Digital Transistors (BRT) R1 = 22 k Ω , R2 = 22 k Ω

NPN Transistors with Monolithic Bias Resistor Network

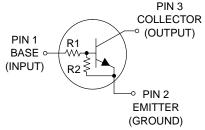
This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

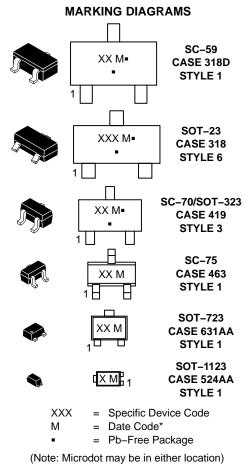
Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25° C)

Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	Ι _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	10	Vdc


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

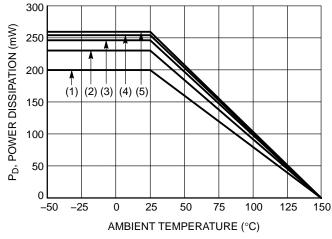

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.

Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping [†]
MUN2212T1G, NSVMUN2212T1G*	8B	SC–59 (P–Free)	3000 / Tape & Reel
MMUN2212LT1G, NSVMMUN2212LT1G*	A8B	SOT-23 (P-Free)	3000 / Tape & Reel
MUN5212T1G, SMUN5212T1G*	8B	SC-70/SOT-323 (P-Free)	3000 / Tape & Reel
DTC124EET1G, SDTC124EET1G*	8B	SC–75 (P–Free)	3000 / Tape & Reel
DTC124EM3T5G	8B	SOT-723 (P-Free)	8000 / Tape & Reel
NSBC124EF3T5G	L	SOT-1123 (P-Free)	8000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

SC-75 and SC-70/SOT323; Minimum Pad
 SC-59; Minimum Pad
 SOT-23; Minimum Pad
 SOT-1123; 100 mm², 1 oz. copper trace
 SOT-723; Minimum Pad

Figure 1. Derating Curve

Table 2. THERMAL CHARACTERISTICS

THERMAL CHARACTERISTICS (SC-59) (MUN2212)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{\circ}C (Note 1) (Note 2)	PD	230 338 1.8 2.7	mW mW/°C
Thermal Resistance, (Note 1) Junction to Ambient (Note 2)	R _{θJA}	540 370	°C/W
Thermal Resistance, (Note 1) Junction to Lead (Note 2)	R _{θJL}	264 287	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTICS (SOT-23) (MMUN2212L)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{\circ}C (Note 1) (Note 2)	PD	246 400 2.0 3.2	mW mW/°C
Thermal Resistance,(Note 1)Junction to Ambient(Note 2)	R _{θJA}	508 311	°C/W
Thermal Resistance, (Note 1) Junction to Lead (Note 2)	R _{θJL}	174 208	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTICS (SC-70/SOT-323) (MUN5212)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{\circ}C (Note 1) (Note 2)	PD	202 310 1.6 2.5	mW mW/°C
Thermal Resistance,(Note 1)Junction to Ambient(Note 2)	R _{θJA}	618 403	°C/W
Thermal Resistance, (Note 1) Junction to Lead (Note 2)	R _{θJL}	280 332	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTICS (SC-75) (DTC124EE)		_	
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{\circ}C (Note 1) (Note 2)	PD	200 300 1.6 2.4	mW mW/°C
Thermal Resistance,(Note 1)Junction to Ambient(Note 2)	R _{θJA}	600 400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTICS (SOT-723) (DTC124EM3)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{\circ}C (Note 1) (Note 2)	PD	260 600 2.0 4.8	mW mW/°C
Thermal Resistance,(Note 1)Junction to Ambient(Note 2)	R _{θJA}	480 205	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

FR-4 @ 1.0 x 1.0 Inch Pad.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

Table 2. THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
THERMAL CHARACTERISTICS (SOT-1123) (NSBC124EF3)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 3) (Note 4) Derate above 25^{\circ}C (Note 3) (Note 4)	PD	254 297 2.0 2.4	mW mW/°C
Thermal Resistance,(Note 3)Junction to Ambient(Note 4)	R _{θJA}	493 421	°C/W
Thermal Resistance, Junction to Lead (Note 3)	R _{θJL}	193	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-4 @ Minimum Pad.

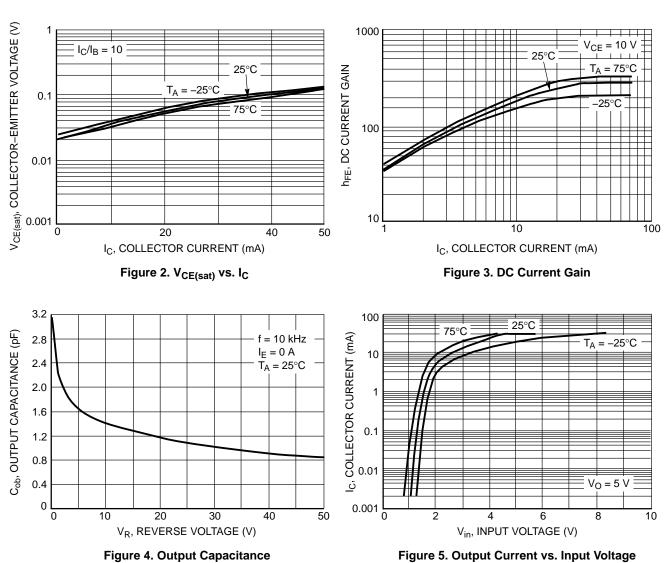

FR-4 @ 1.0 x 1.0 Inch Pad.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

Table 3. ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Base Cutoff Current ($V_{CB} = 50 \text{ V}, I_E = 0$)	I _{CBO}	_	_	100	nAdc
Collector–Emitter Cutoff Current ($V_{CE} = 50 V$, $I_B = 0$)	I _{CEO}	-	_	500	nAdc
Emitter–Base Cutoff Current ($V_{EB} = 6.0 \text{ V}, I_C = 0$)	I _{EBO}	-	_	0.2	mAdc
Collector–Base Breakdown Voltage $(I_C = 10 \ \mu A, I_E = 0)$	V _{(BR)CBO}	50	-	_	Vdc
Collector–Emitter Breakdown Voltage (Note 5) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	_	_	Vdc
ON CHARACTERISTICS		-			
DC Current Gain (Note 5) ($I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$)	h _{FE}	60	100	_	
Collector–Emitter Saturation Voltage (Note 5) $(I_C = 10 \text{ mA}, I_B = 0.3 \text{ mA})$	V _{CE(sat)}	_	_	0.25	Vdc
Input Voltage (off) $(V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A})$	V _{i(off)}	-	1.2	0.8	Vdc
Input Voltage (on) ($V_{CE} = 0.3 \text{ V}, I_C = 5.0 \text{ mA}$)	V _{i(on)}	2.5	1.6	_	Vdc
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	V _{OL}	-	_	0.2	Vdc
Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, V_B = 0.5 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	_	_	Vdc
Input Resistor	R1	15.4	22	28.6	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS MUN2212, MMUN2212L, NSVMMUN2212LT1G, MUN5212, DTC124EE, DTC124EM3

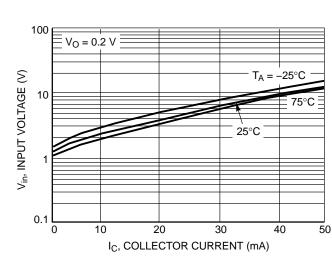
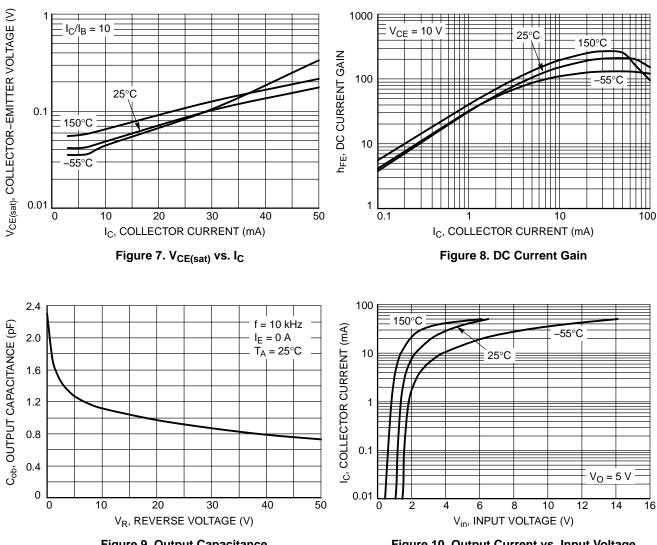



Figure 6. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS – NSBC124EF3

Figure 9. Output Capacitance

Figure 10. Output Current vs. Input Voltage

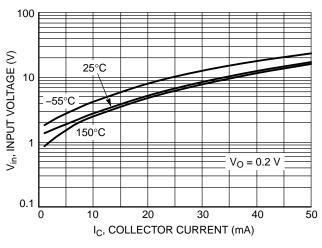
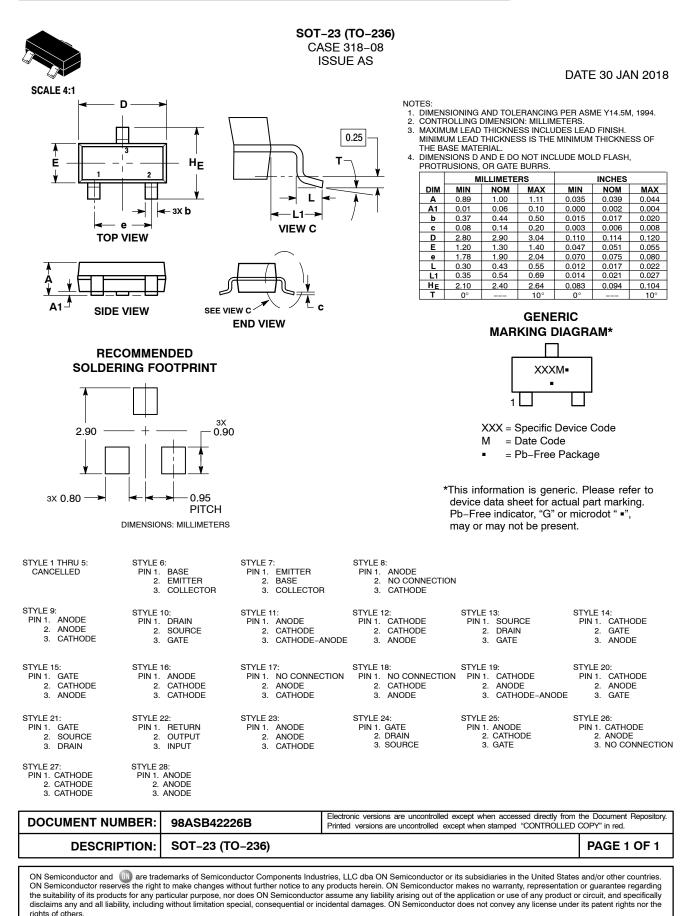
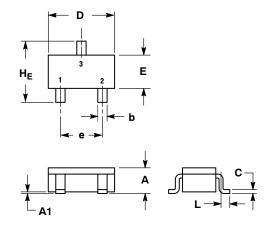
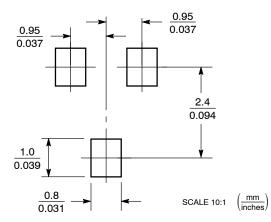



Figure 11. Input Voltage vs. Output Current



© Semiconductor Components Industries, LLC, 2019



SCALE 2:1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SC-59 CASE 318D-04 ISSUE H

DATE 28 JUN 2012

NOTES:

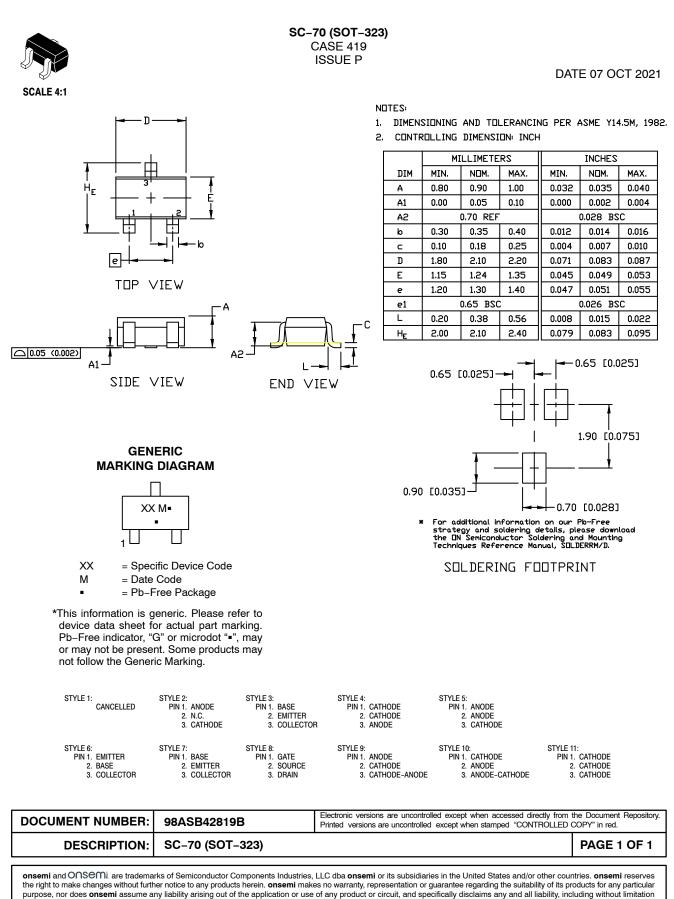
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		MILLIMETERS INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.15	1.30	0.039	0.045	0.051
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.35	0.43	0.50	0.014	0.017	0.020
С	0.09	0.14	0.18	0.003	0.005	0.007
D	2.70	2.90	3.10	0.106	0.114	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	1.70	1.90	2.10	0.067	0.075	0.083
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.80	3.00	0.099	0.110	0.118

GENERIC **MARKING DIAGRAM**

= Specific Device Code XXX Μ = Date Code

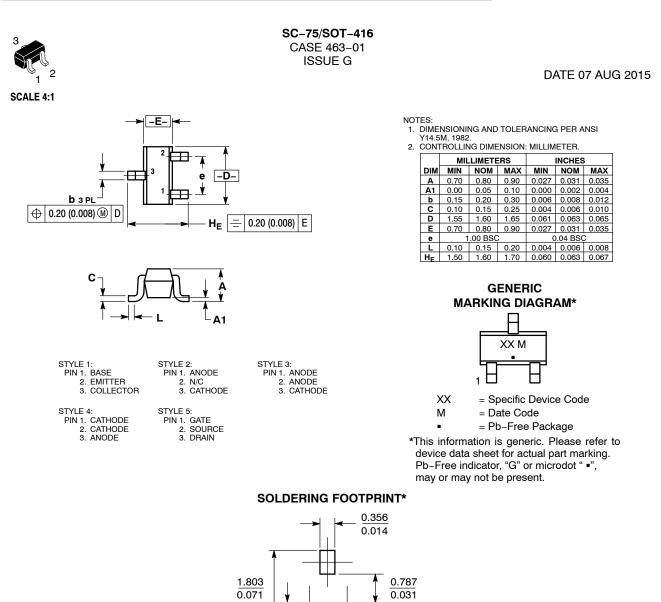
= Pb-Free Package*


(*Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE
2. EMITTER	2. N.C.	2. ANODE
3. COLLECTOR	3. CATHODE	3. CATHODE
Style 4:	Style 5:	STYLE 6:
Pin 1. Cathode	Pin 1. Cathode	PIN 1. ANODE
2. N.C.	2. Cathode	2. CATHODE
3. Anode	3. Anode	3. ANODE/CATHODE

DOCUMENT NUMBER:	98ASB42664B	Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED to the stamped "CONTROLLED to the stamped statement of the stamped statement of the s	
DESCRIPTION:	SC-59		PAGE 1 OF 1
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product of cidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically


ONSEM¹.

© Semiconductor Components Industries, LLC, 2019

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1.000

0.039

SCALE 10:1

mm

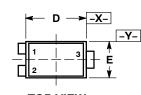
inches

0.508

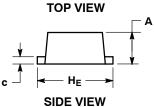
0.020

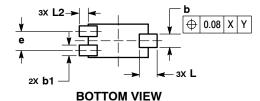
 DOCUMENT NUMBER:
 98ASB15184C
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SC-75/SOT-416
 PAGE 1 OF 1

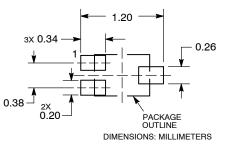

 ON Semiconductor and (iii) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its pattern rights nor the

rights of others.





SCALE 8:1



SOT-1123 CASE 524AA ISSUE C

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
3. COLLECTOR	3. CATHODE	3. CATHODE	3. ANODE	3. DRAIN

DOCUMENT NUMBER:	98AON23134D Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-1123, 3-LEAD, 1.0X0.6X0.37, 0.35P PAGE		PAGE 1 OF 1
ON Semiconductor and M are trac	lemarks of Semiconductor Components Indu	stries IIC dba ON Semiconductor or its subsidiaries in the United States	and/or other countries

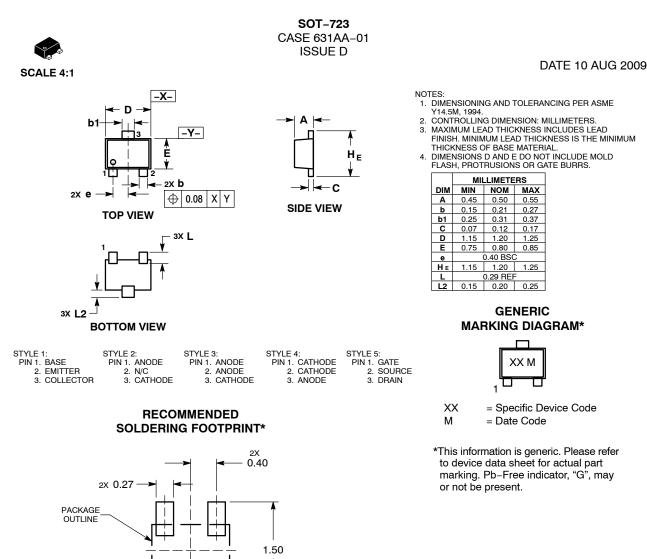
on Semiconductor are verse the right to make changes without further notice to any products herein. ON Semiconductor in makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 29 NOV 2011

- NOTES:
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 4.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.34	0.40		
b	0.15	0.28		
b1	0.10	0.20		
С	0.07	0.17		
D	0.75	0.85		
Е	0.55	0.65		
е	0.35	0.40		
HE	0.95	1.05		
L	0.185 REF			
L2	0.05	0.15		

GENERIC **MARKING DIAGRAM***


= Specific Device Code Х Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " .", may or may not be present.

© Semiconductor Components Industries, LLC, 2019

3X 0.52 - - 0.36 DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 DOCUMENT NUMBER:
 98AON12989D
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOT-723
 PAGE 1 OF 1

 ON Semiconductor and ON semiconductor components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative