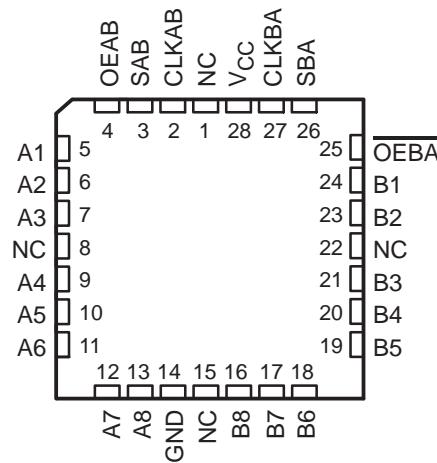


SN54LVTH652, SN74LVTH652
3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS


SCBS706F – AUGUST 1997 – REVISED OCTOBER 2003

- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3$ V, $T_A = 25^\circ C$
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

SN54LVTH652 . . . JT OR W PACKAGE
SN74LVTH652 . . . DB, DGV, DW, NS, OR PW PACKAGE
(TOP VIEW)

SN54LVTH652 . . . FK PACKAGE
(TOP VIEW)

NC – No internal connection

description/ordering information

These bus transceivers and registers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

ORDERING INFORMATION

T_A	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^\circ C$ to $85^\circ C$	SOIC – DW	Tube	SN74LVTH652DW	LVTH652
		Tape and reel	SN74LVTH652DWR	
	SOP – NS	Tape and reel	SN74LVTH652NSR	LVTH652
	SSOP – DB	Tape and reel	SN74LVTH652DBR	LXH652
	TSSOP – PW	Tube	SN74LVTH652PW	LXH652
		Tape and reel	SN74LVTH652PWR	
	TSSOP – DGV	Tape and reel	SN74LVTH652DGVR	LXH652
$-55^\circ C$ to $125^\circ C$	CDIP – JT	Tube	SNJ54LVTH652JT	SNJ54LVTH652JT
	CFP – W	Tube	SNJ54LVTH652W	SNJ54LVTH652W
	LCCC – FK	Tube	SNJ54LVTH652FK	SNJ54LVTH652FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

SN54LVTH652, SN74LVTH652

3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

SCBS706F – AUGUST 1997 – REVISED OCTOBER 2003

description/ordering information (continued)

The 'LVTH652 devices consist of bus-transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.

Output-enable (OEAB and \overline{OEBA}) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between real-time and stored data. A low input selects real-time data and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'LVTH652 devices.

Data on the A or B data bus, or both, can be stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and \overline{OEBA} . In this configuration, each output reinforces its input; therefore, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

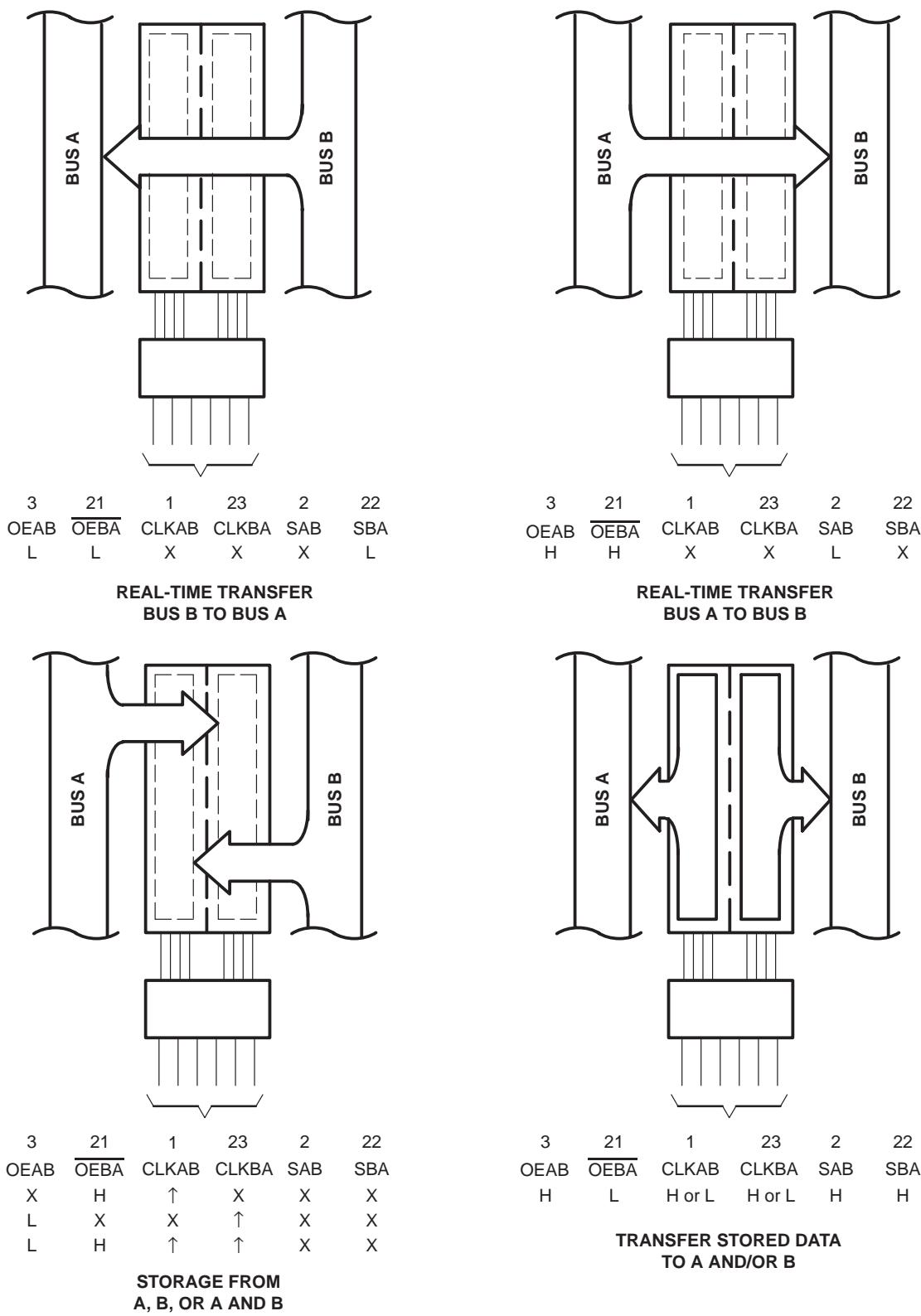
When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

