:
STM32CubeMX

Generates:
JRTE\Device \STM32F 746MGHx \FrameworkCubeMX, gpdsc

Start STM32CubeMX Cancel

Create Applications

STM32CubeMX is started with the correct device selected:

& STM32CubeMX STCubeGenerated.ioc: STM32FTAENGHx

File Project Pinout Window Help

B b HE &0 Okepurcntsgastecnent 9 ¢ O — @ 4 Frd

~

o FATFS
© FREERTOS
0
0

°

5 ADCL
- ADC2
o ADCE
o cany
- AN
@ RC
& DAC
o pemr
% DMA2D
o ETH
o FMC
& HDMI_CEC
o na
° R
s e
o 1
o 251
5 %2
- 1253
o WG
5 LpTIML
- LTDC
© QUADSPI 4

PiN0Ut Clock Configuration Configuration Power Consumption Calaator

wVision

Project:

Generated:
GHi\FrameworkCubeMX.gpdsc

Import Changes?

@ For the current preject new generated code is available for import.
C\Workspaces\MDK\STM32\STM32CubeMKX\STM32CubeMX uvprojx

C\Workspaces\MDK\STM3Z\STM32CubeMX\RTE\ Device\ STM32F746M

o=] |

% Configure your device as required. When done, go to Project > Generate
Code to create a GPDSC file. pVision will notify you:

r% Click Yes to import the project. The main.c and other generated files are

added to a folder called STM32CubeMX:Common Sources.

Getting Started with MDK: Create Applications with pVision 61

Secure/non-secure programming

Embedded system programmers face demanding product requirements that
include cost sensitive hardware, deterministic real time behavior, low-power
operation, and secure asset protection.

Modern applications have a strong need for security. Assets that may require
protection are:

= device communication (using cryptography and authentication methods)
= secret data (such as keys and personal information)

= firmware (against IP theft and reverse engineering)

= operation (to maintain service and revenue)

The TrustZone”™ for ARMvS-M security extension is a System on Chip (SoC) and
CPU system-wide approach to security and is optimized for ultra-low power
embedded applications. It enables multiple software security domains that restrict
access to secure memory and I/O to trusted software only. TrustZone for
ARMvS-M:

= preserves low interrupt latencies for both secure and non-secure domains.
= does not impose code or cycle overhead.

= introduces efficient instructions for calls to the secure domain.

Create ARMv8-M software projects

The steps to create a new ARMv8-M software project in MDK are:
* Define the overall system and memory configuration. This has impact on:
o Setup secure and non-secure projects
o Add startup code and 'main' module to secure and non-secure projects.
o Reflect this configuration in the CMSIS-Core file partition <device>.h

= Define the API of the secure software part in a header file to allow usage
from the non-secure part

= (Create the application software for the secure and the non-secure part

Application note 291 describes the necessary steps in details and contains
example projects and best practices for secure and non-secure programming using
ARMV8-M targets. It is available at www.keil.com/appnotes/docs/apnt 291.asp

http://www.keil.com/appnotes/docs/apnt_291.asp

62 Debug Applications

Debug Applications

The ARM CoreSight™ technology integrated into the ARM Cortex-M processor
based devices provides powerful debug and trace capabilities. It enables run-
control to start and stop programs, breakpoints, memory access, and Flash
programming. Features like sampling, data trace, exceptions including program
counter (PC) interrupts, and instrumentation trace are available in most devices.
Devices offer instruction trace using ETM, ETB, or MTB to enable analysis of
the program execution. Refer to www.keil.com/coresight for a complete
overview of the debug and trace capabilities.

Debugger Connection

MDK contains the uVision Debugger that connects to various debug/trace
adapters, and allows you to program the Flash memory. It supports traditional
features like simple and complex breakpoints, watch windows, and execution
control. Using trace, additional features like event/exception viewers, logic
analyzer, execution profiler, and code coverage are supported.

The ULINKp/us and ULINK?2 debug
adapters interface to JTAG/SWD debug
connectors and support trace with the Serial
Wire Output (SWO). The ULINKpro i
debug/trace adapter also interfaces to ETM trace connectors and uses streaming
trace technology to capture the complete instruction trace for code coverage and
execution profiling. Refer to www.keil.com/ulink for more information.

CMSIS-DAP based USB JTAG/SWD debug interfaces are
typically part of an evaluation board or starter gam g
kit and offer integrated debug features. MDK
also supports several proprietary interfaces
that offer a similar technology.

MDK connects to third-party debug solutions such as Segger J-Link or J-Trace.
Some starter kit boards provide the J-Link Lite technology as an on-board
solution.

http://www.keil.com/coresight
http://www.keil.com/ulink

Getting Started with MDK: Create Applications with pVision

63

Using the Debugger

Next, you will debug the Blinky application created in the previous chapter on
hardware. You need to configure the debug connection and Flash programming
utility.

Select the debug adapter and configure debug options.

A% From the toolbar, choose Options for Target, click the Debug tab, enable
Use, and select the applicable debug driver.

KA Options for Target 'Target 1' X
Device] Target] Output] Usting] User] C,-"CH] Asm] Linker ‘ Debug 'Lﬂilitiesl

" Use Simulater with restrictions Settings {* Use: Ilu LINK Pro Contex Debugger ﬂ} Settings |
[Limit Speed to Real-Time

The device selection already configures the Flash programming algorithm for on-
chip memory. Verify the configuration using the Settings button.

Program the application into Flash memory.

1 From the toolbar, choose Download. The Build Output window shows

messages about the download progress.

Build Qutput x

Load "C:\\Workspaces\\MDE\\NXP\\Blinky\\Cbjects\\Blinky.axf"
Erase Done.

Programming Done.

Verify CE.

Flash Load finished at 14:28:38

64

Debug Applications

@} Start debugging on hardware. From the toolbar, select Start/Stop Debug

Session
K2 C:\Workspaces\MDKANXPABlinky\Blinky.uvprojx - WVision -] x
P prej
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
TEH@| L @ [| |E=Emen @ NaRel@ e os @]
FEBO| PG ORBEaRE - O-3-8- 9 @8- %
Registers o E Disassembly g
Register [value [<] [ox12001280 FoocBCER B.W rt_psh_req (Ox1A001B58) -
G 14: osHernelInitialize (): // Initialize CMSIS-RTOS
RO 00000000 15: // initialize peripherals here
R 500000000 chox1A001284 FOOOFE14 BL.W osKernelInitialize (0x1R0012B0)
R2 00000000 1s: LED Initialize (): // Initialize LEDs
R3 00000000 17:)
R4 00000000 18: // create 'thread' functions that start executing,
RS 500000000 19: // example: tid name = osThreadCreate (osThread(name), NULL); v
“RE 000000000 < >
“R7 00000000] tED.h] LEDc] RIXConfCMc |] osOb, i x
. } (_Conf_CM., jeets.h] mainc] startup_LPC18ots -
“~R8 00000000 —_—
i) 000000000 1061/~ ~
R0 00000000 11 | * main: initialize and start the system
“R11 00000000 12 .
Ri2 200000000 13 flint main (void) {
RI3(P) G10000828 b 1s osKernelInitialize (): // Initialize CMSIS-RIOS
R14 (LR} x1A001389 1s // initialize peripherals here
RI5(PC) 14001284 16 LED Initialize (); // Initialize LEDs
kPSR 01000000 7
Barked is // create 'thread' functions that start executing,
System 139 // example: tid name = osThreadCreate (osThread(name), NULL);:
iemal 20 Init_BlinkyThread (): // Start Blinky thread
Mode Thread 21 osKernelStart (); // Start thread execution
Priviege Privileged = .
= = 23 while (1):
- arenze =l 24 |3 v
[E project | ERegisters < >
Command 2 E Call Stack - Locals g3
Load "C:\\Workspaces\\MDK\\NXP\\Blinky\\Objects\\Blinky.axf" Name Location/Value Type
@ osTimerThread: 1 | OxTADD13AC Task -
B @ 0c1A001284 Task
% main 0xDDDO000D intf()
S 2 @ os_idle_demon: 255 | OxTADDI3FA Task
> |
LSSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet | {E1Call Stack + Locals | flTrace Exceptions | jlEvent Counters | I Memory 1
ULINK Pro Cortex Debugger _t1: 0.03560590 sec L14¢C

During the start of a debugging session, uVision loads the application, executes
the startup code, and stops at the main C function.

Click Run on the toolbar. The LED flashes with a frequency of one second.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such as:

{1 Step steps through the program and into function calls.

1% Step Over steps through the program and over function calls.

{¥ Step Out steps out of the current function.

€ Stop halts program execution.

gt Reset performs a CPU reset.

== Show to the statement that executes next (current PC location).

Getting Started with MDK: Create Applications with pVision

65

Command Window

You may also enter debug commands in the Command window.

Command []
BES \\Blinky\main.c\32 -
B5 \\Blinky\main.c\23

BS Write msTicks==100, 1, "printf(\"Write Access Breakpoint: 100 ticks reached\\n\"):"

W5 1, "msTicks,O0x0R

W5 1, ‘CORE_CLE/1000000,0x0A

WS 1, ((SysTick Type *) ((OxE000E00OUL) + 0x0010UL)), OxOR

WS 1, *SystemCoreClock, Ox0RA

Write Access Breakpoint: 100 ticks reached

Write Access Breakpoint: 100 ticks reached CoOmamnd Line Dynamic Command List i
Write Access Breakpoint: 100 ticks reached -
q | 1. F

>

ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet Breaklicce

Js COVERAGE DEFINE |

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Window

The Disassembly
window shows the
program execution in
assembly code
intermixed with the
source code (when
available). When this is
the active window, then
all debug stepping
commands work at the
assembly level.

The window margin
shows markers for

HREEEE- - @-8- 2- @ x-

“

Disassembly
21: woid Delay (wvoid)
{I0x08000284 4770 BX 1r
22: while (msTicks < 493);
0x0B8000286 BFOO HCP
@ 0x08000288 480E LDR 0, [pc, $56]1 : @0x080002C4
Ox0B00028A 6800 LDR r0, [xD, $#0X00]
Ox0B800028C FSBOTFFS CMF r0, #¥0x1F2
EDOXOSOOOQQO DDFA BLE 0x08000288
23: msTicks = 0:
Ox0B80002382 2000 MOVS r0, #0x00

LED.c [%] main.c LED.h
10/*
2T * CMS5IS-RTCS 'main' function template
3 u
4 Finclude "LED.h"
5 #include "stm3Z2f4xx.h"

breakpoints, bookmarks, and for the next execution statement.

66

Debug Applications

Component Viewer

The Component Viewer shows information about:

= Software components that are provided in static memory variables or

structures.

= Objects that are addressed by an object handle.

Component Viewer windows containing objects are listed in the menu View —

Watch Windows.

The picture below is an example showing static component information for a

USB HID example project:

USB Device and Host
Property

¥ Library Version
=-Device 0
¥ Vendor ID
? Product ID
* Speed

? Endpoint 0 Maximum Packet Size

? Number of Interfaces
Y Assigned Address
¥ Configuration Status
& Endpoint Activity
¥ Human Interface Device 0
5-Device 1
? VendorID
? Product ID
Y Speed
Endpoint 0 Maximum Packet Size
Number of Interfaces
¥ Assigned Address
Configuration Status
& Endpoint Activity

¥ Human Interface Device 1

=]
Value
6.9.6

0xC251

0x2501
Low/Full/High Speed
64

1

10

Configured

In reports 1, Out reports 1, EP INT IN: 1, EP INT OUT: 1

0xC251
0x2511
Low/Full Speed
8

1

0

Unconfigured

In reports 1, Qut reports 1, EP INT IN: 1, EP INT OUT: 1

Getting Started with MDK: Create Applications with pVision 67

Event Recorder

The Event Recorder shows execution status and event information, and helps to
analyze the operation of software components. MDK middleware and the Keil
RTXS5 already offer the required description files.

The event recorder:
» increases the visibility to the dynamic execution of an application program.
= provides filter capabilities for the different event types.

= allows unrestricted calls to event recorder functions from threads, RTOS
kernel, and ISRs.

* implements recording functions that do not disable ISR on ARMv7-M.

= supplies fast time-deterministic execution of event recorder functions with
minimal code and timing overhead. Thus, event annotations can remain in
production code without the need to create a debug or release build.

To add the event recorder to the Blinky with Keil RTX5 example from page 46,
do the following:

* In the Manage Run-Time Environment window, select the component
Compiler:Event Recorder and change the component CMSIS:RTOS2
(API):Keil RTXS to variant Source.

= Change the line EventRecorderInitialize (EventRecordError,
1U) ; to EventRecorderInitialize (EventRecordAll, 10U);

» Rebuild the project, download the code to the target and start a debug
session.

68 Debug Applications

Open the event recorder window from the toolbar or the menu using View —
Analysis Windows — Event Recorder.

While debugging, all events issued by Keil RTX5 are displayed in this window:

Event Recorder 13
Enable Recorder: [v | =] ‘ v ‘ Mark: m All Operations FH Stopped
Event Time (sec) Component Event Property Value
0 Init Event Restart Count=0x00000001 |
1 0.03997310 RTX Kernel Kernellnitialize
2 0.04001890 RTX Kernel KernellnitializeCompleted
3 |0.04006410 RTX Thread |ThreadNew func=app_main, argument=0x00000000, attr=0x000...
4 0.04014510 RTX Memory MemoryAlloc mem=0x10000000, size=80, type=1, block=0x10000...
5 0.04021760 RTX Memory |MemoryAlloc mem=0x10000000, size=208, type=0, block=0x1000...
6 |0.04029790 RTX Thread |ThreadCreated thread_id=0x10000010
7 |0.04035480 RTX Kernel KernelStart —
8 0.04043350 RTX Thread |ThreadCreated thread_id=0x10001284
9 0.04049430 RTX Thread | ThreadSwitch thread_id=0x10000010
10 0.04054020 RTX Kernel KernelStarted
11 |0.04058720 RTX Thread |ThreadNew func=blink_LED, argument=0x00000000, attr=0x0000...
12 |0.04067020 RTX Memory ‘MemoryAlloc mem=0x10000000, size=80, type=1, block=0x10000...
13 | 0.04074650 RTX Memory MemoryAlloc mem=0x10000000, size=208, type=0, block=0x1000...
14 0.04082680 RTX Thread | ThreadCreated thread_id=0x10000130
15 0.14857680 RTX Thread |ThreadSwitch thread_id=0x10000130
16 |0.14862670 RTX Thread |ThreadDelay ticks=500
17 |0.14867520 RTX Thread |ThreadBlocked thread_id=0x10000130, timeout=500
10 N1A0THICEN DTV Theand ThenadCiuitoh thenad id— N1 0000010 LI

RTX RTOS Event Recorder

The documentation explains how to use Event Recorder in a user application:
www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

Getting Started with MDK: Create Applications with pVision

69

Breakpoints

You can set breakpoints

* While creating or editing your program source code. Click in the grey margin

of the editor or Disassembly window to set a breakpoint.

= Using the breakpoint buttons in the toolbar.

= Using the menu Debug — Breakpoints.

= Entering commands in the Command window.

= Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define complex
breakpoints using the
Breakpoints window.

Open the Breakpoints
window from the menu
Debug.

Enable or disable
breakpoints using the
checkbox in the field
Current Breakpoints.
Double-click on an
existing breakpoint to
modify the definition.

Breakpoints X

Current Breakpoints:

< >
Access
Expression: | ™ Read [~ Write
Count: |1 J;I Size: E
Command: | 1 = r
| NIISeIedad| Kl Al | Close | Help

Enter an Expression to add a new breakpoint. Depending on the expression, one
of the following breakpoint types is defined:

= Execution Breakpoint (E): is created when the expression specifies a code
address and triggers when the code address is reached.

= Access Breakpoint (A): is created when the expression specifies a memory
access (read, write, or both) and triggers on the access to this memory
address. Use a compare (=) operator to compare for a specified value.

If a Command is specified for a breakpoint, uVision executes the command and
resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint halts program execution.

70

Debug Applications

Watch Window

The Watch window allows you to observe Watch 1

program symbols, registers, memory areas, Nam: —
. meslicks
and expressions. & CORE_CLK/1000000
-7 SysTick
&1 Open a Watch window from the M
toolbar or the menu using @ vaL
View — Watch Windows. ¢ CalB
W SystemCoreClock
Add variables to the Watch window with:

Value

168

(0xEQ00EQLD
000010007
0x0002903F

0x4000493E
163000000

Type

int

uleng
pointer
unsigned int
unsigned int
unsigned int
unsigned int

unsigned int

* Click on the field <Enter expression> and double-click or press F2.

= In the Editor when the cursor is located on a variable, use the context menu

select Add <item name> to...
* Drag and drop a variable into a Watch window.

= In the Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during

program execution when View — Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window | canstack + Locais

shows the function nesting and Name Location/¥elug
% osTimerThread:1 0:08000A2C

variables of the current program 5 ¢

location. & main 0x080003CE
=% blink_LED: 3
9 =% osDelay 0x080005E4
@ Open the Call Stack + Locals * milscc [notinscopss
window from the toolbar or =% blink_LED 0x08000410
the menu using View — Call *¥ argument | <notinscope>

¥ os_idle_demen: 255 | 0x08000433

Stack Window.

Type
Task
Task
int f()
Task

enum (int) flunsigned int)

param - unsigned int
void f{void *)

param - void *

Task

When program execution stops, the Call Stack + Locals window automatically
shows the current function nesting along with local variables. Threads are shown

for applications that use the CMSIS-RTOS RTX.

Getting Started with MDK: Create Applications with pVision

Register Window

The Register window shows the content of the
microcontroller registers.

= Open the Registers window
from the toolbar or the menu
View — Registers Window.

Registers

Reagister

Value |

(00000000

20000058
20000678

(61000000

MSF k20000678
You can modify the content of a register by double- L o 00000000
clicking on the value of a register, or pressing F2 to i
edit the selected value. Currently modified registers are FAULTMASK 0
. . . . CONTROL (kD4
highlighted in blue. The window updates the values = Intemal
when program execution halts. e e
Stack MSP
States 52395004552
Sec 311.87502548
*-FPU
Memory Window
Monitor memory areas using P =
Memory Windows. Address:fumsTicks] d
0x20000000: [EEARIEE| 02037R00 00000000 00000000
Open a Memory WlndOW 0x20000010: 04030201 09080706 0Q0D00000 00000000
0x20000020: 00000000 00000000 O0O0O0O0O0 00000000
from the toolbar or the 0x20000030: 00000000 00000000 00000000 00000000
. . 0x20000040: 00000000 00000000 OOQOQOOOO OQOOD0OOQOOD
menu using View — 0x20000050: 00000000 00000000 00000000 00000000
. 0x20000060: 00000000 00000000 OOQOQOO0O0 00000000
Memory Wlndows‘ 0x20000070: 20000018 0800020D 00000000 00000000
0x20000080: 00000000 00000000 OOQOQOO0O0 0000000D
L} Enter an expression in the 0x20000090: 00000000 00000000 OOQOQOO0O0 00D0000D i

A=20N0N0NRN - OOOANANN

nanannann

falalalalatalals]

faTaTalatalalalsl

Address field to monitor the
memory area.

» To modify memory content, use the Modify Memory at ... command from
context menu of the Memory window double-click on the value.

* The Context Menu allows you to select the output format.

= To update the Memory Window periodically, enable View — Periodic
Window Update. Use Update Windows in the Toolbox to refresh the

windows manually.

11" Stop refreshing the Memory window by clicking the Lock button. You can
use the