FUNCTION TABLE

INPUTS						DATA I/O†		OPERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1–A8	B1–B8	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	↑	↑	X	X	Input	Input	Store A and B data
X	H	↑	H or L	X	X	Input	Unspecified‡	Store A, hold B
H	H	↑	↑	X‡	X	Input	Output	Store A in both registers
L	X	H or L	↑	X	X	Unspecified‡	Input	Hold A, store B
L	L	↑	↑	X	X‡	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
H	H	X	X	L	X	Input	Output	Real-time A data to B bus
H	H	H or L	X	H	X	Input	Output	Stored A data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

† The data-output functions can be enabled or disabled by a variety of level combinations at OEAB or \overline{OEBA} . Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

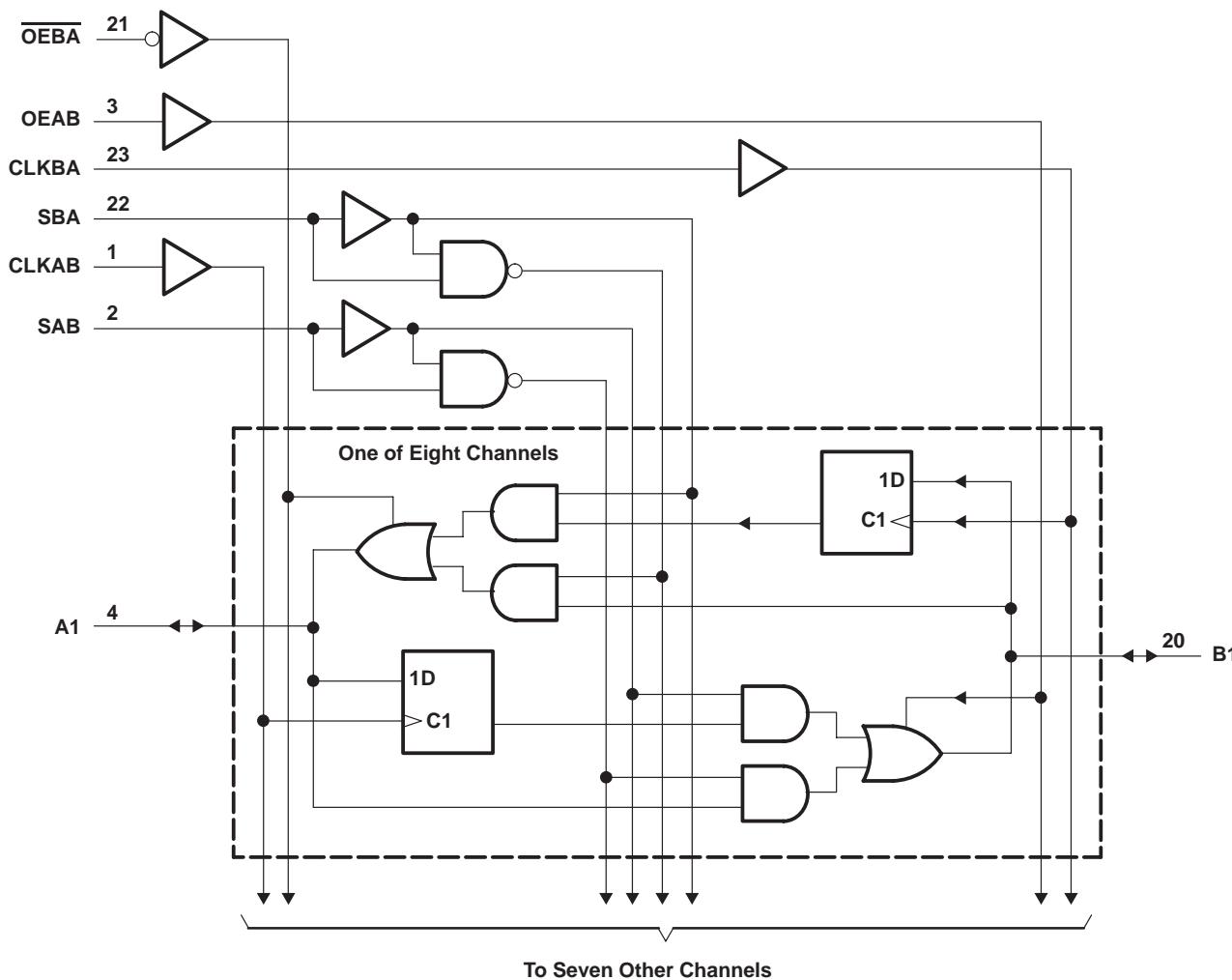

‡ Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered to load both registers.

SN54LVTH652, SN74LVTH652
**3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS
 WITH 3-STATE OUTPUTS**

SCBS706F – AUGUST 1997 – REVISED OCTOBER 2003

Pin numbers shown are for the DB, DGV, DW, JT, NS, PW, and W packages.


Figure 1. Bus-Management Functions

SN54LVTH652, SN74LVTH652

3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

SCBS706F – AUGUST 1997 – REVISED OCTOBER 2003

logic diagram (positive logic)

Pin numbers shown are for the DB, DGV, DW, JT, NS, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 3. The package thermal impedance is calculated in accordance with JEDEC 51-7.

recommended operating conditions (see Note 4)

		SN54LVTH652		SN74LVTH652		UNIT
		MIN	MAX	MIN	MAX	
V _{CC}	Supply voltage	2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage	2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V
V _I	Input voltage		5.5		5.5	V
I _{OH}	High-level output current		-24		-32	mA
I _{OL}	Low-level output current		48		64	mA
Δt/Δv	Input transition rise or fall rate	Outputs enabled		10	10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate			200	200	μs/V
T _A	Operating free-air temperature	-55	125	-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN54LVTH652, SN74LVTH652

3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS

SCBS706F – AUGUST 1997 – REVISED OCTOBER 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54LVTH652			SN74LVTH652			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 2.7 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$, $I_{OH} = -100 \mu\text{A}$	$V_{CC} - 0.2$			$V_{CC} - 0.2$			V
	$V_{CC} = 2.7 \text{ V}$, $I_{OH} = -8 \text{ mA}$	2.4			2.4			
	$V_{CC} = 3 \text{ V}$	$I_{OH} = -24 \text{ mA}$	2					
		$I_{OH} = -32 \text{ mA}$			2			
V_{OL}	$V_{CC} = 2.7 \text{ V}$	$I_{OL} = 100 \mu\text{A}$		0.2			0.2	V
		$I_{OL} = 24 \text{ mA}$		0.5			0.5	
	$V_{CC} = 3 \text{ V}$	$I_{OL} = 16 \text{ mA}$		0.4			0.4	
		$I_{OL} = 32 \text{ mA}$		0.5			0.5	
		$I_{OL} = 48 \text{ mA}$		0.55				
		$I_{OL} = 64 \text{ mA}$					0.55	
I_I	Control inputs	$V_{CC} = 3.6 \text{ V}$, $V_I = V_{CC}$ or GND			± 1		± 1	μA
		$V_{CC} = 0$ or 3.6 V , $V_I = 5.5 \text{ V}$		10			10	
	A or B ports‡	$V_{CC} = 3.6 \text{ V}$	$V_I = 5.5 \text{ V}$		20		20	
			$V_I = V_{CC}$		1		1	
		$V_I = 0$		-5			-5	
I_{off}	$V_{CC} = 0$, V_I or $V_O = 0$ to 4.5 V						± 100	μA
I_I (hold)	A or B ports	$V_{CC} = 3 \text{ V}$	$V_I = 0.8 \text{ V}$	75		75		μA
			$V_I = 2 \text{ V}$	-75		-75		
		$V_{CC} = 3.6 \text{ V} \S$	$V_I = 0$ to 3.6 V				± 500	
I_{OZPU}	$V_{CC} = 0$ to 1.5 V , $V_O = 0.5$ to 3 V , OE/OE = don't care			$\pm 100^*$			± 100	μA
I_{OZPD}	$V_{CC} = 1.5 \text{ V}$ to 0 , $V_O = 0.5$ to 3 V , OE/OE = don't care			$\pm 100^*$			± 100	μA
I_{CC}	$V_{CC} = 3.6 \text{ V}$, $I_O = 0$, $V_I = V_{CC}$ or GND	Outputs high		0.19		0.19		mA
		Outputs low		5		5		
		Outputs disabled		0.19		0.19		
$\Delta I_{CC} \mathbb{T}$	$V_{CC} = 3 \text{ V}$ to 3.6 V , One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND			0.2		0.2		mA
C_i	$V_I = 3 \text{ V}$ or 0			4		4		pF
C_{io}	$V_O = 3 \text{ V}$ or 0			9		9		pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

† All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ Unused terminals at V_{CC} or GND

§ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

¶ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54LVTH652, SN74LVTH652
3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS

SCBS706F – AUGUST 1997 – REVISED OCTOBER 2003

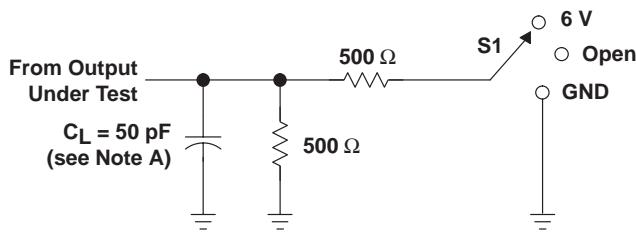
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

			SN54LVTH652		SN74LVTH652		UNIT	
			V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V			
			MIN	MAX	MIN	MAX		
f _{clock}	Clock frequency		150	150	150	150	150	MHz
t _W	Pulse duration, CLK high or low		3.3	3.3	3.3	3.3	3.3	ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	Data high	1.3	1.6	1.2	1.5	1.5	ns
		Data low	1.9	2.6	1.6	2.2	2.2	
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑		1.2	1.2	0.8	0.8	0.8	ns

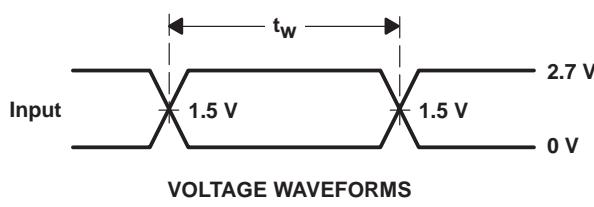
switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVTH652		SN74LVTH652		UNIT		
			V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V				
			MIN	MAX	MIN	MAX			
f _{max}			150	150	150	150	150	MHz	
t _{PLH}	CLKBA or CLKAB	A or B	1.7	5	5.9	1.8	3.1	4.7	ns
			1.7	5	5.9	1.8	3.1	4.7	
t _{PLH}	A or B	B or A	1.2	3.7	4.3	1.3	2.3	3.5	ns
			1.2	3.7	4.3	1.3	2.4	3.5	
t _{PLH}	SBA or SAB‡	A or B	1.4	5.2	6.3	1.5	3.1	4.9	ns
			1.4	5.2	6.3	1.5	3.4	4.9	
t _{PZH}	OEBA	A	1	5.4	6.7	1.1	2.9	5.2	ns
			1	5.4	6.7	1.1	3.1	5.2	
t _{PHZ}	OEBA	A	2.2	5.9	6.5	2.3	3.5	5.5	ns
			2.2	5.9	6.3	2.3	3.7	5.5	
t _{PZL}	OEAB	B	1.2	4.9	5.9	1.3	3	4.7	ns
			1.2	4.9	5.9	1.3	3.3	4.7	
t _{PHZ}	OEAB	B	1.4	5.8	7	1.5	3.6	5.6	ns
			1.4	5.9	6.6	1.5	3.7	5.6	

† All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

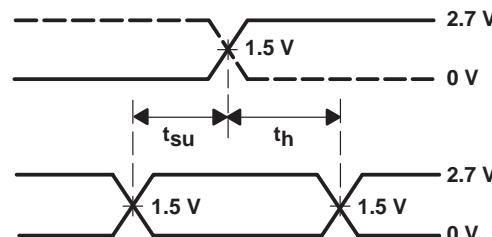

‡ These parameters are measured with the internal output state of the storage register opposite that of the bus input.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

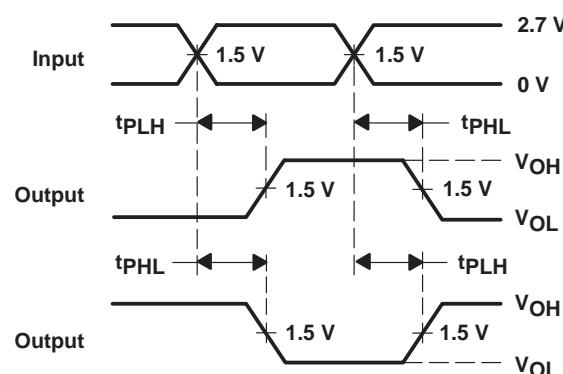
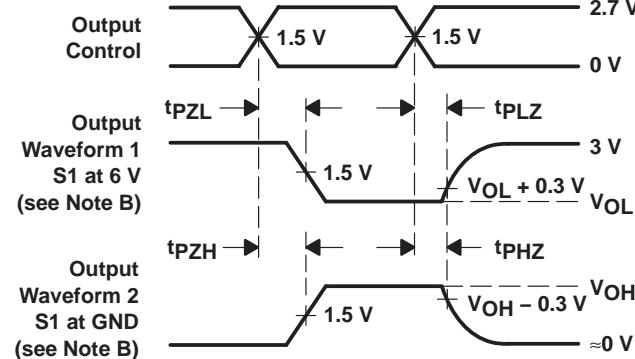


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION



LOAD CIRCUIT



VOLTAGE WAVEFORMS
PULSE DURATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	6 V
tPHZ/tPZH	GND

Timing Input

Data Input

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMESVOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTSVOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLINGNOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVTH652DW	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH652	Samples
SN74LVTH652PW	ACTIVE	TSSOP	PW	24	60	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LXH652	Samples
SN74LVTH652PWR	ACTIVE	TSSOP	PW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LXH652	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

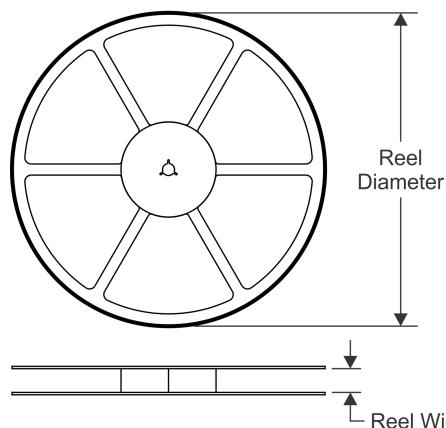
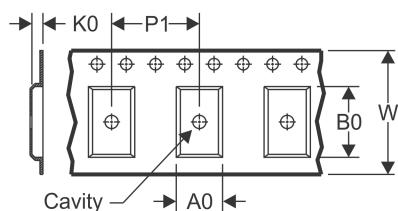
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

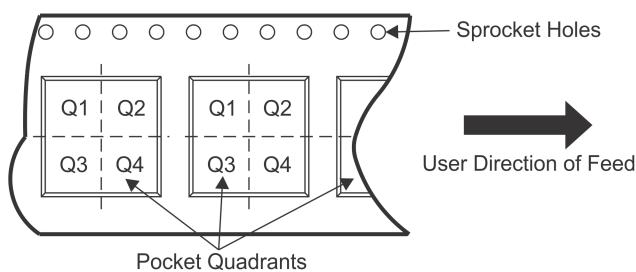
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

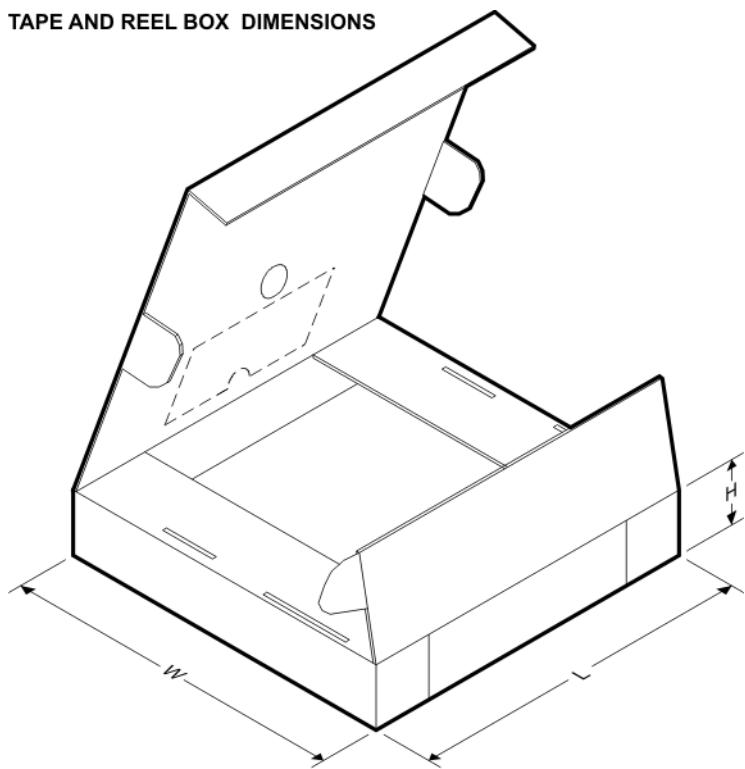
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



www.ti.com

PACKAGE OPTION ADDENDUM


10-Dec-2020

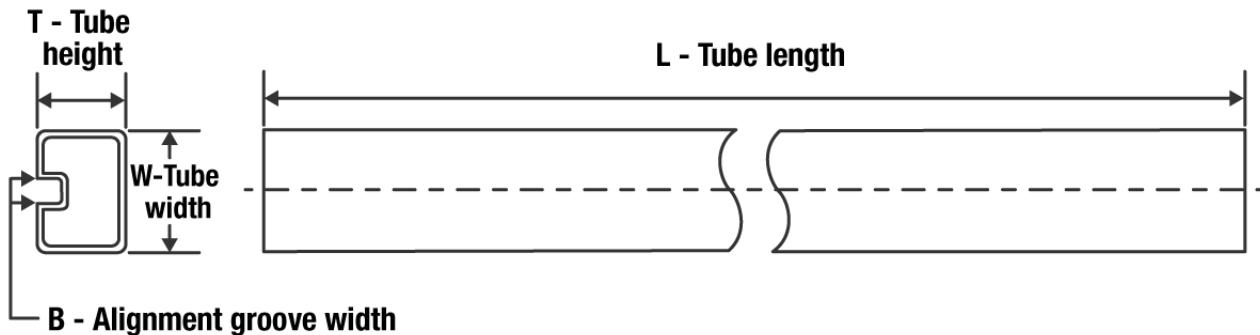
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH652PWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

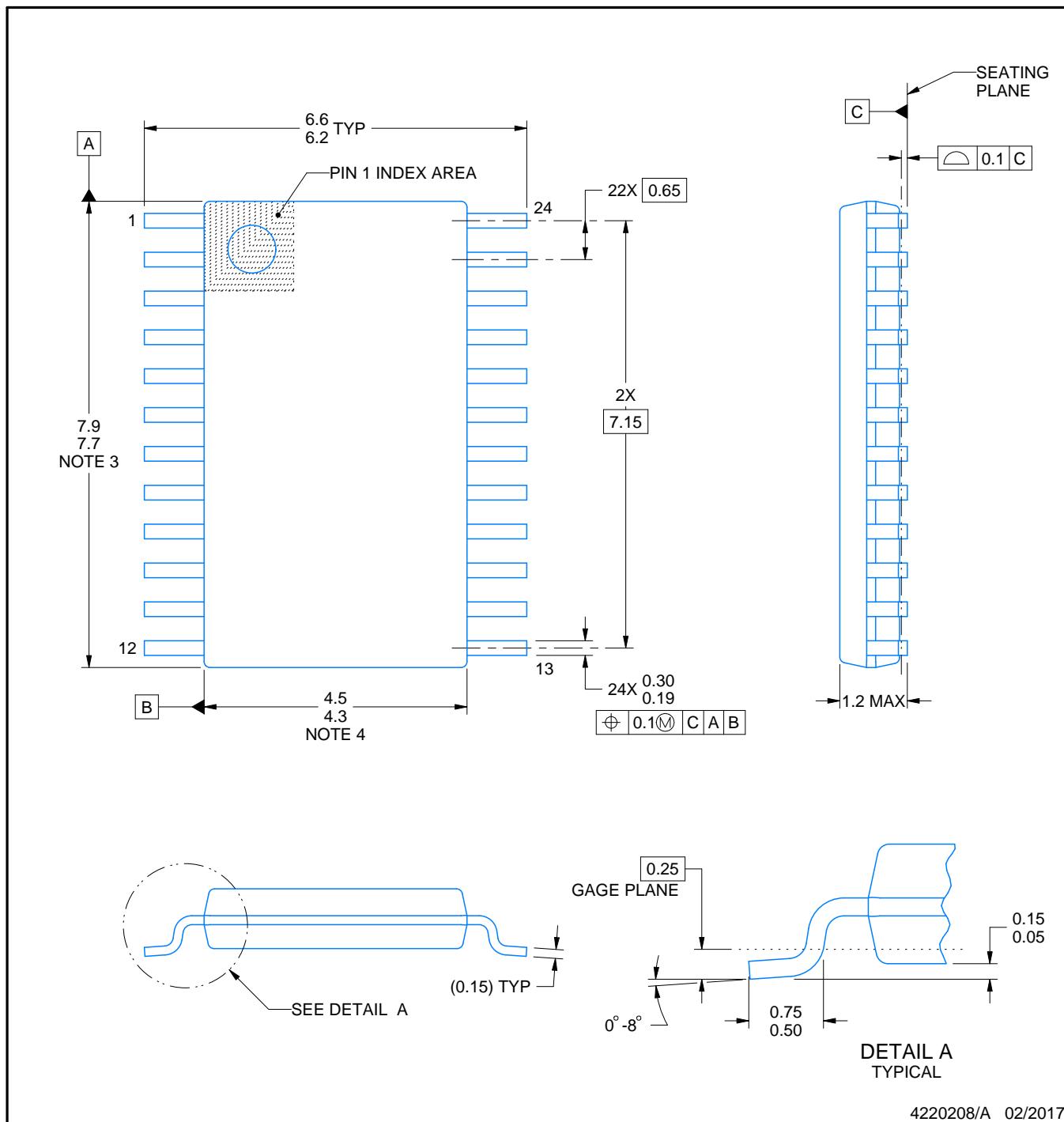
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTH652PWR	TSSOP	PW	24	2000	853.0	449.0	35.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
SN74LVTH652DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74LVTH652PW	PW	TSSOP	24	60	530	10.2	3600	3.5

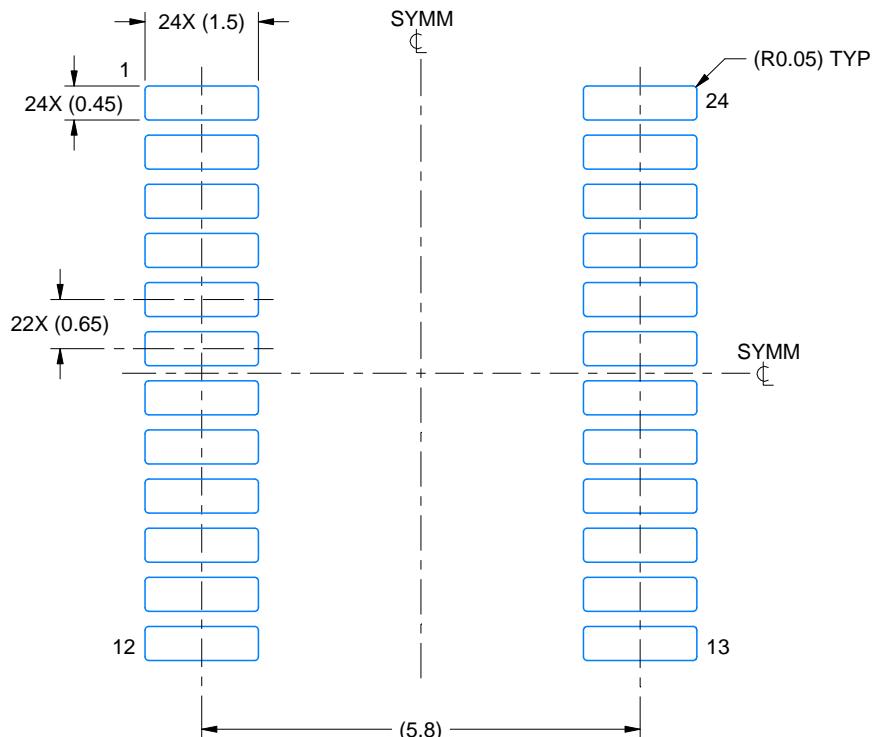

PACKAGE OUTLINE

PW0024A

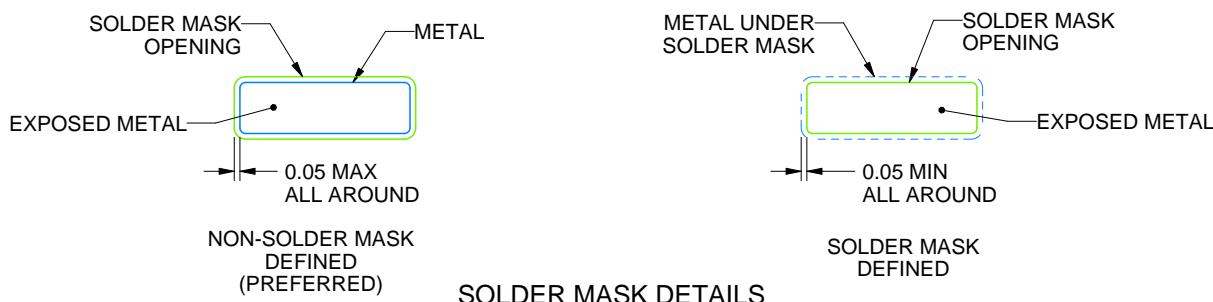
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

EXAMPLE BOARD LAYOUT


PW0024A

TSSOP - 1.2 mm max height

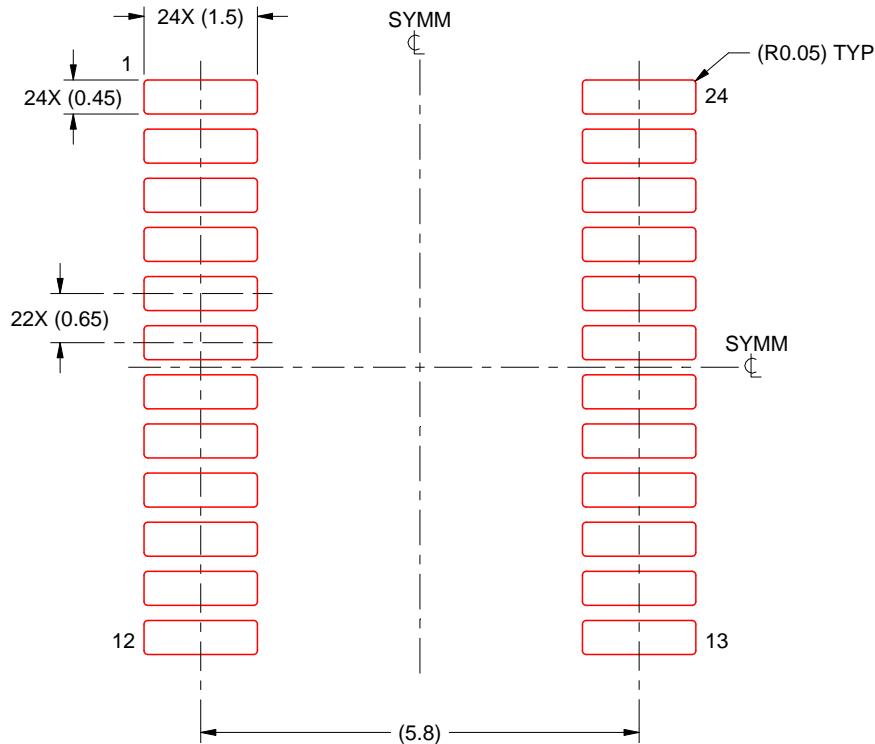
SMALL OUTLINE PACKAGE

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 10X

4220208/A 02/2017

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

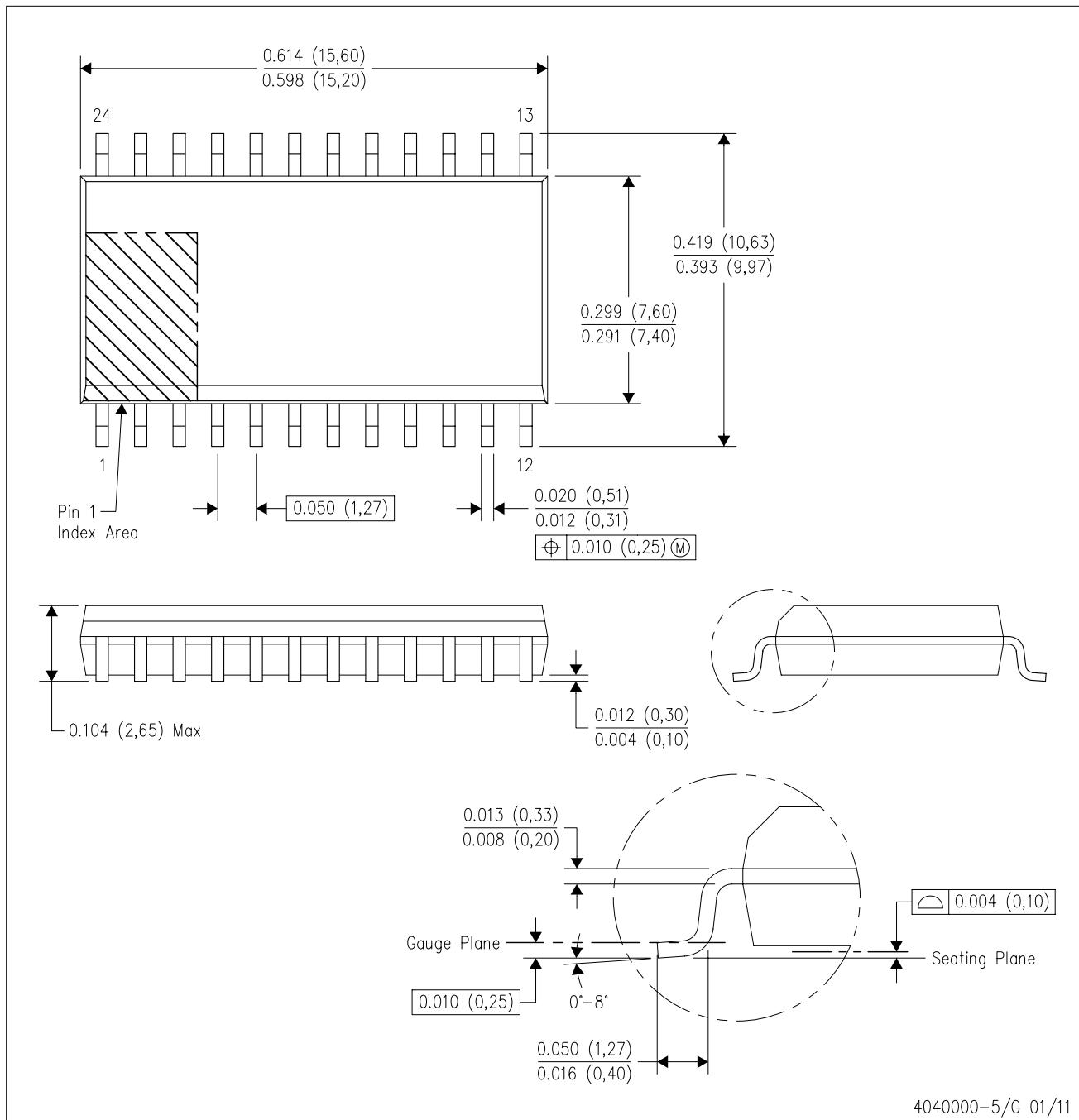
EXAMPLE STENCIL DESIGN

PW0024A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 10X

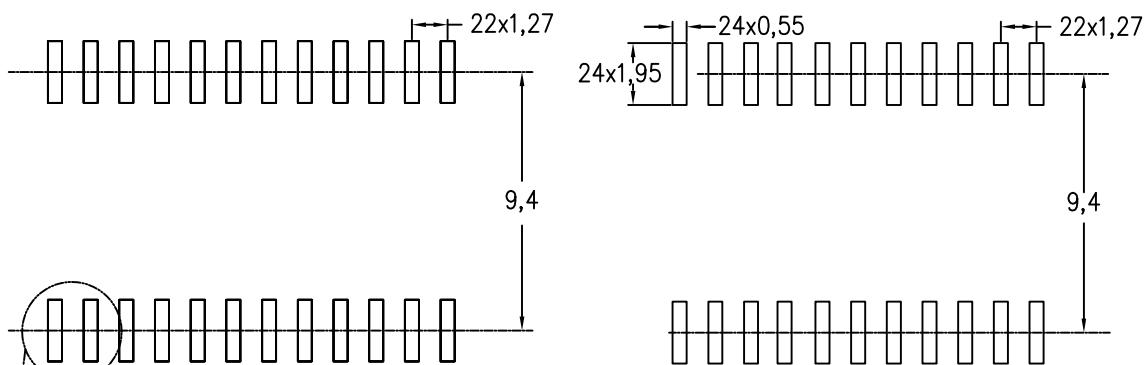

4220208/A 02/2017

NOTES: (continued)

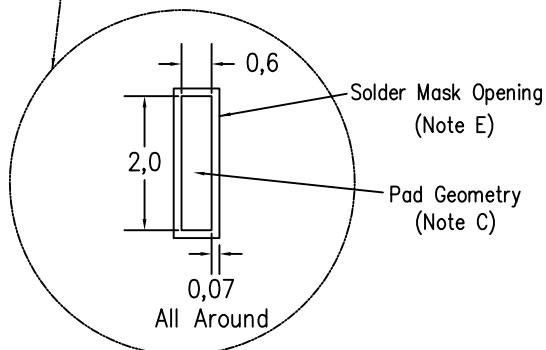
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE



NOTES:


- All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
- Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

Example Board Layout
(Note C)Stencil Openings
(Note D)

Non Solder Mask Define Pad

4209202-5/F 08/13

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Refer to IPC7351 for alternate board design.
- Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated